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An air-stable (amino)(amido)radical was synthesized by reacting a
cyclic (alkyl)(amino)carbene with carbazoyl chloride, followed by
one-electron reduction. We show that an adjacent radical center
weakens the amide bond. It enables the amino group to act as a
strong acceptor under steric contraint, thus enhancing the stabiliz-
ing capto-dative effect.

Glycyl radical enzymes are important biocatalysts that enable a
variety of transformations; from the reduction of nucleotides to
the breakdown of inactivated hydrocarbons." Their active rest-
ing state is generated by H atom abstraction at a glycine residue
(Fig. 1a). The resulting C-radical A is highly sensitive to oxygen
and the enzymatic processes work only under anaerobic con-
ditions. Note that other reactive peptidyl radicals and related
(amino)(amido) C-radicals B are rare in nature,'? but are
commonly involved in synthetic radical peptidic chemistry.>
The persistence of the glycyl C-radical pattern in enzymes is
usually attributed to the synergic combination of an electron-
donating nitrogen (blue on Fig. 1) and an electron-withdrawing
carbonyl group (red), a push-pull or captodative effect.” The
protein environment also precludes the formation of C-C
dimers, which are usually obtained with simpler molecular
models.>*” In 2013, we took advantage of the bulky pattern of
cyclic (alkyl)(amino)carbene (CAAC)*® to synthesize and isolate
monomeric (amino)(carboxy) C-radical C under inert
atmosphere.” In addition, we showed that increasing the
electron-withdrawing properties of the carbonyl substituent,
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such as in compound D, resulted in radicals with remarkable
air-persistency.””” A schematic molecular orbital analysis
enables the rationalization of this effect. Indeed, the singly
occupied molecular orbital (SOMO) is a bonding combination
of n¢, and &y (Fig. 1b). An electron-withdrawing substituent
on the carbonyl lowers the energy of the n{, thus increasing
the weight of the CO fragment, which has major coefficient on
oxygen. Therefore, the formal C-radical shifts to more of an
O-centred radical, which is less reactive towards dioxygen.’**
In this context, as illustrated by the high air-sensitivity of
glycyl radical enzymes, amide patterns seem especially unfit for
the design of bench-stable radicals; they are among both the
poorest available N-donors and the weakest -electron-
withdrawing carbonyl groups. Herein, we challenge this para-
digm and report an air-stable version of an amide-substituted
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Fig. 1 (a) Glycyl radical pattern A in Enzymes, (amino)(amido) C-radical B,

bottle-able push-pull C-radical C (air sensitive) and D (highly air-
persistent); (b) schematic representations of SOMO of an (amino)(carbo-
nyl) C-radical built from n{ and ng, left: “classical” case, right: R is an
extreme electron-withdrawing group.
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Scheme 1 Synthesis of radicals 2a-b*® and their derivatives.

captodative radical. We show that the adjacent radical centre
weakens the amide bond and enables the N-group to act as a
strong acceptor.

We initially considered a simple N,N’-dimethylamido group.
The chloride salt of acylium 2a* was synthesized by the addition
of CAAC 1 to dimethylcarbamoyl chloride (Scheme 1). Cyclic
voltammetry indicated two reversible reductions at —1.34 and
—2.00 V (versus Fc/Fc'), corresponding to the formation of 2a®
and the enolate 2a”, respectively (Fig. 2a). Radical 2a® was
generated in situ by bulk electrolysis at —1.43 V. This highly air-
sensitive radical was also synthesized by chemical reduction of
acylium 2a” with 0.5 equivalent of Zn(0) and isolated as a yellow
solid in 88% yield. A single crystal X-ray diffraction study
(Fig. 2b) revealed a dimethyl amino group with pronounced
pyramidalization (sum of angles around N2: 331.6°). The lone
pair of the amide nitrogen is not conjugated, but perpendicular
to the carbonyl. As a result, the long C2-N2 distance (143.7 pm)
is typical for a single bond and sharply contrasts with the usual
bond length in planar acyclic amides (132-134 pm).°

Acyclic twisted amide patterns usually require the deactiva-
tion of the nitrogen with an ancillary electron-withdrawing
substituent or the incorporation into an aromatic ring.'®!
The local environment of N2 is more reminiscent of ‘“anti-
Bredt” amides or ureas, which feature a polycyclic saturated
backbone with a bridgehead nitrogen.'>"® These compounds
are not stable when there is a significant twisting around the
(OC)-N bond, as they feature both an activated electrophilic
carbonyl and a nucleophilic nitrogen centre. In radical 2a°®, the
twist of the N,N’-di(methyl)amino group is maximal; however
the amine acts as a strong electron-withdrawing group, which is
a favourable electronic situation for a push-pull radical.’

We turned to a carbazole substituent to increase the
electron-withdrawing capability of the carbonyl moiety. We
synthesized acylium 2b" (Scheme 1). Cyclic voltammetry fea-
tured two reversible processes at —0.63 and —1.59 V, which are
significantly more positive values than in the case of 2a*
(Fig. 2). Radical 2b* was generated in situ by bulk electrolysis
at —0.78 V. The radical was also synthesized by chemical
reduction of acylium 2b" with 0.5 equivalent of Zn(0) and
isolated as a colourless solid in 84% yield. Of note, attempts
to further reduce the radical with one equivalent of Zn(0) lead
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Fig. 2 (a) Cyclic voltammograms of a 1 mM solution for both the chloride
salt of 2a* (top) and 2b* (below) in 0.1 M "Bu4NPFg acetonitrile solution at
100 mV s~ * rates. (b) Solid state structures of radicals 2a® and 2b*. Thermal
ellipsoids are set to 50% probability. Molecules of solvent, hydrogen atoms
and ellipsoids on 2,6-diisopropylphenyl groups are omitted for clarity.
(c) top: X-band EPR spectra of 2a°® (left) and 2b* (right) in acetonitrile at
room temperature; below: corresponding simulated spectra with the
following set of parameters: 2a*, Lorentzian line-broadening parameter
L,, = 0.264 and hyperfine coupling constant a(**N) = 15.8 MHz (1 nucleus);
2b*, L, = 0.143, a(**N) = 18.3 MHz (1 nucleus) and 4.0 MHz (1 nucleus).

after work-up to the isolation of few crystals of the corresponding
enaminol 3 (Scheme 1), which was characterized by X-ray diffrac-
tion (see ESIt). As in 2b°®, the carbazole is orthogonal to the
carbonyl. This is in line with a previous study by Berkessel et al.,
which shows that strong electron-withdrawing groups stabilize
Breslow-type enols.'* Interestingly, we were also able to isolate
the corresponding keto tautomer 4 from the reaction of CAAC
with N-formyl carbazole."”

As for 2a®, a single crystal X-ray diffraction study of 2b*
revealed a pyramidalized N2 centre (sum of angles around N2:
330.7°), a formal lone pair perpendicular to the carbonyl and a
long C2-N2 distance (143.3 pm).'® Importantly, in marked
contrast with sensitive radical 2a®, 2b°® is remarkably robust
towards air in the solid state and in toluene. The observation of
a fast decay by EPR monitoring required heating an aerated
solution in ethanol at 60 °C.

DFT" optimized structures of 2a-b* at the b3lyp/6-311g(d,p)
level of theory matched the experimental solid-state geometries,
as well as the EPR isotropic hyperfine coupling constants,®

This journal is © The Royal Society of Chemistry 2023
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Fig. 3 (a) Optimized DFT geometry of 2a-b* with representations of
corresponding SOMO. (b) Optimized DFT geometry of model 2c*, 2c*
and 2c™ with representation of corresponding LUMO, SOMO and HOMO,
respectively. (c) Energy in relaxed scan optimization of 2c*, 2¢* and 2¢™ as
a function of ¢, the torsion angle between the formal N lone pair and the
Tco Molecular orbital.

(Fig. 2c; 2a*, computed a(**N): 14 MHz, experimental: 15.8 MHz;
2b*, computed a(**N): 16 and 3 MHz, experimental: 18.3 and
4.0 MHz). The distribution of the Mulliken spin density (see also
the representation of SOMO in Fig. 3a) is similar for both
radicals (2a®: N1: 25%, C1: 41%, C2: 7%, O1: 26%; 2b*: N1:
25%, C1: 37%, C2: 7%, O1: 30%). These values are reminiscent
of the spin distribution of highly air persistent radical D,
featuring a perfluorophenyl in place of the twisted amino
groups. This suggests that the O-centred character of 2a-b*
was sufficient to disfavour triplet oxygen addition at the C1
atom.*®® Accordingly, this reaction is predicted to be endergo-
nic for 2a-b* by AG = +10.2 and +21.2 kcal mol ™", respectively.
Thus, we considered that a single electron transfer to dioxygen
was a more plausible initiation step for the pathway of decay of
2a* in the presence of air. Indeed, radical 2a* stands out with a
very low oxidation potential (—1.34 V) when compared to pre-
viously reported CAAC-based (amino)(carboxy)radicals (from
—0.2 V to —0.9 V).” Note that the computed ionization potential
fits well with values for parented radicals (2a°: 5.1, 2b°: 5.4, C:
5.1 and D: 5.5 eV). However, the conformational relaxation of
2a*, which follows the vertical ionization of 2a°®, is especially
exothermic (2a: —28, 2b: —19, C: —19 and D: —15 kcal mol %)
Therefore, we concluded that the low oxidation potential of 2a*
was also due to the singular stability of 2a* compared to other
acyliums of the series. Indeed, the di(methyl)amino group has a
chameleonic behaviour: it is twisted and acts as a —I attractor in
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radical 2a®, but it is a fully conjugated strong +M donor
(stronger than the aromatic carbazole of 2b*) in acylium 2a".

To get further insights, we considered simplified acylium,
radical and enolate, 2¢*, 2¢* and 2¢~ respectively, which feature
a dimethylaminocarbene in place of the bulky CAAC pattern.
Note that in acyliums 2a-c¢* the iminium moieties are perpendi-
cular to the carbonyl, whereas the N-C-CO pattern is fully
conjugated in radicals 2a-c* and enolates 2a-c¢™. Interestingly,
the small model compound 2¢*® differs from CAAC-based radi-
cals 2a-b* with a fully conjugated amide moiety and only a
slight pyramidalization at the nitrogen is found in 2c¢™; the
conformations of 2¢*, 2¢® and 2¢~ with formal N2 nitrogen lone
pair perpendicular to the carbonyl are transition states
(Fig. 3b). However, introducing a radical or an anion in o
position of the carbonyl significantly weakens the amide bond.
Indeed, the formal one electron reduction to afford 2¢* (respec-
tively 2¢”) consists in populating the LUMO of 2¢* (SOMO of
2¢*, respectively) with anti-bonding character between C2
and N2. Accordingly, the energy barrier for full twisting drama-
tically decreases from 2¢* (AG” = +26.2 kcal mol ') to 2¢*
(+7.1 keal mol™") and 2¢~ (+6.7 kecal mol ™).

Amido groups have been classified as latent rotational
stereoelectronic chameleons by Alabugin et al.'® Misalignment
of the nitrogen lone pair with the carbonyl usually requires
polycyclic structures or high steric strain; however, the
enhanced flexibility of an amide bond that results from an
adjacent radical centre has gone unnoticed to date. Beyond
implications for the design of bench-stable organic radicals, it
is likely that natural evolution has already taken advantage of
such redox-chameleonic behaviour.”® This effect should not be
overlooked in future studies on glycyl enzymes or peptidyl
radical chemistry.
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