

Fuelling your energy research

Energy & Environmental Science

Agenda-setting research in energy science and technology

Chair of the Editorial Board

Jenny Nelson, Imperial College London, UK Impact factor 2021: 39.714, median time to first decision (peer reviewed articles only): 46 days*.

rsc.li/ees

EES Catalysis

Exceptional research on energy and environmental catalysis

Editor-in-Chief

Shizhang Qiao, University of Adelaide, Australia Median time to first decision (peer reviewed articles only): 24 days*. rsc.li/ees-catalysis

Sustainable Energy & Fuels

Driving the development of sustainable energy technologies through cutting edge research

Editor-in-Chief

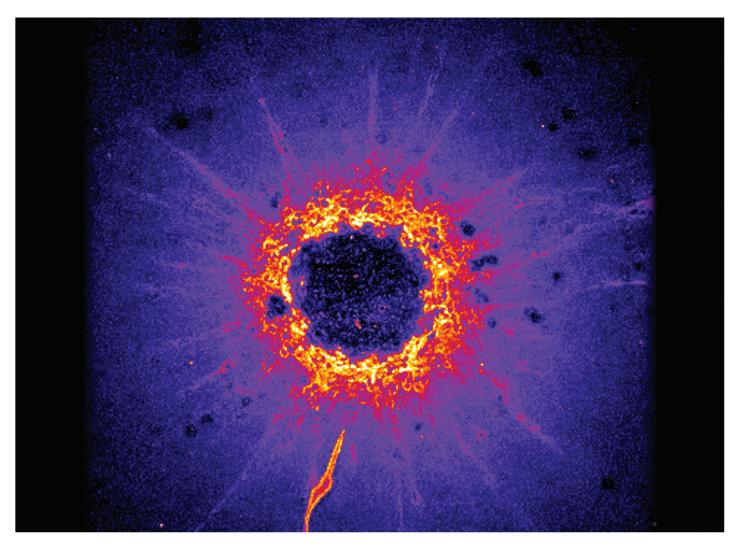
Garry Rumbles, National Renewable Energy Laboratory and University of Colorado Boulder, USA Impact factor 2021: 6.813, median time to first decision (peer reviewed articles only): 28 days*.

rsc.li/sustainable-energy

Energy Advances

Embracing research at the nexus of energy science and sustainability

Editor-in-Chief


Volker Presser, Leibniz Institute for New Materials, Germany Median time to first decision (peer reviewed articles only): 32 days*. rsc.li/energy-advances

Submit your work today

rsc.li/energy

*Visit rsc.li/metrics-explainer for more information

Registered charity number: 207890

Showcasing research from the Responsive Biomedical Systems Laboratory, headed by Professor Simone Schuerle, at the Institute of Translational Medicine, Department of Health Sciences & Technology, ETH Zurich, Zurich, Switzerland.

Magnetically controlled cyclic microscale deformation of *in vitro* cancer invasion models

This article presents an approach to mechanically actuate 3D *in vitro* cancer model environments in a non-invasive manner over several days of culture. It demonstrates that magnetically controlled cyclic actuation of the tumor microenvironment promotes the invasion of MDA-MB 231 cancer cells from 3D tumor spheroids into the surrounding extracellular matrix *in vitro*.

