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Over recent years, deep learning (DL) has become more widely used within the field of cancer diagnos-

tics. However, DL often requires large training datasets to prevent overfitting, which can be difficult and

expensive to acquire. Data augmentation is a method that can be used to generate new data points to

train DL models. In this study, we use attenuated total reflectance Fourier-transform infrared (ATR-FTIR)

spectra of patient dried serum samples and compare non-generative data augmentation methods to

Wasserstein generative adversarial networks (WGANs) in their ability to improve the performance of a con-

volutional neural network (CNN) to differentiate between pancreatic cancer and non-cancer samples in a

total cohort of 625 patients. The results show that WGAN augmented spectra improve CNN performance

more than non-generative augmented spectra. When compared with a model that utilised no augmented

spectra, adding WGAN augmented spectra to a CNN with the same architecture and same parameters,

increased the area under the receiver operating characteristic curve (AUC) from 0.661 to 0.757, presenting

a 15% increase in diagnostic performance. In a separate test on a colorectal cancer dataset, data augmen-

tation using a WGAN led to an increase in AUC from 0.905 to 0.955. This demonstrates the impact data

augmentation can have on DL performance for cancer diagnosis when the amount of real data available

for model training is limited.

1 Introduction

Cancer is the second most frequent cause of deaths worldwide,
with the probability of five-year overall survival for all primary
cancer sites being 68%, yet this number varies greatly depend-
ing on the cancer site in question.1,2 One of the primary
reasons for this is late-stage diagnosis, predominantly caused
by the non-specific nature of early-stage cancer symptoms.

When diagnosed at an early stage, survival rates are substan-
tially higher. If the cancer is caught during the early stages
(stage I–II), the average mortality rate for primary cancers sits at
27%, when compared with the vast increase for cancers detected
at stage IV leading to a mortality rate of 82%. This demonstrates
that early diagnosis is important to the treatment of cancer.1

Current screening diagnosis routes for patients in at-risk
populations include a mammography for breast cancer,3 Pap
smear for cervical cancer,4 low-dose computed tomography for
lung cancer,5 endoscopic ultrasound for pancreatic cancer,6

and colonoscopy for colorectal cancer.7 Although many of
these methods have been deemed effective, they are often
expensive, and in some cases invasive.8 There is therefore an
urgent need for a more convenient method for earlier diagno-
sis for many cancers.

Liquid biopsies are a cost-effective method of utilising a
wide variety of substances, both tumor and non-tumor
derived, to detect various cancer types, particularly at the early
stages.9 Most commonly, circulating-tumor DNA (ctDNA) is a
key marker used to detect cancer within the blood stream. The
analysis of ctDNA has shown promise in the detection of
various cancer types and is the primary biomarker type used
by the current liquid biopsy platforms.10 However, the success
of detecting ctDNA is limited to the monitoring of advanced
stage cancers; the levels of ctDNA during the early stages are
often too low to be detected.8

One method that has developed over recent years is the use
of vibrational spectroscopy as the basis of the liquid biopsy in
order to capture multiple tumor and non-tumor derived bio-
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markers within one measurement.11–13 It has the benefits of
being rapid and low-cost, and can be used to analyse multiple
different biofluids.14 Vibrational spectroscopic methods such
as Raman and infrared (IR) spectroscopy have previously
demonstrated their potential uses within cancer detection.14,15

In particular, attenuated total reflection Fourier-transform
infrared (ATR-FTIR) has shown great promise for early cancer
detection.16–18 Brennan et al.19 reported a sensitivity and speci-
ficity of 0.81 and 0.80, respectively, for the diagnosis of brain
tumours in a prospectively collected clinical dataset of dried
serum samples. For pancreatic cancer in particular, Sala
et al.20 were able to utilise ATR-FTIR analysis of dried serum
samples and machine learning to achieve an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.95
when classifying between pancreatic cancer and healthy
samples (n = 200), and an AUC of 0.83 when classifying
between pancreatic cancer and samples from patients present-
ing as symptomatic of pancreatic cancer but subsequently
diagnosed as non-cancerous (n = 70). This example used
machine learning methods common in the field of chemo-
metrics, namely partial least squares (PLS) and random forest
(RF).

With continuous hardware developments, more interest is
being directed at the use of deep learning, particularly within
cancer diagnostics.21 However, despite the general success of
deep learning over the recent years, the main obstacle
researchers face in the healthcare field is data availability.22

Although the volume of data needed for deep learning is
present within electronic health records, healthcare data is
often limited in quality due to data sparsity, variability, and
privacy policies.22 Deep learning models, such as convolu-
tional neural networks (CNNs), require large volumes of data
in order to achieve maximum performance as they have many
parameters; small datasets can lead to non-generalisable
models that overfit and perform poorly on unseen data.

A solution to reaching the dataset sizes required for deep
learning is data augmentation.23 Data augmentation is a
method to artificially increase the size of a dataset with the
aim to improve the performance of a predictive model. It can
be particularly useful when larger datasets are either not avail-
able or if it would be particularly laborious to generate more
samples.

Data augmentation can be broadly split into two categories:
non-generative and generative methods. Non-generative
methods create new data from the original data using some
well-defined transformations. For example, for image augmen-
tation, this can be in the form of geometric or colour trans-
formations. Generative methods use neural networks to gene-
rate data artificially without directly using the original dataset
other than for model training.

Non-generative methods of data augmentation have been
used successfully within image classification using relatively
simple and computationally inexpensive methods, as demon-
strated by Taylor et al.24 who were able to use geometric and
photometric transformations to generate new images to train a
CNN and increase their classification accuracy from 0.48 to

0.62. Similar data augmentation methods have also been used
within cancer diagnostics. Hao et al.25 used various techniques
such as rotation, flipping, and cropping of magnetic resonance
images to diagnose prostate cancer, increasing the AUC of the
CNN from 0.80 to 0.85. Non-generative methods have also
been used for spectral data, in particular infrared (IR)
data.26,27 Bjerrum et al.26 in particular were able to decrease
the root mean squared error from 4.01 mg to 1.80 mg by chan-
ging the offset and slope of spectra to generate more synthetic
samples.

Over recent years, more complex forms of data augmenta-
tion have begun to surface, such as generative adversarial net-
works (GANs).28 GANs comprise two neural networks: a discri-
minator and a generator. The generator is tasked with generat-
ing new data based on the training set of available real data,
and the discriminator is tasked with becoming an expert in
determining whether a sample is real or simulated. These
components work adversarially to generate the most realistic
augmented data possible. GANs have great potential for data
augmentation applications, but are substantially more compu-
tationally expensive when compared with non-generative
methods.

In particular, GANs have shown their use within cancer
diagnostics. Al-Dhabyani et al.29 utilised GANs to generate
ultrasound images for the diagnosis of breast cancer, increas-
ing their diagnostic accuracy from 84% to 96%.

As well as image-based data, GANs have been used pre-
viously with infrared (IR) spectra also. Wickramaratne et al.30

were able to use GANs with IR spectra to classify a subject’s
task as either a left finger tap, right finger tap, or a foot tap.
They were able to increase the AUC from 0.79 to 0.98. Despite
their benefits, GANs persistently suffer from problems with
vanishing gradients, which can lead to a halt in generator
learning, and mode collapse, in which the generator continu-
ously generates similar data points that have been found to
trick the discriminator.31 One solution to eliminate these
issues are Wasserstein GANs (WGANs).32 The more stable
WGANs have already shown their use for deep learning models
trained on spectral data. Nagasawa et al.33 utilised WGANs to
augment near IR spectra to classify motor tasks. They were
able to increase their classification accuracy from 0.4 to 0.7,
demonstrating the potential use of WGANs with spectra data
for other applications. Zhao et al.34 also utilised WGANs with
IR spectra with multiple traditional and deep learning models.
In all cases, adding WGAN augmented spectra considerably
increased the classification accuracy.

In this study, we aim to demonstrate the benefits of using
data augmentation within spectral liquid biopsies to diagnose
pancreatic cancer. Previous studies have been carried out that
have used data augmentation and imaging data to diagnose
pancreatic cancer, but none as of yet related to spectral
data.35–37

Firstly, we will use non-generative data augmentation
methods, including adding noise to spectra and averaging
spectra, to create new data points, which can be found in
section 3.6. Secondly, we will then optimise a WGAN network
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structure to simulate pancreatic cancer and non-cancer
spectra, which can be found in section 4.1.

Thirdly, we will compare non-generative and WGAN aug-
mentation methods during CNN model training, which can be
found in section 4.2. We show that when we compare a CNN
containing no augmented spectra, a CNN trained with WGAN
augmented spectra has a better overall performance for diag-
nosing pancreatic cancer. We also use a separate colorectal
cancer dataset to demonstrate that the method is disease and
dataset invariant.

2 Theory
2.1 GANs

A GAN generates augmented data by utilising two neural net-
works known as the discriminator D and the generator G.28

The overall network is trained by optimising the value function
adversarially; the discriminator is trained to minimise and the
generator is trained to maximise the value function. That is,
the minmax objective is defined as:

min
D

max
G

E
x�Pr

½log DθðxÞ� þ E
x̃�Pg

½logð1� Dθðx̃ÞÞ�; ð1Þ

where E is the expected value, Pr is the real data probability
distribution, Pg is the generated data probability distribution,
x̃ = Gw(z), where z is the latent variable, θ are the discriminator
weights, w are the generator weights, and x is the real training
data.

GAN training occurs by continuously updating the discrimi-
nator weights, θ, before updating the generator weights, w, to
minimise the Jensen–Shannon divergence, which measures
the similarity between two probability distributions.38 One of
the main issues however with GANs is vanishing gradients,
which is caused by an optimised discriminator that cannot
provide enough information for generator training to progress.
This is often caused by the Jensen–Shannon divergence not
being continuous with respect to w when probability distri-
bution domains do not overlap. GANs also are known to
experience mode collapse, where the generator continuously
outputs similar data points which successfully fool the
discriminator.28

2.2 WGANs

The problems with vanishing gradients and mode collapse
experienced by GANs motivated the development of WGANs.31

For the former problem, a WGAN minimises the Wasserstein
distance, which instead looks at the distance between two
probability distributions, instead of the Jensen–Shannon diver-
gence. It aims to prevents vanishing gradients as the
Wasserstein distance is continuous with respect to w. In
addition, to prevent mode collapse, instead of a discriminator,
which classifies data as either real or fake, WGANs use a critic,
which instead provides a “realness score” to the data. Where a
GAN discriminator can learn very quickly the difference
between real and fake samples, the gradient also quickly

vanishes during optimisation. A WGAN critic can instead be
optimised while maintaining a gradient.31

The minmax objective for a WGAN is instead defined as:

min
D

max
G

E
x̃�Pr

½Dθðx̃Þ� � E
x�Pg

½DθðxÞ�: ð2Þ

Originally, Arjovsky et al.31 used a Lipschitz constraint on
the gradient functions to ensure a maximum gradient. This
was enforced on the critic by clipping its weights to lie within
an interval [−c, c], where c is the real number representing the
weight clipping parameter, to allow faster training by con-
straining the critic gradient. However, it was further proposed
by Gulrajani et al.32 that this was a problematic method of
training the critic. Without careful tuning of the weight clip-
ping parameter, the critic can experience exploding or vanish-
ing gradients; if c is too large, then the critic will never train
optimally, too small and it will cause vanishing gradients.
Therefore, Gulrajani et al.32 changed the value function for
WGANs to include a gradient penalty term (WGAN-GP) which
thus leads to the minmax objective being defined as:

min
D

max
G

E
x̃�Pr

½Dθðx̃Þ� � E
x�Pg

½DθðxÞ� þ λ E
x̂�Px̂

½ðjj∇x̂Dθðx̂Þjj2 � 1Þ2�;

ð3Þ
where λ is the gradient penalty coefficient (λ = 10 was used
throughout this study as it was deemed the optimal value by
Gulrajani et al.), and x̂ is defined as:32

x̂ ¼ εxþ ð1� εÞx̃; ð4Þ
where ε is a random variable which follows the uniform distri-
bution U(0, 1).

A WGAN-GP can be extended by imposing conditions based
on some additional information, y, to obtain a conditional
WGAN-GP (CWGAN-GP).39 In this study, y corresponds to the
class label of the spectra. This results in the following minmax
objective:

min
D

max
G

E
x̃�Pr

½Dθðx̃jyÞ� � E
x�Pg

½DθðxjyÞ� þ λ E
x̂�Px̂

½ðjj∇x̂Dθðx̂jyÞjj2
� 1Þ2�: ð5Þ
In the present paper, we will be utilising a CWGAN-GP for

generating synthetic FTIR spectra.

3 Materials and methods
3.1 Patient samples

All patient serum samples were sourced from biobanks.
Cancer samples were gathered from the Wellcome Trust
Clinical Research Facility at the Western General Hospital,
Edinburgh, the Emergency Medicine Research Group
(EMERGE) at the Edinburgh Royal Infirmary, The Beatson
West of Scotland Cancer Centre in Glasgow, the University of
Swansea, Manchester Cancer Research Centre, and Tissue
Solutions Glasgow. All cancer samples were collected from
patients with a confirmed pancreatic cancer diagnosis accord-
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ing to the data collection methods of specified biobanks.
Samples were collected before surgical resection or the start of
other anti-cancer therapies. The non-cancer group was com-
prised of both asymptomatic controls and patients with symp-
tomology aligned with a possible cancer diagnosis.

Blood samples were obtained with venipuncture using
serum collection tubes; S-Monovette Z Gel (Sarstedt, Germany)
and Vacutainer SST/SST II (BD, USA), and anonymized. Serum
was extracted via centrifugation and stored in a −80 °C freezer.
Non-identifiable clinical and demographic data were obtained
in-line with each biobank’s data control procedures.

Ethical approval for this study was granted by Lothian REC
(15/ES/0094), Preston Brain Tumour North-West (BTNW)
Application #1108, Beatson West of Scotland Cancer Centre
(MREC 10/S0704/18), and the Integrated Research Application
System, IRAS, (ID #238735) from Health Research Authority
(HRA) and University of Strathclyde Ethics Committee (UEC
17/81). All participants consented to inclusion in the study.

3.2 Patient sample analysis

In this study, the serum samples were stored at −80 °C until
the date of analysis; samples were allowed to thaw for up to
30 minutes at room temperature (18–25 °C) and inverted three
times to ensure mixing and thawing before use. Each patient
sample was prepared for analysis by pipetting 3 μL of serum
onto each of the three sample wells of the Dxcover® Sample
Slide (Dxcover® Ltd, UK).16,40 Prepared slides were placed in a
drying unit incubator (Thermo Scientific™ Heratherm™, USA)
at 35 °C for 1 hour, to control the dehydration process of the
serum droplets. Each dried sample slide was then inserted
into the Dxcover® Autosampler (Dxcover® Ltd, UK) to be pre-
pared for spectra collection. In this study, a PerkinElmer®
Spectrum Two™ FTIR spectrometer (PerkinElmer® Inc., USA)
was used to generate the spectral data (16 co-added scans at
4 cm−1 resolution with 1 cm−1 data spacing). A total of three
spectra were collected for each sample well, resulting in nine
replicates per patient, then submitted to the diagnostic algor-
ithm to generate the disease prediction. Patient samples were
reported as cancer positive or negative according to the diag-
nostic algorithm results.

3.3 Dataset

For this study, a full dataset comprising of 625 patients was
compiled: 166 pancreatic cancer and 459 non-cancer patients.
From this dataset, a subset of 100 patients (50 cancer and 50
non-cancer) were set aside to use as a modelling set. This
subset was age, sex, and stage matched to the full dataset and
will be hence labelled the 100-patient dataset. The patient
metadata of the 100-patient dataset can be seen in Table 1.

The remainder of the dataset will be labelled the 525
patient dataset and comprised 116 pancreatic cancer and 409
non-cancer patients. The patient metadata of the full dataset
and the 525-patient dataset can be found in Tables S1 and S2†
respectively.

3.4 Spectral pre-processing

Raw FTIR spectra cover 4000–450 cm−1 of the frequency
domain. For this study, raw spectra were first cut to
3700–1000 cm−1 as wavenumbers outside of this region are
highly susceptible to noise, and do not contribute useful diag-
nostic information. Following this, an extended multiplicative
signal correction (EMSC) was applied to the spectra, up to and
including second-order correction terms.41 This was followed
by the removal of the silent region (2700–1800 cm−1).

3.5 CNNs

CNNs were built using Keras v2.8.0 42 for R v4.1.2 43 with
Tensorflow v2.8.0 44 as the computation back end. The final
chosen model consisted of two consecutive units each of
which comprised a one-dimensional convolutional layer (with
10 filters and a kernel size of 5) with a rectified linear acti-
vation, batch normalization, and a max-pooling layer with a
pool size of 2. The output from the final convolutional unit
was flattened and fed into dense layers, with 0.1 and 0.2
dropout respectively and a rectified linear activation. The
output was two dense neurons with a softmax activation. The
loss function was categorical cross entropy and training was
done with the RMSprop optimizer.45 All CNN model training
was carried out using the ARCHIE-WeST High Performance
Computing Centre based at the University of Strathclyde, with
each CNN model being trained using 10 Lenovo SD530 CPU
cores with model training lasting on average 12 hours per
model.

The architecture for the CNN models used in this study can
be seen in Fig. 1.

3.6 Non-generative augmentation

All non-generative data augmentation was performed on the
525 patient dataset. Spectra were augmented by using the
spectra collected for a single patient. As augmentation was iso-
lated to each patient, the label of the newly generated spectra
could be assumed to be the patient label. The effect of the
various non-generative augmentation methods can be seen in
Fig. 2. For each of the non-generative methods, 10 000 spectra
were created: 5000 pancreatic cancer and 5000 non-cancer
spectra. The volume of augmented spectra added during the
model training is described further in Tables 3 and 4. The rou-

Table 1 100-patient dataset

C NC Total

Age, years Mean 64 56 60
Min–max 40–83 20–80 20–83

Sex, n (%) Female 25 (50) 30 (60) 55 (55)
Male 25 (50) 20 (40) 45 (45)

Cancer stage, n (%) I 2 (4) — 2 (2)
II 20 (40) — 20 (20)
III 22 (44) — 22 (22)
IV 6 (12) — 6 (6)
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tines used for the non-generative augmentations are described
in the next three subsections.

3.6.1 Averaging spectra. Within each patient group, and for
a fixed wavenumber, the average of a bootstrap sample
(uniform random sampling with replacement and sample size
equal to 9) is taken and the values are combined to form a new
spectrum. This process was repeated for all wavenumbers.

3.6.2 Adding noise to spectra. Within each patient group
and for a fixed wavenumber, the noise level added to each
spectrum from the group is sampled uniformly from a normal
distribution with zero mean and standard deviation defined as
a multiple (n = 1, …, 5) of the standard deviation of the absor-

bance of that wavenumber for this group. This process was
repeated for all wavenumbers.

Fig. 2 shows randomly adding noise to spectra within
varying levels of standard deviations. It was determined as part
of initial investigations that adding one standard deviation of
noise was sufficient.

3.6.3 Splicing spectra. Within a patient group, and for a
fixed wavenumber, an absorbance value is selected by random
sampling from the nine real spectra for that patient. A new
spectrum is formed by repeating the process for every wave-
number and then combining the selected absorbance values.

3.7 WGAN architecture

The first step to generate spectra using WGANs was to opti-
mise the structure of the WGAN network. This involved opti-
mising the structure of the generator and the critic networks.

While maintaining a fixed generator architecture (generator
architecture was determined as part of initial investigations),
the critic architecture was optimised. The tested architectures
included varying the number of hidden layers from 1 to 3 and
the corresponding hidden units from 256 to 2048. A general
trend was observed that increasing the number of units within
each dense layer improved the distribution of the generated
spectra. However, with an increase in the number of dense
layers, while the distribution of generated spectra improved,
the level of noise within the generated spectra also increased.

As the distribution of generated spectra improved with the
increase in the number of dense layers and the number of
units within those layers, the choice was made to use three
dense layers in the critic. All results from WGAN architecture
optimisation can be found in Fig. S1–6.† Table 2 describes the
final network structure for each of the layers in the critic and
generator.

Fig. 1 CNN architecture.

Fig. 2 Comparison of non-generative data augmentation methods.

Table 2 CWGAN-GP structure dimensions

Layer Critic Generator

Input 1802 × 2 100 × 2
Hidden Units = 2048 layer norm. Units = 256 batch norm. Dropout = 0.3
Hidden Units = 1024 layer norm. Units = 512 batch norm. Dropout = 0.3
Hidden Units = 512 layer norm. Units = 1024 batch norm. Dropout = 0.3
Output 1 1802 × 2
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Input to the critic consisted of FTIR spectral data from
patient serum analysis. The dimension of the latent space was
100, and a latent variable formed by randomly sampling from
a normal distribution N(0, 1) with a dimension of 100 was
used as the input to the generator. The generator network
included batch normalisation after each hidden layer. Layer
normalisation was used for the critic because batch normalisa-
tion is incompatible with the gradient penalty.32 Dropout (0.3)
was also added after each hidden layer in the generator to
further prevent mode collapse.

A leaky rectified linear unit (ReLU) was used as the acti-
vation function for the hidden layers in both the critic and the
generator.

The weights of the critic and generator were updated using
the Adam optimizer, with the parameter values for Adam
being α = 0.0001, β1 = 0, and β2 = 0.9. The critic weights were
also updated 5 times in the space of the generator weights
being updated once. These are the optimal values determined
by Gulrajani et al.32

The WGAN training was set to run for a maximum of 6000
epochs, with early-stopping applied using parametric func-
tions measuring absolute noise in the wavenumber region
3500–3000 cm−1. These parameters measure the relative
height of peaks and troughs in the region to determine satis-
factory spectral quality. The patience for early stopping was set
to 600 epochs. All WGAN models were developed with Python
v3.9.7 46 using Tensorflow v2.9.1.44 All WGAN training was
carried out using the ARCHIE-WeST High Performance
Computing Centre based at the University of Strathclyde, with
WGAN training utilising 10 NVidia A100 GPU cores housed in
Lenovo SR670 servers and optimisation lasting on average
4 hours. GPU computation was done using CUDA version 11.2.

3.8 Model validation

CNN models were developed to identify the cancerous signa-
ture from a labelled patient cohort and then predict the pres-
ence of cancer in an unknown population. A nested cross-vali-
dation (CV) strategy was used to develop the model, in which
the inner CV was used to tune the model hyper-parameters,
and the outer CV provided a robust test of model performance.
In this approach, for the outer CV, patients were randomly
split into training and test sets with a 70 : 30 split, repeated 51
times. Model hyper-parameters were tuned to optimize the
area under the ROC curve during the inner 5-fold CV on the
training set (70%). The trained model was used to make pre-
dictions from the spectra in the test set (30%). Training and
test sets were stratified by patient ID, and therefore spectra
from individual patients were not allowed to be present in
both the training and test sets for a given resample. To ensure
that the CNN training was not tuning the model towards the
augmented spectra, any augmented spectra were removed
from the validation set used for model tuning and early stop-
ping prior to training. The by-spectrum AUCs obtained for
each of the 51 outer CV iterations were aggregated, and the
mean and standard deviation of the resulting classification
metrics were computed.

4 Results and discussion
4.1 WGAN generated spectra

The optimised WGAN was trained on the 525 patient dataset
and used to generate 10 000 spectra to use as input for the sub-
sequent WGAN augmented CNN models; 5000 pancreatic
cancer and 5000 non-cancer spectra.

Although the WGAN worked well in generating fake spectra
that contained the correct general spectral features, the
spectra produced were also excessively noisy. This could be rec-
tified by continuing to optimise the WGAN architecture until
this noise level was reduced. However, the computational
resources required to do this would be vast, and the same
reduction in noise could be achieved using smoothing.
Therefore, a Savitzky–Golay filter with a window of 21 was used
to smooth the 10 000 generated spectra to remove this noise.
Fig. 3 shows a real spectrum used to train the WGAN, a
WGAN-generated spectrum, and that generated spectrum after
smoothing.

Fig. 3 (A) Real spectrum, (B) WGAN-generated spectrum, and (C)
WGAN-generated spectrum after smoothing.
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4.2 Comparison of traditional augmentation and WGANs

A CNN model was trained and tested using nested cross-vali-
dation on the 100-patient dataset. Nested cross-validation pre-
vents data leakage by blinding the model to the test data
during training, and it reduces sample bias by providing classi-
fication statistics as averages over multiple repeat experiments
(in which training and test sets are selected at random based
on patient ID). To assess the effect of data augmentation, the
nested CV experiment was repeated using different generative
and non-generative augmentation methods, with other factors
kept constant. Since only the training sets were augmented,
the mean classification statistics for the test sets were used to
compare different methods.

Although nested cross-validation is a data efficient and rig-
orous method to train ML models, it requires retraining the
CNN model on 255 different training sets in every run (51
training sets in outer CV × 5 training sets in inner CV). Since
nested CV had to be repeated 22 times (5 quantities of aug-
mented data for each of 4 augmentation methods, plus two
baseline models), that equates to 5610 training sets. This pre-
sents a practical problem since retraining the WGAN model on
each training set would be computationally expensive and
difficult to monitor. Therefore, in the first experiments, data
augmentation was carried out using a WGAN pre-trained on
the 525-patient dataset. To provide a like-for-like comparison,
the non-generative augmented spectra were also obtained from
the 525-patient dataset, and a second benchmark model was
evaluated in which the 525-patient dataset was added to each
training set during nested cross-validation (further experi-
ments in which the CNN and WGAN were trained on the same
training sets are described below). All models are compared
via the by-spectrum AUCs in Table 3.

Table 3 shows that data augmentation leads to an improve-
ment in model performance in all cases. Furthermore, the
CNNs that utilize the WGAN-augmented spectra during train-
ing perform better than those that use augmented spectra
from non-generative methods. The model highlighted in bold,
that is the CNN that adds 5000 WGAN-augmented spectra at
each training step, shows a statistically significant improve-
ment (using a Student’s t-test) from the second benchmark
model in which real spectra from the 525-patient dataset are
used for data augmentation.

Although Table 3 shows evidence of model improvement
from data augmentation, the imbalance between the augmen-
ted training set and the unaugmented validation set used for
early stopping seemed to have a detrimental effect on model
training. For example, adding 5000 augmented spectra led to
5405 spectra in the training set and only 99 spectra in the
early-stopping set during 5-fold cross validation. A small vali-
dation set might cause inaccurate hyperparameter selection or
underfitting.

Therefore, CNN models were re-run, this time with a fixed
amount of data added to the early stopping sets. To provide a
like-for-like comparison between different augmentation
methods, each early stopping set was augmented with the

same 4725 real spectra from the 525-patient dataset. This
meant that for each resample, the training set would contain
5405 spectra (consisting of the 100-patient dataset split for
training and generated spectra) and the validation set would
contain 4824 spectra (consisting of the 100-patient dataset
split for validation and the 525-patient dataset), balancing the
ratio. The results for these models is shown in Table 4.

Table 4 shows that two more of the WGAN augmented
models present a statistical improvement on the by-spectrum
AUC produced by the benchmark model, with one model
achieving an AUC of 0.800. This improvement due to data aug-
mentation is evident in the comparison of the mean ROC
curves in Fig. 4. Mean ROC curves were obtained by averaging
sensitivity and specificity for a fixed threshold across
51 models. There is still the same trend as previously in which
WGAN-augmented spectra seem to have more benefit than the
non-generative methods.

An unexpected result apparent in Tables 3 and 4 is the lack
of correlation between the number of generated spectra added
during training and the resultant AUC. It was assumed that
including more data during model training would result in
improved model performance. However, this study shows that
this is not the case. This might suggest that, even though
adding more data is expanding the training set, the generated
data is limited in the new information it can add to model
learning. This explain the non-linear relationship between
data volume and model performance.

Table 3 By-spectrum AUCs of non-generative data augmentation and
WGAN augmentation with validation set containing samples from the
100-patient dataset only

Augmentation
No. of spectra
added

No. of training
spectra AUC

No augmentation 630 0.668
Augmentation with real
spectra

4725 5355 0.748

Random noise 500 1130 0.721
1000 1630 0.746
2000 2630 0.748
5000 5630 0.743
10 000 10 630 0.753

Mean bootstrap sample 500 1130 0.745
1000 1630 0.753
2000 2630 0.759
5000 5630 0.730
10 000 10 630 0.757

Splice spectra 500 1130 0.708
1000 1630 0.751
2000 2630 0.749
5000 5630 0.737
10 000 10 630 0.749

WGAN augmentation 500 1130 0.771
1000 1630 0.768
2000 2630 0.770
5000 5630 0.781
10 000 10 630 0.757

Paper Analyst

3866 | Analyst, 2023, 148, 3860–3869 This journal is © The Royal Society of Chemistry 2023

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 6
:4

8:
38

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3an00669g


To simulate the model being used in a real-life scenario,
when the CNN and WGAN would more likely be trained on the
same training set, two CNN models were trained on the full
525 patient dataset, one augmented with 1000 WGAN gener-
ated spectra and one without. Both CNN models were then
used to predict the 100 patient dataset. The improvement in

AUC from 0.661 to 0.757, as reported in Table 5, is a clear dem-
onstration of the benefit of data augmentation using the
WGAN.

The previous results demonstrate the successful use of
WGANs to improve the AUC of the pancreatic dataset. To
further demonstrate the benefit of WGAN augmentation on
other datasets, a separate dataset comprising of colorectal
cancer patients (N = 200) and non-cancer patients (N = 459) in
which FTIR spectra had been measured from dried serum
samples was used. These samples are covered by the Ethical
Approval quoted in section 3.1. In a similar method to the pan-
creatic dataset, a subset of 100 samples were set aside to use
as an external test set, leaving 559 samples to be used for
WGAN training. The subsets of the data were age and sex
matched to the full dataset. The patient metadata of the full
colorectal dataset, the 559-patient dataset, and the 100-patient
dataset can be found in Tables S3–5† respectively. The same
architecture used previously was first trained on this
559-patient dataset and then used to predict the 100-patient
dataset. This result was then used to compare a CNN trained
on the 559-patient dataset alongside 1000 WGAN-augmented
spectra to predict the 100-patient dataset. These by-spectrum
AUCs are shown in Table 6.

The increase in the test set AUC after the addition of WGAN
augmented spectra for a differing dataset further demonstrates
the benefit of data augmentation and its use across different
cancer datasets.

These results show for the first time the benefit of data aug-
mentation for model training within spectroscopic liquid
biopsy cancer diagnostics. The results follow the trend demon-
strated by Wickramaratne et al.30 who demonstrated that data
augmentation using GANs can improve model performance, as
well as Nagasawa et al.33 who showed similar results with
WGAN generated spectra. However, our study, to the best of
our knowledge, is the first to compare the performance of
various data augmentation methods using multiple indepen-
dent resamples to reduce bias that can occur from particular
train/test splits. This method has enabled a like-for-like com-

Table 4 By-spectrum AUCs of non-generative data augmentation and
WGAN augmentation with validation set containing full dataset

Augmentation
No. of spectra
added

No. of training
samples AUC

No augmentation 630 0.668
Augmentation with real
spectra

4725 5355 0.748

Random noise 500 1130 0.729
1000 1630 0.734
2000 2630 0.735
5000 5630 0.750
10 000 10 630 0.737

Mean bootstrap sample 500 1130 0.740
1000 1630 0.736
2000 2630 0.751
5000 5630 0.733
10 000 10 630 0.738

Splice spectra 500 1130 0.711
1000 1630 0.741
2000 2630 0.730
5000 5630 0.728
10 000 10 630 0.730

WGAN augmentation 500 1130 0.779
1000 1630 0.800
2000 2630 0.768
5000 5630 0.787
10 000 10 630 0.765

Fig. 4 Comparison of ROC curves for two benchmark models and the
best WGAN augmentation result.

Table 5 Using 100-patient dataset as external test set

Model AUC

Train: 525-patient dataset test: 100-patient dataset 0.661
Train: 525-patient dataset and augmented spectra test:
100-patient dataset

0.757

Table 6 CNN models trained with a colorectal cancer patient dataset
with and without data augmentation

Model AUC

Train: 559 patient dataset test: 100 colorectal 0.905
Train: 559 patient dataset and augmented spectra test: 100
colorectal

0.955

Analyst Paper

This journal is © The Royal Society of Chemistry 2023 Analyst, 2023, 148, 3860–3869 | 3867

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 6
:4

8:
38

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3an00669g


parison between non-generative augmentation and WGAN gen-
erated spectra.

5 Conclusions

This study determines overall that adding WGAN-augmented
spectra at each resample improves model performance. It can
also be demonstrated that using WGAN augmented spectra
has a more beneficial impact when compared to non-genera-
tive augmentation methods.

One hypothesis that was made before the study began was
that as more augmented data was added, the CNN perform-
ance was expected to increase. However, this was not the case.
This could demonstrate a particular downfall of data augmen-
tation: the quality of information it adds to a model. Although
it was somewhat expected that WGAN augmentation would
outperform non-generative augmentation as it doesn’t just
change aspects of the data, but actually learns from the real
data, there is still a limit to the information it can learn and
create. It seems to be that augmentation simply adds complex-
ity to the dataset helping to regularise the model, hence the
non-linear relationship between the number of augmented
data points added and model performance.

Further work would include obtaining an external test set
of patients from a different location to the training set. This
would have the added benefit of providing spectra that were
also analysed at a different time, further validating the
model’s performance as a potential method for clinical use.
The methods described could also be applied to other cancer
types, particularly rarer types where there are naturally fewer
samples available for analysis.
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