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uptake of pBAE polyplexes†

Aparna Loecher,‡a Michael Bruyns-Haylett, ‡a Pedro J. Ballester,a

Salvador Borros b and Nuria Oliva *a,b

The delivery of genetic material (DNA and RNA) to cells can cure a wide range of diseases but is limited by

the delivery efficiency of the carrier system. Poly β-amino esters (pBAEs) are promising polymer-based

vectors that form polyplexes with negatively charged oligonucleotides, enabling cell membrane uptake

and gene delivery. pBAE backbone polymer chemistry, as well as terminal oligopeptide modifications,

define cellular uptake and transfection efficiency in a given cell line, along with nanoparticle size and

polydispersity. Moreover, uptake and transfection efficiency of a given polyplex formulation also vary from

cell type to cell type. Therefore, finding the optimal formulation leading to high uptake in a new cell line is

dictated by trial and error, and requires time and resources. Machine learning (ML) is an ideal in silico

screening tool to learn the non-linearities of complex data sets, like the one presented herein, with the

aim of predicting cellular internalisation of pBAE polyplexes. A library of pBAE nanoparticles was fabricated

and the uptake studied in 4 different cell lines, on which various ML models were successfully trained.

The best performing models were found to be gradient-boosted trees and neural networks. The gradi-

ent-boosted trees model was then analysed using SHapley Additive exPlanations, to interpret the model

and gain an understanding into the important features and their impact on the predicted outcome.

Introduction

Gene therapy (including DNA- and RNA-based therapies) is a
promising strategy to treat a wide range of diseases through
the transfer of nucleic acids into the cells of a patient,1 with
the goal of modulating gene and protein expression. Non-viral
delivery vectors have emerged as a safer, simpler, and more
affordable approach to viral vectors, especially for the cyto-
plasmic delivery of nucleic acids. Moreover, they have no con-
straint on the size and number of nucleic acid inserts, making
them an excellent alternative delivery vector.2 However, trans-
fection efficiency is typically lower than that observed with
viral vectors and is dependent on the physicochemical pro-
perties of the nanoparticles and the cell type. This implies that
nanoparticle formulations need to be optimised on a case-by-
case basis for each specific cell type.

Poly-β-amino esters (pBAEs) are highly versatile polymers
with amenable chemistry that enable facile tunability of their

physicochemical properties, like polarity, molecular weight,
and charge. Their cationic nature enables the electrostatic
binding and condensation of negatively charged nucleic acids
into nanoparticles.3 Furthermore, they are biodegradable and
biocompatible. Initial high throughput screening of large
pBAE libraries (over 2000 formulations) revealed promising
polymer structures with efficient transfection in COS-7 cells,
an easy-to-transfect cell system useful for high-throughput bio-
logical assays.4 Linear pBAEs with an amine/acrylate ratio of
1.2 : 1 and terminal secondary amines were found to have
much higher cellular uptake and transfection efficiency, as did
also those pBAEs forming nanoparticles smaller than 200 nm
and near neutral zeta (ζ) potential. While this combinatorial
chemistry approach revealed key insights into pBAE-mediated
gene-delivery, synthesis of over 2000 polymers is time-consum-
ing and costly. Moreover, the data gathered had no prediction
potential and was valid only for the cell line of study.
Therefore, knowing which nanoparticle formulation will result
in optimal cellular internalisation in each cell line before per-
forming transfection experiments is almost impossible, there-
fore making it a process of largely trial and error and requiring
high amounts of time and resources.5

Artificial intelligence (AI), and more concretely its machine
learning (ML) branch, can bypass trial and error and be uti-
lised to optimise this process.5 This is achieved by building
ML models that can find trends and predict outcomes by
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exploiting and learning from large, complex, and non-linear
data sets. One example are those models built from nano-
particle uptake and transfection data, which are really
effective tools for optimising nanomedicine. In fact, the utilis-
ation of ML models to predict nanoparticle behaviour is
becoming increasingly widespread. A recent study developed
a ML model to predict cellular internalisation of carbon
nanoparticles (CNP) in different breast cancer cells.
Numerous physicochemical properties of the CNP’s were used
as inputs to the model, which returned the cellular internalis-
ation as output, minimising the number of nanoparticles
needed to be tested in vitro. In another study, Damiati et al.
constructed an ML model to predict the insertion potential of
cell-penetrating peptides as delivery vehicles, which could
then predict the cellular insertion with high accuracy.6 A
recently published study transfected 488 barcoded cancer cell
lines with liposomes, poly(lactic-co-glycolic acid) (PLGA) or
polystyrene (PS) nanoparticles and demonstrated that core
composition is a key predictor of cell uptake.7 Moreover, ML
revealed that the expression of solute carrier family
46 member 3 (SLC46A3) was inversely correlated with lipo-
some cellular trafficking but had no effect on PLGA and PS
uptake and downstream efficacy.

These studies have successfully implemented ML models
on various types of nanoparticles and have highlighted the
importance of using ML to understand nanoparticle inter-
actions with cells to predict toxicity, uptake, and therapeutic
efficiency.5,6,8 This understanding will pave the way for person-
alised medicine. To this day, however, there have been no
studies using ML for predicting and understanding the cellu-
lar internalisation of pBAE nanoparticles. Of special relevance
to tissue engineering and regenerative medicine, there is no
previous data shedding light on the parameters dictating
internalisation in non-cancerous cells. In this work, we have
developed a library of pBAE nanoparticles of varying core
chemistry, terminal oligonucleotides, and size, and have built
and optimised a model of ML as a proof of concept that
demonstrates accurate prediction of cellular uptake in a range
of cell types (Fig. 1A). With respect to the nanoparticle-related
model inputs, our previous expertise demonstrates that the
polymer backbone has a large impact on the crossing of the
cellular membrane due to variations in polarity caused by the
pendant chemical groups: the C6 polymer is more hydro-
phobic than the C32 polymer3,9 (Fig. 1B). The addition of
terminal oligopeptides composed of basic amino acids such as
histidine (H), arginine (R) and lysine (K) (Fig. 1C) also creates
different transfection efficiencies based on the type and ratio
of oligopeptides.9,10 Size has also been shown to dictate the
cellular uptake of pBAE polyplexes.4,9

We have built a proof-of-concept ML model using four
distinct cell lines, three cancerous (OVCAR-4, Panc02 and
4T1) and one non-cancerous (Human Dermal Fibroblasts,
HDFs). The cancerous cell lines have been chosen based on
their characteristics and previous empirical observations.
OVCAR-4 and 4T1 have been demonstrated to have overall
high levels of uptake across most pBAE formulations. They

are both metastatic cancer cell lines, with OVCAR-4 being an
ovarian one of human origin, and 4T1 a breast cancer cell
line of murine origin. Panc02 has been explored as 4T1 non-
metastatic counterpart (murine pancreatic cancer cell line).
Finally, HDFs have been used as a model of non-cancerous
cells, which are notoriously harder to transfect using nano-
particles.3 The three main microscale endocytic pathways
through which cells uptake foreign substances are clathrin-,
caveolae-, and dynamin-mediated endocytosis,11 and the
uptake route most responsible for transfection can change
depending on the pBAE properties, such as size and
charge.12 Additionally, the main endocytic mechanism can
vary across different cell lines.11 Thus, determining the most
prevalent mechanisms in each cell type and the preferred
mechanism for each nanoparticle is very relevant. For pBAEs,
clathrin- and caveolae-mediated endocytosis have been
reported as the most prevalent uptake mechanisms.13 For
this reason, we have chosen the normalised expression of
genes involved in these pathways as cell-related inputs for
the model. Nanoparticle- and cell-related inputs for 60 pBAE
formulations and the 4 cell lines described above have been
used to train various ML models to establish trends within
these inputs and confer the ability to predict the uptake of
pBAE polyplexes.

Materials and methods
Materials

Reagents and solvents were purchased from Sigma-Aldrich
(Spain) and used as received unless otherwise stated.
Catalogue number and suppliers are specified next to each
chemical in this section. Oligopeptides were purchased from
Ontores Biotechnologies Inc. Untagged and 3′-AlexaFluor488
tagged DNA sequences (5′-CCTCAAGTGGGACCATCATAA-
[AlexaFluor488]-3′) were purchased from IDT (Custom made,
UK). Human Dermal Fibroblasts (HDFs) were isolated from
adult skin after abdominoplasty procedures, kindly provided
by Dr Higgins from Imperial College London. Vials of cancer-
ous cell lines OVCAR-4 (RRID:CVCL_1627), 4T1 (RRID:
CVCL_0125) and Panc02 (RRID:CVCL_D627) were provided by
Prof. McNeish, Dr Keshavarz and Dr Ishihara, respectively, all
from Imperial College London (UK). Products for cell culture
(DMEM, RPMI-1640, FBS, phosphate-buffered saline (PBS),
glutamine and penicillin–streptomycin solutions, trypsin-
EDTA 0.25%) were obtained from Thermo Fisher (UK).

Cell culture conditions

Panc02 and 4T1 cell lines were cultured in RPMI 1640 Medium
(A10491, Thermo Fisher) and OVCAR-4 and HDF cell lines in
DMEM (11995, Thermo Fisher). Both media were sup-
plemented with 10% FBS (26140079, Thermo Fisher) and 1%
penicillin–streptomycin (15070063, Thermo Fisher). Cells were
kept in an incubator at 37 °C and 5% CO2. Cells were thawed
and passaged using established techniques.
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Synthesis of pBAE polymer backbones

Acrylate-terminated poly(β-aminoester)s C32 and C6 (Fig. 1B)
were synthesised following a procedure previously described in
the literature by Dosta et al.10 Specifically, the polymer for-
mation occurs by addition reaction of primary amines with
diacrylates. C32 polymer was obtained by stirring 5-amino-1-
pentanol (7.7 g, 75 mmol; 123048 Sigma Aldrich) and 1,4-buta-
nediol diacrylate (18 g, 82 mmol; 411744 Sigma Aldrich)
together at 90 °C for 20 h. For C6 polymer, 5-amino-1-pentanol
(3.9 g, 38 mmol; 123048 Sigma Aldrich) was firstly mixed with
1-hexylamine (3.8 g, 38 mmol; 219703 Sigma Aldrich). Then,
1,4-butanediol diacrylate (18 g, 82 mmol; 411744 Sigma
Aldrich) was added to the mixture and heated at 90 °C for
20 h. 1H-NMR spectra were recorded in a 400 MHz Varian
(Varian NMR Instruments, Claredon Hills, IL, USA) and metha-

nol-d4 was used as solvent unless otherwise stated. Polymer
backbones were characterised by 1H-NMR as described in our
previous works,9,10,14,15 using MestReNova Software v14.3.2
(ESI Fig. 1†).

Modification of acrylate-ended pBAEs with oligopeptides

Peptides were purchased as trifluoro acetic acid salts. The first
step was the substitution of trifluoro acetic acid for hydro-
chloride as counterions. Generally, oligopeptides (100 mg)
were dissolved in HCl 0.1 M (10 mL, 320331 Sigma Aldrich)
and frozen at −80 °C for an hour. The solution was then
freeze-dried. Oligopeptides used in the present work were Cys-
Arg-Arg-Arg (CR3), Cys-His-His-His (CH3) and Cys-Lys-Lys-Lys
(CK3) (Fig. 1C). Peptides hydrochlorides were reacted with
acrylate-ended C32 or C6 polymers following a Michael-type

Fig. 1 (A) Scheme of proposed ML inputs and outputs. Chemical structure of (B) pBAE backbone polymer and (C) terminal oligopeptides arginine
(R), histidine (H) and lysine (K). Created with BioRender.com.
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addition at a pBAE : peptide molar ratio of 1 : 2.5. PBAEs and
peptides were dissolved separately in dimethyl sulfoxide
(DMSO, 472301 Sigma Aldrich) at 100 mg mL−1 concentration.
Then, polymer solution was added dropwise to the peptide
solution. At this point, triethylamine (471283 Sigma Aldrich)
was added to the solution in a peptide : triethylamine molar
ratio of 1 : 8. The mixture was allowed to react at room temp-
erature for 48 h. 1H-NMR spectra were recorded in a 400 MHz
Varian (Varian NMR Instruments, Claredon Hills, IL, USA) and
methanol-d4 was used as solvent unless otherwise stated. OM-
pBAEs were characterised by as described in our previous
works,9,10,14,15 using MestReNova Software v14.3.2 (ESI
Fig. 2–4†).

PBAE polyplexes formulation optimisation

Oligopeptide-modified C6 and C32 pBAE nanoparticles were
prepared following protocols based on previous works.16–18

PBAEs and polynucleotides were kept in stocks at 100 mg
mL−1 in DMSO or 1 mg mL−1 in nuclease-free water, respect-
ively. First, the DNA : polymer ratio was optimised to ensure all
DNA had been encapsulated without compromising cell viabi-
lity. A model pBAE formulation previously used in the group,
called C6RH (C6CR3 : C6CH3 in a 60 : 40 ratio), was used for
optimisation purposes.3 Polyplexes were formed using a fixed
concentration of DNA (0.06 μg μL−1) and increasing concen-
trations of C6RH pBAE at DNA : polymer ratios of 1 : 25, 1 : 50,
1 : 75 and 1 : 100. Encapsulation efficiency was analysed by
agarose gel electrophoresis. Briefly, 10 μL of nanoparticle solu-
tion were mixed with 2 μL loading buffer (10816015 Thermo
Fisher, UK), loaded onto a gel prepared with 2.5% agarose
(AG002 Appleton Woods, UK) in 1× TBE buffer (15581044
Thermo Fisher UK), and run for 30 minutes at 80 V and
400 mA (Mini-Sub Cell GT, 1704406 Bio-Rad). Cell viability was
measured with Presto Blue metabolic assay (A13262 Thermo
Fisher UK), following established protocols. Fluorescence
signal was recorded using a CLARIOstar Plus plate reader.

Library of PBAE polyplexes for ML model

A library of 60 different pBAE formulations was created by
altering the ratios of both the polymer (C6 or C32) and the oli-
gopeptide (R, H or K), as shown in Table 1 on the left. For each
formulation, polyplexes were synthesised as previously
described, following the optimal pBAE : DNA ratio of 50 : 1,
determined as described above for this particular DNA struc-
ture. Briefly, 0.4 μL of pBAE stock solution (100 mg mL−1 in
DMSO) and 0.8 μL scramble DNA solution (1 mg mL−1 in
RNase/DNase free water) were diluted in 12.1 μL and 11.8 μL
acetate buffer (12.5 mM, 4,8 pH), respectively. These two solu-
tions were then mixed with a pipette for a few seconds and left
at room temperature for 30 min. The resulting nanoparticles
could then be used for transfecting cells, dynamic light scatter-
ing (DLS) or gel electrophoresis.

Data collection for ML model

Along with polymer chemical characteristics, measured inputs
for the model included size, polydispersity and gene

expression, to predict the cellular uptake as model output. All
experimental data for the model can be found in GitHub
(https://github.com/mbhaylett23/pBAE-cellular-uptake-ML).

Table 1 pBAE formulations used in ML model. The nomenclature is as
follows: Xm/Yn – A/B; where X and Y are the type of polymer (C32 or
C6), m and n are the terminal oligopeptides (R, K or H) and A and B are
the mass percent ratios between the polymers defined by Xm and Yn

Formulation number Ratio

1 6R/6H – 80/20
2 6R/6H – 60/40
3 6R/6H – 20/80
4 6R/6K – 80/20
5 6R/6K – 60/40
6 6R/6K – 20/80
7 6H/6K – 80/20
8 6H/6K – 60/40
9 6H/6K – 20/80
10 6H – 100
11 6R – 100
12 6K −100
13 32R/32H – 80/20
14 32R/32H – 60/40
15 32R/32H – 20/80
16 32R/32K – 80/20
17 32R/32K – 60/40
18 32R/32K – 20/80
19 32H/32K – 80/20
20 32H/32K – 60/40
21 32H/32K – 20/80
22 32H – 100
23 32R – 100
24 32K − 100
25 32R/6H – 80/20
26 32R/6H – 60/40
27 32R/6H – 40/60
28 32R/6H – 20/80
29 32R/6R – 80/20
30 32R/6R – 60/40
31 32R/6R – 40/60
32 32R/6R – 20/80
33 32R/6K – 80/20
34 32R/6K – 60/40
35 32R/6K – 40/60
36 32R/6K – 20/80
37 32H/6H – 80/20
38 32H/6H – 60/40
39 32H/6H – 40/60
40 32H/6H – 20/80
41 32H/6R – 80/20
42 32H/6R – 60/40
43 32H/6R – 40/60
44 32H/6R – 20/80
45 32H/6K – 80/20
46 32H/6K – 60/40
47 32H/6K – 40/60
48 32H/6K – 20/80
49 32K/6H – 80/20
50 32K/6H – 60/40
51 32K/6H – 40/60
52 32K/6H – 20/80
53 32K/6R – 80/20
54 32K/6R – 60/40
55 32K/6R – 40/60
56 32K/6R – 20/80
57 32K/6K – 80/20
58 32K/6K – 60/40
59 32K/6K – 40/60
60 32K/6K – 20/80
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Size and polydispersity. Analysis of particle size distribution
was performed in a Nanosizer ZS instrument (Malvern
Instruments, UK) diluting polyplexes in a 10-fold volume of
phosphate-buffered saline (PBS 1×). Data was analysed using
ZS Xplorer (v3.2.2).

Cellular uptake. To determine cellular uptake, fluorescently
labelled DNA was mixed with non-fluorescent DNA at a 1 : 10
ratio, and encapsulated in the polyplexes to enable fluo-
rescence tracking. Cells (OVCAR-4, 4T1, Panc02 or HDF) were
seeded in a 96-well plate at a density of 10 000 cells per well,
and incubated for 24 hours at 37 °C. Polyplexes containing
10% fluorescent DNA were mixed with non-supplemented
DMEM in a 1 : 10 ratio, to reach a final concentration of
0.003 μg μl−1 DNA in each well, and 100 μL of the nanoparticle
medium was added into each well and incubated at 37 °C for
3 hours. The media was then exchanged to supplemented
DMEM. In total, each cell line was transfected with 60
different formulations, performing duplicates for each one.
The cells were then detached and the fluorescence intensity
per cell was measured in duplicate for each well, using a
Countess 3 FL fluorescence cell counter. This gave 4 uptake
measurements to average for each formulation in every cell
line. Gating conditions were determined using untreated con-
trols, with intensities below 97 RFU being considered back-
ground (ESI Fig. 5A–C†).

Gene expression. Agilent whole genome microarray data for
each cell line of interest was downloaded from Gene
Expression Omnibus database (GEO Accession Numbers
GSM1406256, GSM1529765, GSM564167 & GSM613188).
Matlab Microarray Data Normalisation and Filtering Toolbox
was used to normalise gene expression data for all cell lines,
after which normalised mean signals for a subset of 6 genes
involved in clathrin- or caveolae-mediated endocytosis were
extracted and used in the ML models. Matlab version used was
9.14.0.2206163 (R2023a).

Modelling

All modelling was performed in Python (v3.10.10) – the code
can be found on GitHub: (https://github.com/mbhaylett23/
pBAE-cellular-uptake-ML). Overall, the models that were
created included multi-linear regression (LM), random forests
(RF), gradient-boosted trees (GBT) and neural networks (NN).
For all models, feature normalisation was performed on the
data, and the data was split into training, validation and test
sets in an 80 : 10 : 10 ratio using the scikit-learn (v1.2.2) library.
The models were trained on the training set, tuned on the vali-
dation set and then evaluated on the test set. Performance of
the models was evaluated by calculating the mean absolute
error (MAE) between the model’s uptake prediction and the
actual uptake. The MAE is the average absolute difference
between the predicted and observed outputs, and is useful for
assessing the performance of a model on a particular
dataset.19

Multi-linear regression (LM). The multi-linear regression
model was created using linear regression algorithms from the
scikit-learn (v1.2.2) package.

Tree-based models. The two types of tree-based models
built and trained were a random forest (RF) and a gradient-
boosted trees (GBT) model. These were created using algor-
ithms from the scikit-learn package. Both models were tuned
to find the best hyper-parameters using a grid search algor-
ithm. In these searches the depth of each tree was varied
between 5–25, and the number of trees was varied between
50 and 300.

Deep neural network (NN). The NN model was created using
Keras (v2.10.0), a deep learning package. A sequential model
was built, with an input layer, hidden layers and output layer.
The input layer had 9 nodes and the output layer had one
node. The activation function used in the hidden layers was
the ReLU, due to its computational efficiency. To train the
model, 100 epochs were run. During tuning, the batch size
used for training was varied between 1–10. The number of
hidden layers and nodes in each hidden layer were varied
between 1–3 and 5–90 respectively. Both were kept relatively
small due to the small training set. Different optimisers
including RMSprop and ADAM were also implemented to find
the best resulting performance. To find the optimal hyper-
parameters, the KerasTuner library RandomSearch was
implemented.

Statistical analysis

All statistical analyses of data were performed with the
GraphPad Prism software (v9.5.1), using ANOVA (analysis of
variance) tests (one-way and two-way) unless stated otherwise.
Statistical significance was calculated based on p ≤ 0.05, where
*, **, *** and **** represent p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 and p
≤ 0.0001, respectively.

Results and discussion
Optimisation of DNA : polymer ratio

Four different DNA-to-pBAE proportions (1 : 25, 1 : 50, 1 : 75
and 1 : 100) were synthesised and analysed for encapsulation
efficiency and cytotoxicity. The DNA was completely encapsu-
lated at DNA : pBAE ratios of 1 : 50 and higher (ESI Fig. 6A†), as
evident by the disappearance of the free DNA band in gel elec-
trophoresis. No statistically significant cytotoxicity was
observed for any formulation except the 1 : 100 ratio (ESI
Fig. 6B†). Therefore, for the rest of this study, a DNA : pBAE
ratio of 1 : 50 was used.

Nanoparticle size and polydispersity

The measurements of the sizes (Fig. 2A) and polydispersities
(Fig. 2B) of all 60 formulations presented statistically signifi-
cant variations (p < 0.0001 for both One-Way ANOVAs). The
sizes ranged between 58 and 694 nm in diameter, and the
polydispersities between 0.01 and 0.737. In general formu-
lations with high amounts of C6K and C32H tend to result in
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larger sizes, and formulations with high amounts of C32K
tend to result in higher polydispersity.

Cellular uptake of nanoparticles

The uptake of the 60 nanoparticle formulations was measured
in OVCAR-4, HDF, 4T1 and Panc-02 cell lines (ESI Fig. 7A, B
and 8A, B†). A summary of a few significant formulations is
shown in Fig. 2C to demonstrate the apparent unpredictability

of the system and confirm the hypothesis that tuning the back-
bone polymer and the oligopeptide ratios affects the cellular
uptake. Additionally, there is variation in the amount of
uptake for specific nanoparticles between different cell lines.
For instance, formulation 19 has medium-to-high transfection
efficiency in OVCAR-4 and 4T1, but almost-zero uptake in
Panc02 and HDF. However, formulation 32 has high uptake in
Panc01 and 4T1 cells, and low cellular entry in OVCAR-4 and

Fig. 2 Nanoparticles (A) size and (B) polydispersity for 60 pBAE formulations of various ratios of polymer backbone chemistry and terminal oligo-
peptides. (C) A summary of cellular uptake of 10 of the 60 formulations in the four cell lines of study (OVCAR-4, 4T1, Panc02 and HDF) presents no
clear trend.
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HDF. Each cell line was found to have a different formulation
that resulted in the highest uptake: for OVCAR-4 it was formu-
lation 21, with 87% uptake, for 4T1 it was formulation 31, with
83%, for Panc02 it was formulation 30, with 77% and for HDF
it was formulation 23, with 66% uptake.

Predicting which formulation would have resulted in the
highest uptake in each cell line without a ML model would
have been impossible, showing the need for a predictive
model. Another interesting observation is that the cancer cell
lines all had a higher average uptake than the non-cancerous
cell line. The average uptakes of OVCAR-4, 4T1, Panc02 and
HDF were 44%, 40%, 29% and 23% respectively. The trend
that cancer cells have higher uptake of various types of nano-
particles has been reported in the literature.20 This is mostly
because cancer cells consistently undergo endocytosis more
rapidly than noncancerous cells, to provide themselves with
more nutrients.21 This highlights the importance of ML
models to maximise uptake and transfection in non-cancerous
cells and enable this way the use of pBAE polyplexes in regen-
erative medicine. Within cancer cells, metastatic ones
(OVCAR-4 and 4T1) present higher average uptake than non-
metastatic Panc02 (44 and 40% versus 29%, respectively). To
further understand the effect of the cell type on uptake and
provide additional prediction capability to the model, we
investigated the expression of key genes involved in polyplexes’
uptake and cell trafficking.

Gene expression

It has been previously described in the literature that there is a
preferential uptake of polyplexes into cells through clathrin-
and caveolae-mediated endocytosis.13 More interestingly, pre-
vious studies using pBAEs demonstrated that altering the
polymer backbone chemistry and terminal groups preferen-
tially triggered one pathway over the other.12,22 Therefore,
incorporating the expression of key genes regulating these cel-
lular trafficking pathways is a promising approach to improve
the prediction capability of the ML model. The expression of
genes involved in clathrin- and caveolae-mediated endocytosis
(Fig. 3A) were extracted from publicly available microarray data
and normalised to the total microarray intensity (Fig. 3B) prior
to data input in the models. Interestingly, the expression of
these genes is significantly different in the four cell lines of
study, and overall there seems to be an overexpression of genes
involved in clathrin-mediated endocytosis and underexpres-
sion of caveolae-related genes.

Initial data analysis

Some initial data analysis on the experimental uptake data was
performed to discover trends. Pure formulations (only one type
of polymer) were evaluated first (Fig. 4). In all cell lines, poly-
mers C6H and C32H resulted in approximately zero uptake
(Fig. 4A and B). Additionally, given the oligopeptide terminal R
or K, the C32 backbone results in higher uptake than the C6
backbone across all cell lines. Lastly, OVCAR-4 seems to have
the highest affinity to C32K, while 4T1, Panc02 and HDF have
the highest affinities to C32R.

Delving further into these trends, the data point to a con-
sistent decrease in nanoparticle uptake as the percentage of
C6H and C32H increase (Fig. 4C–F & ESI Fig. 9†). However,
there are a few exceptions in which 60% C32H (referred to as
“medium” amounts in the corresponding graphs) increase the
uptake (Fig. 4E and F). This is explained by the endocytic
process leading to transfection. To efficiently deliver the
genetic material, endosomal escape of the particles must
occur after uptake. The process called ‘proton sponge effect’
facilitates endosomal escape, and is driven by terminal amines
with high buffering capacity.9 Histidine has the highest
buffering capacity, making it the best for inducing endosomal
escape inside cells. However, this study focuses only on cellu-
lar uptake, without considering the ability to successfully
transfect cells (which would include endosomal escape). Since
high transfection has been found to be a result of high cellular
uptake, rather than high endosomal escape,9 we focused on
this first as a proof-of-concept study on cellular uptake only.
Thus, while histidine decreases cellular uptake, and might
seem dispensable in this system, including minimal amounts
of histidine in the formulation will have an impact on overall
transfection efficiency through increased endosomal escape.

A similar analysis on C6K revealed inconclusive trends (ESI
Fig. 8C and D†). While C32K effects on Panc02 and 4T1 cell
lines were also inconclusive (ESI Fig. 8E and F†), OVCAR-4 and
HDF seem to follow a trend with higher uptake as the amount

Fig. 3 (A) Subset of genes linked to clathrin- and caveolae-mediated
endocytosis and (B) their normalised expression.
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of C32K increases (Fig. 4G and H). Interestingly, HDFs had low
affinity for pure C32K. This suggests that mixing polymers and
oligopeptides results in completely different interactions with
cells. Finally, there is no conclusive trend in C6R and C32R

uptake (Fig. 4I and J & ESI Fig. 10A–F†). However, medium
amounts of 6R result in higher uptake in most formulations in
OVCAR-4, Panc02 and 4T1 cell lines, while uptake trends are
inconclusive in HDF.

Fig. 4 Initial analysis of the effects of backbone chemistry and terminal oligopeptide on cellular uptake in OVCAR-4 (A, C, E, G & I; purple bars) and
HDF (B, D, F, H & J; blue bars), both for (A and B) pure formulations and low, medium and high ratios of (C and D) C6H, (E and F) C32H, (G and H)
C32K and (I and J) C6R. The remaining combinations presented no clear trends (Fig. S4 and S5†).
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Overall, while a few trends can be observed, complex non-
linear relationships at play exist that are not obvious. This
further highlights the need for a model to learn these complex-
ities and accurately predict which formulations result in high
uptake in a certain cell line.

Model results

After creating and tuning the four different models to have low
MAE (ESI Fig. 10A†), and balance bias and variance, the
optimal hyper-parameters are shown in Table 2. MAE values
showed GBT was the best performing model, followed by the
NN model and the RF model, with multi-linear regression
(LM) performing the most poorly. Non-linear ML models GBT
and NN have statistically significant decreases in MAE com-
pared to multi-linear regression (ESI Fig. 11†). Both the GBT
and NN models have statistically non-significantly different
mean performances, with an MAE of 10.57 and 11.17, respect-
ively, about 30% better than that of the multi-linear regression
model. This shows that the uptake data and its corresponding
features have complex non-linearities, from which ML models
are able to learn from and better capture trends.

SHAP (shapley additive exPlanations) analysis

A model that returns good predictions is useful, however, if
there is no understanding as to how the model uses the inputs
to make its predictions, it can be of limited use. The SHAP
approach gives an understanding of both the contributions of
the features globally, as well as contributions for individual
observations.23 This renders the ‘black box’ ML model inter-
pretable and is especially relevant here, because understand-
ing the importance of each feature can help in the design
process of the nanoparticles. Since the GBT and NN models
had the best performance overall, and calculating SHAP-values
for GBT was computationally more efficient than for the NN,
SHAP analysis was implemented on the GBT model.

Global explanations. The global importance of each feature
in the model is shown in Fig. 5A. The most important feature
is C6H, due to high percentages of C6H leading to zero
uptake, thus making it a very determining factor. Size is the
second most important feature, which has already been
described in previous studies.4 C32R and C32H are also very
important in determining the uptake. Interestingly, the posi-
tions 5 to 7 in global importance are monopolised by cell-

related inputs, highlighting the cell-dependent variation in
uptake and the need for an ML model. In particular,
expression of CLTA and PICALM have an important effect on
the model output, which aligns with previous observations
that pBAE nanoparticles enter cells through clathrin-mediated
endocytosis.12,22 On the other hand, and despite previous
studies reporting caveolae-mediated endocytosis as an alterna-
tive uptake mechanism tiggered by certain formulations,13

expression of CAV1 and CAV2 have minimal impact on the
model output (positions 13 and 17 out of 17 inputs and mean
SHAP values close to 0). Finally, the cells’ species (human or
murine) has minimal impact on the model output (position

Table 2 Optimal hyper-parameters found for each model from tuning
and their respective average test set MAE (n = 5)

Model Hyper-parameter 1 Hyper-parameter 2
Test
MAE

Multi-linear
regression

N/A N/A 14.09

Random forest Tree depth = 13 Max. Num of
trees = 75

13.09

Gradient boosted
trees

Tree depth = 5 Max. Num of
Trees = 50

10.57

Neural network Hidden layers = 2 Num. of nodes = 41 11.17

Fig. 5 SHAP analysis of model data. (A) Overall importance of each
feature on the model output, and (B) Influence of each feature value on
the model output.
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14 of 17 and mean SHAP value close to 0). The power of under-
standing the model with these SHAP-values is evident: the
results directly informed a training set modification that can
be utilised in the future.

A more in-depth explanation of how the specific value of
each feature contributes to the model output is depicted in
Fig. 5B. High negative SHAP-values mean that features greatly
decrease the uptake, while highly positive SHAP-values mean
that features strongly increase the uptake. For C6H, C32H and
C6K, high percentages result in high negative SHAP-values and
vice versa. This trend was observed in initial data analysis in
Fig. 4. High amounts of C32R and C6R lead to higher model
outputs and vice versa, while C32K displays no clear trend.
Overall, as size values are lower, there is a high positive impact
on the output of the model, which is in line with research
having shown that optimal sizes of nanoparticles that enter
most cells endocytically are between 100–200 nm.4,9

In terms of the cell type and phenotype, high expression of
CLTA results in low model output, while high levels of PICALM
lead to high model outputs. This seems contradictory, as both
genes are part of the same clathrin-mediated endocytosis pathway.
Interestingly, while high expression of CLTA (pink dots) has a con-
sistent negative impact on the model output, low levels (blue dots)
might have a positive or negative impact on uptake. Similarly, high
PICALM expression consistently improves uptake, while low levels
can lead to either high or low model output. These data suggest
that the expression of clathrin-mediated genes is key for some for-
mulations, but not for others, as previously described.12,22 A more
in depth, partial dependence investigation delves into these find-
ings in the next section. Lastly, metastatic cells display higher
levels of uptake than non-metastatic cells, while tumorigenicity
and species (human or murine) have no impact on the model
outputs. Overall, this SHAP analysis shows that the model has con-
sistently been able to learn the trends initially observed.

Fig. 6 Partial dependence plots investigating the individual feature interactions between CLTA expression and (A) Size, (B) C32H, (C) C6K, (D) C32K,
(E) C6R and (F) C32R.
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Feature interactions. To go into more depth regarding the
impact of each feature on every cell line, further SHAP analysis
allowed for the creation of partial dependence plots, which
show the interaction of two variables on the predicted output
(Fig. 6 and ESI Fig. 12 & 13†).

In general, the output of the model decreases as size
increases independently of the cell type (Fig. 6A and ESI
Fig. 12A†). Similarly, high values of C32H and C6H also have a
negative impact on uptake independently of cell type (Fig. 6B
and ESI Fig. 12B–D†). Partial dependence plots of arginine (R)
and lysine (K) polymers versus CLTA and PICALM reveal very
interesting correlations. Presence of C6K and C32K leads to
higher uptake in those cells with lower expression of CLTA
(Fig. 6C & D), while C6R and C32R triggered higher uptake in
cells expressing high levels of CLTA (Fig. 6E & F). This suggests
that polymers with terminal arginines potentially use clathrin-
mediated endocytosis. PICALM dependence plots show similar
trends: C6K and C32K display higher uptake in those cells
with low PICALM expression (ESI Fig. 12E & F†) while C6R and
C32R result in higher uptake in cells with higher PICALM
levels (ESI Fig. 12G & H†). Finally, further feature interaction
analysis shows that C32K polyplexes have higher affinity to
metastatic cells, while C6K, C6R and C32R present no clear
trend (ESI Fig. 13A–D†), which had already been identified in
Fig. 4.

Conclusions

In summary, data relating to the size, polydispersity and
uptake of 60 different nanoparticle formulations in 4 cell lines
were collected. Biomaterial and cellular inputs were used to
successfully train various ML models to predict the cellular
uptake in these cell lines. It is important to highlight that
despite the relatively low number of data points (240 uptake
values compared to 1000s of points typically used for ML), the
SHAP analysis carried out on the GBT model showed that it
was successfully able to learn many trends seen in the data. In
the future, new cells lines will be investigated to continue to
grow the training and validation sets of the model, improving
accuracy and reducing MAE.

Aspects like polyplex size, backbone chemistry and terminal
oligopeptides play distinct roles in cellular uptake, which
often display divergent behaviour in different types of cell
lines. Using an ML model approach, we have also identified
two genes in the clathrin-mediated endocytosis pathway, CLTA
and PICALM, which seem to play a key role controlling cellular
trafficking as a function mainly of the identity of the terminal
oligopeptides. The data suggests that high expression of these
genes makes cells more receptive to the uptake arginine poly-
mers (C6R and C32R), while low levels of these genes trigger
the uptake of lysine polymers (C6K and C32K). Histidine is an
important feature of the model because high percentages of
histidine polymers abrogate the cellular uptake, which
explains the lack of any partial dependence with CLTA or
PICALM.

This proof-of-concept study demonstrates that ML is a key
tool to gain in depth understanding of the complex non-linear-
ities underlying pBAE cellular uptake. This work has been a
step towards the ultimate goal of being able to use a model to
scan across a number of nanoparticle formulations in a new
cell line and predict those with the highest transfection
efficiency.
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