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1. Introduction

Ultraviolet-induced fluorescence of oil spill
recognition using a semi-supervised algorithm
based on thickness and mixing proportion—
emission matrices

Bowen Gong, 2 Hongji Zhang,? Xiaodong Wang,? Ke Lian,® Xinkai Li,? Bo Chen,*?
Hanlin Wang®® and Xiaogian Niu®®

In recent years, marine oil spill accidents have been occurring frequently during extraction and
transportation, and seriously damage the ecological balance. Accurate monitoring of oil spills plays a vital
role in estimating oil spill volume, determination of liability, and clean-up. The oil that leaks into natural
environments is not a single type of oil, but a mixture of various oil products, and the oil film thickness
on the sea surface is uneven under the influence of wind and waves. Increasing the mixed oil film
thickness dimension and the mix proportion dimension has been proposed to weaken the effect of the
detection environment on the fluorescence measurement results. To preserve the relationships between
the data of oil films with different thicknesses and the relationships between the data of oil films with
different mixing proportions, the three-dimensional fluorescence spectral data of mixed oil films on
a seawater surface were measured in the laboratory, producing a thickness—fluorescence matrix and
a proportion—fluorescence matrix. The nonlinear variation of the fluorescence spectra was investigated
according to the fluorescence lidar equation. This work pre-processes the data by sum normalization
and two-dimensional principal component analysis (2DPCA) and uses the dimensionality reduction
results as two feature-point views. Then, semi-supervised classification of collaborative training (co-
training) with K-nearest neighbors (KNN) and a decision tree (DT) is used to identify the samples. The
results show that the average overall accuracy of this coupling model can reach 100%, which is 20.49%
higher than that of the thickness-only view. Using unlabeled data can reduce the cost of data
acquisition, improve the classification accuracy and generalization ability, and provide theoretical
significance and application prospects for discrimination of spectrally similar oil species in natural marine
environments.

Symphony” in the waters off Qingdao, Shandong Province,
resulting in a spill of about 9400 tons of cargo oil into the sea. It

With increasing oil demand, oil spill accidents are occurring
more frequently during oil extraction, transportation, and
shipping incidents.* In 2010, the “Deepwater Horizon” drilling
rig in the Gulf of Mexico exploded. The oil spill lasted 87 days
and caused at least 2500 square kilometers of seawater to be
covered with oil. In August 2020, the Japanese cargo ship “MV
Wakashio” ran aground and spilled fuel oil when it struck an
island near Mauritius, severely damaging one of the world’s
primary nature reserves. In April 2021, the Panamanian general
cargo ship “Sea Justice” collided with the Liberian tanker “A
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will take more than ten years for the natural fishery resources in
the area to recover to the pre-pollution level.

Light oil has low viscosity, high volatility and significant
acute toxicity, and diffuses quickly, but its ability to cause sus-
tained pollution is weak and it is easily weathered by natural
processes. Therefore, it is classed as a non-persistent oil by the
industry. The risk of fire and explosions is generally higher
during leakage of light oil. For example, in 2018, a collision
between the Panamanian tanker “SANCHI” and the “CF
CRYSTAL” (from Hong Kong, China) caused a fire that
completely burned the tanker “SANCHI”, which was carrying
13.6 tons of condensate. However, light oil is less polluting to
the environment.

Although some safety-enhancing measures have been
introduced, maritime accidents are still a primary concern,
because severe accidents continue to happen frequently and
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have led to serious consequences in recent years.” Oil spills can
be advected by wind, waves, and tides,®> and compressed by
waves and ocean currents into narrow oil slicks, while also
diffusing, dissolving, emulsifying and evaporating. Oil spills
can disrupt the ecological balance by affecting the exchange of
gases between seawater and air, causing the death of aquatic
organisms, such as floating algae and fish, and seabirds.**
There are carcinogens in the oil, which accumulate in organ-
isms and can eventually reach humans, causing harm to
health.® Oil is also prone to fires and explosions, resulting in
more serious economic losses and casualties. Reducing the risk
of oil spill disasters is essential to protect ecosystems and
minimize economic damage. To some extent, accurate and
timely acquisition of information on the location, type, and size
of oil spills is the basis for accountability of oil spills and oil
spill accident reduction.”

Currently, several methods are used in offshore oil spill
detection, such as thermal infrared,”® ultraviolet (UV),®> micro-
wave radiometer, visible light,"* laser acoustic,"** synthetic
aperture radar and UV-induced fluorescence''* remote
sensing. Among the above detection methods, only the UV-
induced fluorescence method can accurately and conveniently
distinguish the type of oil spill and algae from oil spills and is
one of the most prevalent oil spill detection methods, with high
sensitivity and strong resistance to interference.® Fluorescence-
based techniques feature relatively simple instrumentation, fast
response speed and easy sample preparation, and are less
affected by oil weathering. Therefore, UV-induced fluorescence
is selected in this study to classify oil spills on the seawater
surface.

Offshore hydrocarbon spills are disturbed by the complex
marine environment, which will impact on the detection and
identification results to a certain extent. Due to the influence of
wind, tidal forces, and seabed activities, the sea surface is
constantly moving, and oil slicks do not have an even thickness.
Emulsification, which leads to changes in the chemical prop-
erties of the oil film, will occur. These factors will change the
oil’s fluorescence spectrum. Oil sample fluorescence detection
and identification technologies mainly include simultaneous
fluorescence spectroscopy (SFS),” excitation-emission fluores-
cence spectroscopy (EEM)," time-resolved fluorescence spec-
troscopy (TRS),* relative fluorescence intensity (RFI) analysis,*
and so on.** Nevertheless, these methods ignore the change in
the fluorescence characteristics of the oil film with its state.

Wang et al. proposed increasing the concentration dimen-
sion of the fluorescence spectrum and used Gabor wavelet
analysis combined with a support vector machine (SVM) algo-
rithm for spectral classification.” The scanning equipment is
very slow, but suitable for measuring samples showing small
changes over time.? Loh et al. designed a portable laser-induced
fluorescence (LIF) oil spill classifier. Further, they validated the
prediction performance and robustness with classification
models such as partial least squares discriminant analysis (PLS-
DA) and support vector machine-discriminant analysis (SVM-
DA).>*** A novel method for oil pollution identification based on
excitation-emission matrix fluorescence spectroscopy and

parallel factor framework-clustering analysis (PFFCA),
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improving upon parallel factor analysis (PARAFAC), was pre-
sented.” These models are challenging to use for detecting and
identifying oil spills in the natural environment, since the
classification depends on a stable experimental environment.
Further exploration of interference-resistant detection and
identification algorithms is necessary to improve the accuracy
and robustness of monitoring.

Classification algorithms do not usually take into account
the variation of fluorescence with oil film thickness. In this
work, the classification algorithm is based on the variation of
fluorescence with thickness. Heavy oil possesses a high
concentration of fluorophores, resulting in a high collisional
energy transfer rate. The nonlinear variation of heavy oil fluo-
rescence with thickness is caused by fluorescence burst and
reabsorption processes.”** Although the components in oil
products are complex, and the nonlinear change in fluorescence
cannot be quantitatively analyzed, such processes can assist in
distinguishing different oil substances using ordinary fluores-
cence spectroscopy. We investigate the nonlinear variation of
the fluorescence spectrum through the fluorescence lidar
equation. The fluorescence spectra of mixed oils are similar,
and the mixing proportion also affects the spectrum. These
factors make classification and identification difficult. Hence,
mixed oil samples are selected to test the effect of the classifi-
cation algorithm.

In this study, two-dimensional principal component analysis
(2DPCA) is used as the data dimensionality reduction algo-
rithm, which preserves the inter-row relationships of the spec-
tral data matrix and improves the speed of dimensionality
reduction. We propose a semi-supervised method based on co-
training, K-nearest neighbors (KNN) and a decision tree (DT) to
identify the 3D UV-induced fluorescence spectral dataset of
mixed oil films with varying thicknesses and proportions. The
results show that the recognition accuracy of this algorithm can
reach 100%. Moreover, the precision, recall, and F1-score of the
coupling classifier can all reach 100%. This method achieves
higher classification accuracy using less labeled data. It
improves the generalization ability of the classification model
and enables timely, fast and accurate discrimination of spec-
trally similar oil species.

2. Experimental and data processing

2.1 Experimental materials and procedures

UV light-emitting diodes (LEDs) have high stability, low noise
and low energy consumption, and are low-cost. However, due to
their weak light intensity, the elimination of the fluorescence
background is very demanding.”” Despite this, a UV LED is used
as the excitation light source in the laboratory experiments.

Certain polycyclic aromatic hydrocarbon (PAH) compounds
in petroleum absorb UV light, becoming electronically excited
and emitting longer-wavelength fluorescence. It is well known
that different oils have different types and proportions of
PAHs.”® Therefore, different oils have distinct fluorescence
emission features that allow reliable oil classification.

Most of the oil spills in the natural sea environment are
heavy oil, but it is difficult to degrade and obtain. In addition to

This journal is © The Royal Society of Chemistry 2023
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heavy oil, light oil spills can also occur in shallow sea areas,
such as gasoline and diesel fuel leaks from motorboats at scenic
spots. Acquiring fluorescence spectra of these oil samples is
critical for monitoring and identifying oil spills in shallow seas.
Four light oil products and two crude oils were selected as
classified test samples: 95# gasoline (95# G), —35# diesel oil
(—35# D), —20# diesel oil (—20# D), light crude oil, medium
crude oil, and Mobil lubricant oil 20W-40 (Lube). The physical
parameters of these six test oil samples are shown in Table 1. All
of these light oils were bought from the local gas station. The
light crude oil sample is a light oil moisture standard and the
medium crude oil sample is obtained from the Changchun Oil
Recovery Plant.

Oil spills resulting from shipboard accidents are often not
just one type of oil but a mixture of fuel and lubricants. For
example, bilge oil contains a mixture of fuel oil and lubricant.*
Lube was mixed with light crude oil, medium crude oil, 954 G,
—35# D, and —20# D in different proportions to obtain mixed oil
samples with different compositions. In addition, a mixture of
—35# D and —20# D was used as the interference term.

Traditional laser-induced fluorescence systems employ a UV
laser operating between 308 nm and 355 nm as a source of
excitation.* The fluorescence signal from vegetation can over-
lap with the fluorescence from oil samples at the excitation
wavelength of 355 nm. This causes false positives for laser
sensors used in oil leak control.** Comparing 254 nm and
310 nm LED modules, we found that the short-wavelength
source is more sensitive to thin oil slicks. We note that the
scattering peak of the 310 nm LED shows a weak red-shift,
which can be used as a feature in PCA. But the scattering
peak and the fluorescence spectrum induced by the 310 nm
light source appear to overlap, which causes difficulties in the
classification. The difference in the fluorescence spectra of
—20# D using these two light sources is shown in Fig. 1. Fluo-
rescence with 254 nm LED excitation starts at 275 nm (in the
solar-blind UV range) with much less effect from background
noise. These are the reasons why an LED module with a central
wavelength of around 254 nm is used as the UV excitation light
source.

An FX2000-EX optical fiber spectrometer was used to collect
the fluorescence spectra; its detection range is 196-1170 nm.
The spectrometer operates with a slit width of 50 pm, yielding
a spectral resolution of 1.54 nm.

A semi-circular slide with an inner diameter of 136 mm was
designed, with the head of the optic fiber and the light source

Table 1 Physical parameters of test oil samples

Density Viscosity

Oil samples (20 °C, g mL ") API (°) (40 °C, mm® s 1)
95# G 0.74 60.3 0.72

—35#D 0.82 40.9 2.1

—20# D 0.83 38.8 2.8

Lube 0.89 27.3 121

Light crude oil 0.81 42.3 4.3

Medium crude oil 0.87 31.1 16.7

This journal is © The Royal Society of Chemistry 2023
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Fig. 1 Fluorescence spectra of —20# D at different LED excitation
wavelengths: (a) 254 nm and (b) 310 nm.

both fixed on the slider. The workpiece sizes were selected
based on the principle that the excitation light should be
completely unobstructed by the probe slider. The angle of the
slider and the distance between the optic fiber and light source
can be adjusted as needed (Fig. 2(a)).

The experiments were performed in a dark room. As illus-
trated in Fig. 2(c), the incident LED light source is at 90° and the
optical fiber probe of the spectrometer receives the fluorescence
signal at an angle of 45°.°* This angular configuration allows
effective reception of the fluorescence signals and reduction of
the effect of scattered signals. Different excitation reception
angles only affect the light intensity, which can be weakened by
the normalization method in spectral preprocessing.

In the first step, 60 mL of seawater (collected from Liaodong
Bay) was added to a Petri dish with a diameter of 90 mm.
Afterward, various volumes of mixed oil samples were dripped
into Petri dishes and allowed to diffuse freely until evenly
distributed on the seawater surface. The volumes of the oil
samples were 0.02 mL, 0.04 mL, 0.08 mL, 0.16 mL, 0.32 mL, 0.64
mL, 1.28 mL and 2.56 mL. The used volumetric measuring tool
was a dropper with a range of 1 mL and a division value of 0.02
mL. Notice that the same seawater volume and diffusion time
were maintained during the experiments.

The integration time was 5000 ms. A 1: 1 volume mixture of
the two types of oil was used to measure the thickness-

Quartz flber

Fig. 2 Schematic (a) and photograph (b) of the water surface oil film
detection system. (c) Schematic diagram of the oil film fluorescence
measurement system.
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dependent fluorescence spectra of the mixed oil films. Here, the
new dimension of thickness is introduced.

We calculated the standard thickness (%) of the oil film
according to the below formula:

h=vls &Y

where v is the volume of the oil sample, and s is the area of the
oil film.

The six types of mixed light oil used in the experiment are:
Lube + —35# D, Lube + —20# D, Lube + 95# G, Lube + light crude
oil, Lube + medium crude oil and —20# D + —35# D. Each mixed
oil sample was mixed in the ratios of 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80% and 90% by volume, with a total volume of
0.16 mL. The fluorescence spectral data of the four mixed oils
with different mixing proportions were measured using the
same experimental procedure introduced above. Then, we
introduced mixing proportions as a new dimension and ob-
tained a 3D fluorescence matrix for mixing proportions.

Finally, the spectra of each oil sample with different thick-
nesses and proportions were separately integrated into a two-
dimensional matrix.

2.2 Data processing

Spectral preprocessing consists of three parts: denoising,
smoothing, and normalization. Denoising is achieved by sub-
tracting the background noise spectrum from the measured
fluorescence spectrum. The moving average method is used as
the smoothing algorithm.

In the field of machine learning, different evaluation indi-
cators have different dimensions and units, which will affect the
results of data analysis. In order to eliminate the dimensional
influence of the indicators, it is necessary to perform normali-
zation processing to eliminate the adverse effects caused by the
individual samples.

(a)

Add unlabeled .
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+= 0 =
Sample to be
discriminated
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With the increase of oil film thickness, the fluorescence
intensity of different oil species increases and reaches satura-
tion, and the saturated thickness and saturated fluorescence
intensity of different oil species can be distinguished. Hence, we
want to preserve the discrepancies in the saturated fluorescence
intensity. Data preprocessing for the previous classification
used normalization, but normalization is no longer appropriate
in this case. We use the summation normalization algorithm
for data preprocessing, which can weaken the influence of large
variable values on the model while retaining the peak
characteristics.

2.2.1 2DPCA. Principle component analysis (PCA) is
a commonly used data dimensionality reduction algorithm. It
realizes principal component space mapping of samples by
solving the eigenvectors corresponding to the first N most
prominent features of the target covariance matrix to form
a feature mapping matrix. After adding thickness and propor-
tion dimensions, respectively, the data becomes a two-
dimensional matrix. Traditional PCA requires conversion of
the two-dimensional matrix into row vectors and combination
of multiple row vectors corresponding to multiple sample
images into a large-scale covariance matrix. The eigenvalues
and eigenvectors of this covariance matrix are solved to
construct the mapping matrix. The disadvantages of PCA are the
long preprocessing time and the inability to take into account
the relationship between row vectors.

2DPCA is based on the PCA algorithm to reduce the features
of the two-dimensional matrix.*® 2DPCA directly calculates the
overall covariance matrix of the sample and performs dimen-
sionality reduction in one dimension. 2D2DPCA performs
2DPCA on both sides and executes dimensionality reduction
processing in two dimensions. The thickness and proportion
dimension data added in this paper are relatively few. Conse-
quently, 2DPCA is selected as the feature extraction algorithm,
which retains the relationships between the thickness and

x;: labeled data View || Coupling
[CP0C00000000 e[y Pamenton Classifier
High
confidence
x;: unlabeled data View — label
segmentation Confidence

EX X XX X XeXeX XoX Jo)

estimation

Low
confidence
label

-

Fig. 3 Schematic of a classification algorithm. (a) Example of using unlabeled samples. (b) Schematic diagram of the improved co-training

algorithm.**
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proportion dimension data and improves the processing speed
of feature extraction.

2.2.2 Semi-supervised classification. Semi-supervised
learning is a machine learning algorithm used in training
data that are a mixture of labeled and unlabeled data. Data with
exact categories as labels are referred to as labeled samples;
correspondingly, data without category attributes are unlabeled
data. The principle of using unlabeled data to improve the
identification accuracy is shown in Fig. 3(a). If there are only
a small number of labeled samples, the distribution of feature
points will not be complete, causing difficulties in classifica-
tion. If the distribution of unlabeled samples is included, the
low classification accuracy caused by insufficient samples will
be solved.

In an actual oil spill scenario, different oil types may be
present at different locations and changes may also occur, such
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as oil spill emulsification and diffusion. Thickness and mixing
proportions will seriously affect the oil spill fluorescence spec-
trum. Obtaining labeled samples requires a large workforce and
a lot of material resources. Using unlabeled samples as a training
set can reduce the high cost of labeled data acquisition, improve
the generalization ability of the classification model, and
enhance the classification accuracy to a certain extent.

A schematic diagram of the improved co-training algorithm
is shown in Fig. 3(b). The 3D fluorescence spectral data with
increasing thickness and mixing proportion dimensions are
taken as two views: View1 and View2.

(1) Part of the labeled data X; from Viewl and View2 is
selected as the training set of labeled samples to train two
single-view classifiers, C1 and C2.
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Fig. 4 Fluorescence spectra of oil films with different mixing proportions. (a) —35# D + —20# D, (b) Lube + —20# D, (c) Lube + —35# D, (d)

Lube + 95# G, (e) Lube + light crude oil, (f) Lube + medium crude oil.
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(2) The single-view classifier is used to label the unlabeled
samples. The unlabeled samples (X;) with the highest confi-
dence are selected as pseudo-labeled samples.

(3) The classifier is retrained with the labeled and pseudo-
labeled samples.

(4) Steps 2 and 3 are looped until the accuracy of the classifier
no longer improves.

(5) The prediction results of C1 and C2 are compared and
coupled, and the discrimination labels are output.

3. Results and discussion

In this study, film thickness and oil proportions were used to
increase the spectral characteristics of the spilled oil film. The
fluorescence spectra of a series of oil films on a seawater surface
with different thicknesses and mixing proportions were measured
according to the experimental procedures in Section 2.1.

3.1 Fluorescence measurement results

This work measured nine different thicknesses and nine mixing
proportions, and we performed 50 repeated measurements of
the oil film for each thickness and each mixing proportion.
Consequently, the data of each view is a 2048 x 9 x 50 3D
matrix, where 2048 is the number of bands. The measured 3D

This journal is © The Royal Society of Chemistry 2023

spectral matrices for different mixing proportions and thick-
nesses are shown in Fig. 4 and 5, respectively.

3.2 Fluorescence characteristics

The normalized fluorescence spectra do not entirely overlap, as
shown in the experimental results. The ratio of long-wavelength
fluorescence intensity to short-wavelength fluorescence

x10*
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>
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Fig. 8 Different oil fluorescence saturation values corresponding to
the different thicknesses.
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Fig. 10 Change in fluorescence spectra with the Lube and 95# G
mixed oil proportions.

intensity gradually increases with the increase of oil film
thickness. The reason for this is discussed below.

According to the fluorescence lidar equation,* the fluores-
cence signal Ny(A.,A¢) at wavelength 2. and excitation intensity
Ny, and from distance H, can be described as follows:

View Article Online
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P

Ni(%e, A) = NoT? W ke

n(%e; 20){1 = exp| — (ke + ki) L] }
)

T is the transmission coefficient at the oil-water interface; r is
the aperture of the detection lens; k. and k¢ are the extinction
coefficients of the oil at excitation wavelength A. and emission
wavelength A¢ of the fluorescence. 7(A,4¢) is the fluorescence
conversion efficiency of the oil film; L is the thickness of the oil
film. According to eqn (2), when 2; < 2, the fluorescence
wavelength proportion of oil films with different thicknesses is:

N (%e; 22)

R(Am;{fz,L) = m

®)

The thickness of the oil film when the fluorescence reaches
saturation is expressed as L = o, and when the oil film is
infinitely thin it is expressed as L = 0. The proportion of the
fluorescence wavelength at these two thicknesses is defined as
R ot

R(A1, 20, @) ke +

Repp = =
/0 R(%1,202,0) ke + e

4)

Since the extinction coefficient at short wavelengths is longer
than that at long wavelengths, i.e. k, < k; < ke, from eqn (4) we
can obtain:

1< Rup<2 (5)

The experimental data show that the fluorescence propor-
tion in the range of 280-420 nm satisfies eqn (5), so the non-
linear change in light oil fluorescence is caused by the change
in the extinction coefficient with wavelength.

3.2.1 Different thicknesses. The spatial distribution and
temporal distribution of oil film thickness are vital factors in

Images after dimensionality reduction by 2DPCA
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Fig. 11 Spectral images after 2DPCA dimensionality reduction.
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evaluating seawater-atmosphere interaction. Only a gradual
increase in fluorescence intensity can be seen from the original
spectrum. The summation-normalized fluorescence spectra of
Lube + —35# D oil film at multiple thicknesses do not coincide
(Fig. 6(a)). However, the fluorescence spectra for multiple
measurements of a single thickness are essentially coincident
(Fig. 6(b)). The trends in the change of the summation-
normalization spectra at long and short wavelengths are
precisely opposite to each other (Fig. 7(b) and (d)).
Furthermore, as the thickness of the oil film on the seawater
surface gradually increases, the fluorescence intensity of the oil
film also increases, until the thickness is greater than the
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penetration depth of the light source, and the fluorescence
reaches a saturated state.

The fluorescence saturation intensity and saturation thick-
ness vary (Fig. 8), even for similar oil species. Due to the
experimental conditions, such as the intensity of the light
source in this work, the measurable thickness range of the light
oil samples is 0.1-100 pm, but the thickness range of crude oil is
0.1-20 um. This is mainly because the absorption coefficient of
crude oil is greater than those of light oils. We use this feature to
measure the fluorescence of oil films with different thicknesses,
introducing thickness as a new dimension and obtaining 3D
fluorescence spectral data. The relationships between the

0.05
0
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Component 1 0.04 Component 2

Fig. 12 Principal component analysis similarity maps of the emission spectra of mixed oils. (a) Feature points of the thickness view. (b) Feature

points of the proportion view.
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different fluorescence intensity values when the thickness
changes are retained, and the fluorescence intensity of oil
films of different thicknesses is extracted as a classification
feature.

3.2.2 Different mixing proportions. Obtaining the fluo-
rescence spectrum of mixed oil products has important
application value for oil spill identification, because actual
oil spill accidents involve mixing oil samples of multiple oil
products. The spectral similarities of mixed oil films are
more prominent than those of single light oil products, and
they are more challenging to identify. The fluorescence
spectra of oil films with different mixing proportions at the
same thickness were measured in this study. The fluores-
cence spectra of mixed oils with different mixing proportions
are noticeably different, and the higher content oil domi-
nates the spectrum of the mixture. Nevertheless, the spectral
change of the mixed oil is not linear with the proportion
changes.

The fluorescence spectra of films with different proportions
of mixed oil species also change nonlinearly, and differ from the
arithmetic sum of the fluorescence spectra of the separate
components. The fluorescence peaks of gasoline are around
290 nm, 326 nm, and 336 nm under the same experimental
conditions. In comparison, the fluorescence peak of lubricating
oil is around 335 nm. The difference between the peaks of these
two oil samples is enormous. We measured the fluorescence of
1.28 mL of 95# G, 1.28 mL of Lube, and 1.28 mL of a 1 : 1 mixture
of these two types of oil. The oil film thickness is 402.56 pum,
ensuring the fluorescence remains saturated and does not
change with the thickness.

As shown in Fig. 9, there is a significant difference
between the arithmetic sum of the spectral data for the single
oils and the fluorescence spectral data for the blend of oils.
Hence, the identification accuracy reduction caused by the
mixing proportion should also be considered in the mixed oil
classification dataset.

In addition, the arithmetic sum of fluorescence spectra of
oils with different mixing proportions was compared with
the normalized fluorescence spectrum of a 1:1 mixture, as
shown in Fig. 10. The fluorescence is also nonlinear under
ultraviolet b (UVB) radiation. Therefore, fluorescence spectra
with increased thickness and proportion dimensions provide
helpful features for oil species classification.

3.3 Classification results

To preserve the relationships between the thickness data and
the proportion data, 2DPCA was used as a data dimension-
ality reduction algorithm. The first nine columns of data
were selected as the classification data set for classification
processing after dimensionality reduction. The spectral
images of the samples after 2DPCA downscaling are shown
in Fig. 11.

In this work, 30% of the data is used as the labeled
training set, 20% is used as the unlabeled training set, and
50% of the data is used as the test set to verify the classifi-
cation effect. This method reduces the number of sample

1658 | Anal. Methods, 2023, 15, 1649-1660

Table 2 The classification comparison table of KNN, co-training with KNN, and co-training with KNN and DT
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fluorescence measurements. For example, only different mixing
proportions at a certain thickness need to be measured.

We use accuracy and confusion matrix parameters to char-
acterize the superiority of the algorithm. The fluorescence
spectral feature points, considering only thickness variation,
are highly similar (Fig. 12(a)). But the spectral feature points for
different mixing proportions are more differentiated
(Fig. 12(b)). The data from a single view cannot achieve efficient
and high-precision identification, but the coupling of the clas-
sifiers from the two views can improve the accuracy, robustness,
and generalization ability of the model.

The algorithm was executed one hundred times and the
arithmetic mean of each evaluation parameter was calculated.
The classification confusion matrices is shown in Fig. 13. The
classification effect is shown in Table 2. The recognition accu-
racies of the KNN classifier trained with the dataset from the
two views were 84.5% and 85%, respectively. The overall accu-
racies (OAs) of the two KNN classifiers obtained by co-training
were 99.5% and 100%, respectively, and the recognition accu-
racy of the coupling results of the two views reached 100%. The
recognition accuracies of the DT and KNN classifiers obtained
by co-training were 95% and 100%, respectively. This method
improves the identification accuracy and provides application
prospects for oil spill detection and identification of similar
oils.

4. Conclusions

Thickness and proportion factors of films of mixed oils are
considered in this paper to address the effects of oil spill vari-
ations on fluorescence. Fluorescence intensity increases non-
linearly at first with the increase of oil film thickness and then
reaches saturation.”®*® The relative saturation fluorescence
intensity varies for different oil products, thicknesses, and
proportions. We chose to assess the fluorescence spectra of oil
spills, with different thicknesses and mixing proportions, on
a seawater surface in the laboratory to collect more oil spill data
and simulate on-site oil spills. 2DPCA is used to extract features
from the original data. This study uses the data of each factor
affecting the shape of the fluorescence spectrum as an inde-
pendent view, trains two classifiers utilizing the co-training
method, and finally couples the two classifiers.

Introducing spectral dimensions of the influencing factors
for classification reduces sample measurement time and yields
more robust and accurate classifiers. It avoids the calibration of
thicknesses and proportions using conventional fluorescence
spectrometry detection algorithms. The recognition accuracies
of the two KNN classifiers obtained by co-training are 99.5%
and 100%, respectively, and the recognition accuracy of the
coupling of the two classifiers reaches 100%. The overall accu-
racies of the DT and KNN classifiers obtained by co-training are
95% and 100%.

The following problems have to be solved for oil slick
detection and identification in the actual environment. Mixed
oil is not just a simple blend of two types of oil, but often
a mixture of several oils. In addition to the differences in
thicknesses and mixing proportions of oil spills in different

This journal is © The Royal Society of Chemistry 2023
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locations, the difference in emulsification degree also leads to
changes in spectral characteristics.*”** We will build a multi-
view-based co-training algorithm to further improve the accu-
racy of UV remote on-site classification.
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