Comprehensive survey of plasmonic nano-dendrites: from fabrication to surface-enhanced Raman scattering (SERS) applications
Abstract
Dendrites are beautifully designed branched structures found everywhere in nature, for example, in neurons, snowflakes, and trees. These unique properties of dendritic structures contribute to their applications in tissue integration, light manipulation, energy storage, charge transport, sensing, and other fields. In recent years, plasmonic nanodendrites have been extensively employed for surface-enhanced Raman scattering (SERS) applications, incorporating the highly dense electromagnetic field hot spots at the dendritic tips in addition to the increased surface area. These structures have shown their potential for sensing a wide range of analytes, including explosives, pesticides, bacteria, and viruses. This review provides in-depth information about the fundamentals of the SERS mechanism, fabrication techniques to manipulate dendrite structures for improved SERS performance, and the role of nanodendrite structures in SERS applications. Through an extensive survey, this review compiles the current state-of-the-art technologies for developing plasmonic dendrites and applying them for SERS-based sensing applications. Finally, we present the current challenges and future perspectives of developing such sensors.
- This article is part of the themed collection: Journal of Materials Chemistry C Recent Review Articles