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A multiplatform metabolomics approach for
comprehensive analysis of GIST xenografts with
various KIT mutations†
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Metabolites in biological matrices belong to diverse chemical groups, ranging from non-polar long-chain

fatty acids to small polar molecules. The goal of untargeted metabolomic analysis is to measure the

highest number of metabolites in the sample. Nevertheless, from an analytical point of view, no single

technique can measure such a broad spectrum of analytes. Therefore, we selected a method based on

GC-MS and LC-MS with two types of stationary phases for the untargeted profiling of gastrointestinal

stromal tumours. The procedure was applied to GIST xenograft samples (n = 71) representing four

different mutation models, half of which were treated with imatinib. We aimed to verify the method cov-

erage and advantages of applying each technique. RP-LC-MS measured most metabolites due to a sig-

nificant fraction of lipid components of the tumour tissue. What is unique and worth noting is that all

applied techniques were able to distinguish between different mutation models. However, for detecting

imatinib-induced alterations in the GIST metabolome, RP-LC-MS and GC-MS proved to be more relevant

than HILIC-LC-MS, resulting in a higher number of significantly changed metabolites in four treated

models. Undoubtedly, the inclusion of all mentioned techniques makes the method more comprehensive.

Nonetheless, for green chemistry and time and labour saving, we assume that RP-LC-MS and GC-MS

analyses are sufficient to cover the global GIST metabolome.

Introduction

A gastrointestinal stromal tumour (GIST) is a gastrointestinal
tract sarcoma originating from the intestinal pacemaker Cajal
cell precursors.1,2 GIST’s best-defining common feature is the
membranous expression of the receptor tyrosine kinase KIT;
KIT and DOG1 (discovered on GIST 1) are the preferred diag-
nostic markers for this sarcoma subtype.3 Despite the
common characteristic, the tumour’s genetic background is
diversified. Approximately 75–85% of GISTs have an activating
mutation in KIT and 5–10% in the PDGFRA gene, while the
remaining cases may exhibit a mutation in other genes.4

Furthermore, it was observed that a particular mutation type is
related to the tumour location along the gastrointestinal tract

or the response rate to an anticancer therapy with tyrosine
kinase inhibitors (TKIs) such as imatinib.5–7

Until now, no single comprehensive mass spectrometry-
based study was performed to describe the metabolome of
GIST. In our previous study, we selected the most suitable
robust method for preparing GIST xenograft samples for ana-
lysis by liquid chromatography coupled with mass spec-
trometry (LC-MS).8 As the metabolite composition of GIST is
not elucidated, the method prioritised the coverage of the
broadest possible range of metabolites of various physico-
chemical properties with satisfactory reproducibility. Here, our
goal is to verify the method applicability for the untargeted
metabolomic analysis of GIST xenografts carrying four
different KIT mutations defining their responsiveness to imati-
nib treatment. Metabolomics is a part of omics tools that
provide a full global metabolic readout of the present function
of a cell or another biological matrix. It has been successfully
applied to identify drug-induced metabolic alterations,9,10 in
treatment monitoring,11,12 personalised medicine,13–15 to
explain the mechanism of action of a drug in use,16,17 or to
propose new targets for novel therapies.18–20 Metabolomics
has already been used to examine the effect of anticancer
agents on tumour metabolomes.21–24 As regards research on
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imatinib, Ishida et al. analysed the metabolome of GIST cells
from cell culture and compared it with the set of metabolites
detected in generated drug-tolerant cells.25 In a study by
Caocci et al., the plasma metabolome of leukaemia patients
treated with imatinib and other TKIs was analysed to investi-
gate the molecular causes of various degrees of cardiovascular
adverse effects of the treatment.26 Also, employing metabolo-
mics and proteomics, Contreras Mostazo et al. observed a
strong metabolic rewiring of leukaemia cells acquiring resis-
tance to imatinib.27

Maximising the metabolome coverage is essential to
increase the probability of drawing biologically relevant con-
clusions from an untargeted metabolomic project.28,29 The
most efficient and simple approach is to parallelly apply
several analytical techniques suitable for measuring various
groups of analytes. MS-based platforms are the gold standard
for high throughput metabolomic profiling of biological
samples mainly due to high sensitivity and their possible
hyphenation to separation techniques with a wide range of
available stationary phases.30,31 Although LC with a reversed
phase is able to cover the majority of known metabolites,
those with higher hydrophilicity and polarity are insufficiently
retained.32 Therefore, hydrophilic interaction liquid chromato-
graphy (HILIC) columns have been additionally implemented
in metabolomics to widen the metabolite coverage with carbo-
hydrates, amino acids, or nucleosides.30,33–36 Another analyti-
cal technique that can cover a wider range of polar metabolites
is gas chromatography coupled with mass spectrometry
(GC-MS), which requires thermally stable and volatile analytes.
Therefore, compounds with polar functional groups such as
alcohols, carboxylic acids, carbohydrates, amides, and amines
must be derivatized prior to analysis, most commonly through
silylation and methoxyamination. Indeed, more analytical
techniques such as capillary electrophoresis (CE)-MS or ion
chromatography (IC)-MS covering polar metabolites are used
in metabolomics.37,38 However, the most pronounced draw-
backs of CE-MS include its deficient robustness as well as
lower sensitivity due to sample dilution with sheath
liquid.39,40 IC-MS is a suitable technique for analysing
anionic metabolites while its inability to detect zwitterionic
amino acids and uncharged molecules is of critical
concern.41 Although IC-MS is considered a promising tech-
nique for targeted experiments, it is still not common for
untargeted profiling.42 Moreover, for untargeted methods,
the use of both anionic and cationic columns and two elute
systems would be required. With the development of sheath-
less methods or in-capillary preconcentration in CE-MS,40

and further improvements in IC-MS, both techniques can
match the popularity of GC-MS and HILIC-LC-MS in untar-
geted metabolomics. In this study, the previously developed
untargeted metabolomics method was tested for application
in finding the differences between KIT mutants and asses-
sing the impact of imatinib treatment on GIST tissue. In
addition, we verified the necessity to perform all analytical
batches and examined which one yielded the most infor-
mation relevant to the stated biological questions.

Materials and methods
Chemicals and reagents

MS-grade methanol, acetonitrile, and isopropanol were
obtained from Thermo Fisher Scientific (Loughborough, UK).
Ultrapure water was produced in-house using a Direct-Q® 3UV
(Millipore, Vienna, Austria). Heptane was purchased from
Witko (Lodz, Poland). Pyridine, methyl tert-butyl ether (MTBE),
N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1%
chlorotrimethylsilane (TMCS), ammonium formate, methoxya-
mine hydrochloride, n-pentadecanoic acid, and the alkane
standard mixture (C10–C40, all even) were from Sigma-Aldrich
(Saint Louis, MO, USA). Ammonia solution in water (25%) was
obtained from Merck KGaA (Darmstadt, Germany). MS addi-
tive formic acid (98%) was purchased from Chem-Lab NV
(Zedelgem, Belgium). The tuning mixture for MS calibration
was from Agilent Technologies (Santa Clara, CA, USA).

Study design and sample collection

The current study was performed on leftover ex-mouse tumour
materials from previously performed in vivo experiments
including four patient-derived xenograft mouse models, estab-
lished and maintained in the Laboratory of Experimental
Oncology, KU Leuven, Belgium.43–45 Model establishment and
sample collection were approved by the Ethics Committee,
University Hospitals Leuven (S53483) and by the KU Leuven
Ethics Committee for Animal Research (project number P175/
2015). Each model was created by subcutaneously transplant-
ing human GIST tissue from a consented donor patient into a
nude mouse (nu/nu NMRI). When the tumour reached
1000 mm3, it was re-transplanted into the subsequent mouse
passages. Such models remain genetically stable and represent
the original patient-derived tumour. In each experiment,
among mice from which the leftover material was used in this
study,43–45 approximately half of them were treated orally with
50 mg kg−1 imatinib twice a day for three weeks, while the
other half received water as control. A few characteristics of the
GIST models are presented in Table 1 and the tumour volume
evaluation over 21 days of treatment is presented the ESI (ESI
Fig. S1†). Tumours were snap-frozen immediately after collec-
tion and were stored at −80 °C until the day of sample
preparation.

Sample processing and metabolite extraction

Frozen samples were cut into 50–70 mg fragments and placed
in Eppendorf tubes containing 2 mm diameter zirconium
oxide homogenisation beads. Then, for each mg of the
tumour, 10 µL of a methanol–water mixture (1 : 1, v/v) was
added. The homogenisation process was performed in a Bullet
Blender tissue homogenizer (Next Advance, Averill Park, NY,
USA) in two 5 min cycles with a speed set at 10 and samples
were cooled on ice between the cycles.

To prepare samples for LC-MS analysis, the samples were
treated according to the previously selected robust method.8

Therefore, the sample’s final ratio of methanol, MTBE, and
water was 1.3 : 1 : 1.2 (v/v/v). 300 µL of each homogenate was
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mixed with 90 µL of methanol containing an internal standard
(1 µg mL−1 chenodeoxycholic acid). Samples were vortex-mixed
for 5 min, and then 120 µL of MTBE was added, and samples
were again vortex-mixed for 3 min. The next step involved the
addition of another part of MTBE (190 µL) and water (140 µL)
containing 1-(4-fluorobenzyl)-5-oxoproline as an internal stan-
dard (1 µg mL−1). The extraction resulted in the formation of a
lipid layer at the top and a polar layer at the bottom of the
tubes. Both fractions were collected in separate LC glass vials.
Polar extracts required one additional step of sample evapor-
ation and reconstitution in an acetonitrile : water mixture
(9 : 1, v/v).

For GC-MS analysis, 100 µL of the homogenates were
vortex-mixed with 200 µL of cold methanol containing an
internal standard (1 mg mL−1 pentadecanoic acid). Samples
were centrifuged at 4000g and 4 °C for 15 min, and 200 µL of
the resulting supernatant was evaporated in a MiVac DUO con-
centrator (GeneVac, UK). Next, metabolites present in the
samples were methoximated and trimethylsilylated for their
conversion to volatile derivatives. To the dried supernatant,
20 µL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with
1% trimethylchlorosilane (TMCS) was added, followed by
sample incubation at 70 °C for 1 hour. Finally, 100 µL of
heptane was added to each sample.

Quality controls (QCs) were prepared simultaneously with
sample preparation. First, a pool of 15 µL of all homogenates
was created. Next, the pool was processed according to the pro-
cedure for the analysed samples; for LC-MS, 300 µL of the
pooled homogenate was processed and for GC-MS, it was
100 µL of the homogenate. Moreover, blank samples contain-
ing water instead of the homogenate were prepared.

Untargeted metabolomics by LC-MS

LC-MS analyses were performed using an Agilent 1200 HPLC
coupled with a 6224 time-of-flight mass spectrometry (TOF/
MS) system (Agilent Technologies, Germany). Two complemen-
tary analytical columns were used for the separated organic
and polar phases. A reversed phase InfinityLab Poroshell 120
EC-C8 column (2.1 mm × 150 mm, 2.7 µm, Agilent
Technologies, USA) was applied for lipid metabolites. Each run
was 50 min long, the flow rate was 0.5 mL min−1, and the
injection volume was 5 µL. For electrospray ionisation in the
positive mode, solvent A was 10 mM ammonium formate in

water, and solvent B was 10 mM ammonium formate in a
mixture of methanol and isopropanol (85 : 15, v/v). For the
negative mode, 0.1% formic acid in water was used as solvent
A and 0.1% formic acid in a mixture of methanol and isopro-
panol (85 : 15, v/v) was used as solvent B. The chromatographic
gradient started at 82% mobile phase B and reached 100%
phase B.

Hydrophilic compounds were separated in a 2.1 mm ×
100 mm, 2.7 µm Poroshell 120 HILIC (Agilent Technologies,
USA) column. In both the ionisation modes, the aqueous
mobile phase was 10 mM ammonium formate in water, and
the organic phase was acetonitrile. The gradient started from
5% aqueous phase and ended at the maximum of 45%
aqueous phase. The total run time with the re-equilibration
step was 29 min. The flow rate was 0.4 mL min−1, and the
injection volume was 2 µL. MS parameters are listed in the
ESI.†

The analytical batches in both ionization modes were
started from the injection of two blank samples to detect poss-
ible impurities. Then, 10 QCs were injected for system equili-
bration. Finally, GIST samples were analysed in blocks of
eight, with a QC being injected after each block. For analyte
fragmentation, QC samples were analysed in the MS/MS mode
on an LC-Q-TOF/MS system 6550A (Agilent Technologies,
Germany), using exactly the same protocols as those for the
previous LC-TOF/MS analysis.

Untargeted metabolomics by GC-MS

A 7890B Agilent Technologies GC system with a 7000 triple
quadrupole (Agilent Technologies, United States) was used for
GC-MS analysis. Separation of volatile metabolites was carried
out in a ZB-5MS column (30 m length, 0.25 mm i.d., 0.25 µm
film 95% dimethyl/5% diphenylpolysiloxane) from
Phenomenex (United States). The injection volume was 1 µL,
and the splitless mode was used. The helium carrier gas flow
rate was set at 1 mL min−1. The temperature gradient started
at 60 °C in 1 min and was increased to 320 °C at an 8 °C
min−1 rate. The duration of each run was 37.5 min. Additional
parameters are presented in the ESI.†

First, two heptane blank samples were analysed, followed
by an extraction blank (the whole sample preparation pro-
cedure was the same but without the tissue homogenate), and
an n-alkane standard solution (C10–C40). Then, the system

Table 1 Xenograft models used in the study and their characteristics

Treatment group

Control
Imatinib

Xenograft model Mutation type Imatinib responsiveness n Dose n Dose

GIST1 KIT exon 11 p.V560D Sensitive43 10 Untreated 10 50 mg kg−1 BID
GIST2 KIT exon9 p.A502_Y503dup Dose-dependent resistant43 10 Untreated 9 50 mg kg−1 BID
GIST4 KIT exon11 p.K558_G565delinsR Sensitive44 4 Untreated 9 50 mg kg−1 BID
GIST9 KIT exon 11 p.P577del; W557LfsX5 Resistant45 9 Untreated 8 50 mg kg−1 BID

KIT exon 17 p.D820G
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was equilibrated with 10 QCs. Finally, GIST samples were
injected in a randomised order, with a QC sample being
injected at constant intervals.

Data processing and statistical analysis

Raw data obtained during LC-MS analysis were uploaded to
MassHunter Profinder B.08.00 (Agilent Technologies) software
for peak deconvolution, alignment, and peak integration
improvement. Metabolic features detected in blank samples
were filtered out from the datasets. Missing values were
replaced using the k-Nearest Neighbors algorithm. Finally,
signals with a coefficient of variation in QCs higher than 20%
were filtered out. The reproducibility of the analytical runs was
also verified with principal component analysis (PCA) score
plots generated in SIMCA 16 (version 16.0.2.10561, Umetrics
AB, Sweden). HCA (hierarchical cluster analysis) was also per-
formed using the same software.

For GC-MS data, Agilent Unknown Analysis software (Ver.
B.09.00, Agilent Technologies) with the National Institute of
Standards and Technology (NIST) mass spectra library (Ver.
2014) was used for spectral deconvolution. Unlike in LC-MS
data, the whole set of detected metabolites was identified
before statistical analysis, by comparing fragmentation pat-
terns and retention indices with the library. The retention
times of the analysed n-alkanes were used for retention index
calculation. Due to possible retention time shifts during the
batch, metabolic signals generated from the same analytes
were aligned in Mass Profiler Professional ver. B.02.1 (Agilent
Technologies) software. The next data processing steps, includ-
ing verification of qualifier and quantifier ions and correction
of integration errors, were performed in Agilent MassHunter
Quantitative Analysis (Ver. B.09.00, Agilent Technologies). The
analytical reproducibility was assessed based on the signal
from the internal standard and signal variation in QC
samples. Only metabolites with a coefficient of variation of
their signals in QCs lower than 30% were retained in the final
dataset.

Both LC-MS and GC-MS data were subjected to univariate
and multivariate statistical analyses to compare imatinib-
treated and non-treated samples. Univariate Student’s t-test for
normally distributed variables or the U Mann-Whitney test in
the absence of normality were performed in MATLAB 2016b
software (MathWorks, Natick, MA, USA). As regards multi-
variate analysis, variable importance into projection (VIP) and
p(corr) parameters were calculated in SIMCA 16 (version
16.0.2.10561, Umetrics AB, Sweden). Variables that were sig-
nificant in both univariate (p > 0.05) and multivariate (p(corr)
> 0.5 or <−0.5, VIP > 1) analyses were selected as biologically
relevant. At this stage, LC-MS signals were finally annotated by
searching against publicly available databases (CEU Mass
Mediator, LIPIDMAPS, Human Metabolome Database
(HMDB)), considering the measured mass, formed adducts,
and MS/MS fragmentation patterns. According to the identifi-
cation confidence levels proposed by Schymanski et al., the
level 2 was obtained for detected metabolites.46 To compare
metabolite abundance levels in control samples from four

GIST models, heatmaps were generated in the Metaboanalyst
5.0 platform (https://www.metaboanalyst.ca). The Euclidean
distance and Ward method were selected as the distance and
clustering method. Both ANOVA and multivariate (VIP) ana-
lyses were performed to detect specific differences between KIT
models.

Results and discussion
Principal component analysis

Raw data were prepared as described in the Materials and
methods section and used to build PCA models (Fig. S2 in the
ESI†). It is clearly visible that QC samples are clustered tightly
together in the plots, which means that they are highly similar
to each other thanks to stable conditions during analytical
batches. Therefore, it is assumed that differences between the
compared groups of samples are biologically relevant and not
due to experimental variability. In each of the five PCA score
plots, the treated samples belonging to the GIST4 model are
separated from the remaining samples. In this xenograft
model, the tumour reaction to the treatment seems to be the
most marked also because of the highest tumour size
reduction. As they are outliers in PCA analysis, the whole
GIST4 model should be removed from the analysis and con-
sidered separately. Identical observations can be made based
on the HCA (Fig. S3 in the ESI†).

Results of untargeted analysis by analytical techniques

Sample characteristics based on RP-LC-MS analysis. The
applied RP-LC-MS method focusing on the retention of more
lipophilic metabolites enabled the measurement of numerous
lipid classes such as phosphatidylcholines, phosphatidyletha-
nolamines, sphingomyelins, or ceramides in both the positive
and negative ionisation modes. In the positive ion mode
alone, also triacylglycerols and diacylglycerols were detected.

RP(+)-derived data can serve to distinguish between
mutation models, which is confirmed in the PCA plot shown
in Fig. 1. The samples spontaneously grouped according to
their mutational status; however, non-treated samples from
imatinib-resistant and dose-dependent models exhibit some
similarities. On the other hand, the treatment effect is not
emphasised in the part of the metabolome determined by the
RP-LC-MS(+) analysis. Metabolites detected during RP-LC-MS
(−) also contribute mostly to the separation of samples based
on their KIT mutation type (Fig. 1).

Sample characteristics based on HILIC-LC-MS. Polar metab-
olites detected during the HILIC-LC-MS analysis included
amino acids, purines, pyrimidines, organic acids, or acylcarni-
tines, which were detected in both MS polarities. Additionally,
it was possible only in the negative ionisation mode to
measure phosphatidylcholines and phosphatidic acids.
Despite the different coverage than that in RP-LC-MS, the
polar fraction of the GIST metabolome also distinguishes
samples based on the mutation type, which is presented in
PCA plots (Fig. 2).
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Sample characteristics based on GC-MS. The incorporation
of gas chromatography coupled with MS led to the detection of
a higher number of purines, pyrimidines, amino acids,
organic acids, fatty acids, and carbohydrates, most of which
were also measured in LC-MS analyses. Furthermore, data
obtained during the GC-MS analysis also drive the spon-
taneous separation of three GIST models, regardless of the
applied treatment (Fig. 3).

More detailed information on the metabolic patterns in
each GIST model can be obtained from the generated heat-
maps. For GC-MS data, the heatmap is presented in Fig. 3,
while the remaining heatmaps can be found in the ESI.† The
most significant metabolites based on the univariate and

multivariate comparison between the four models are also pro-
vided in the ESI.†

Impact of imatinib treatment on the GIST metabolome

Although the unsupervised statistical methods showed a sub-
stantial disparity in the metabolome composition between
xenograft models, our question of interest was whether the
applied untargeted metabolomic method could effectively
detect alterations in the GIST metabolome due to imatinib
treatment. We emphasise this clinically relevant problem as
the results may help better understand the diversified
response in GIST patients and improve therapy effectiveness.
GIST resistance to imatinib, which is still the first-line therapy,

Fig. 1 Multivariate statistical analysis of GIST metabolomic profiles acquired by RP-LC-MS. Panels A and C show PCA score plots built with the
dataset from positive (A) and negative (C) ionization modes. Panels B and D present HCA dendrograms for positive (B) and negative (D) ionization
data. GIST1, GIST2, and GIST9 models are marked in green, blue, and yellow, respectively.

Fig. 2 Multivariate statistical analysis of GIST metabolomic profiles acquired by HILIC-LC-MS. Panels A and C show PCA score plots built with the
dataset from positive (A) and negative (C) ionization modes. Panels B and D present HCA dendrograms for positive (B) and negative (D) ionization
data. GIST1, GIST2, and GIST9 models are marked in green, blue, and yellow, respectively.
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remains one of the most severe challenges in the clinical man-
agement of GIST.3 To help find a solution, it is important to
understand molecular mechanisms underlying the tumour
response during the therapy. In this study, we compared the
metabolome of imatinib-treated and non-treated GIST xeno-
graft samples from two imatinib-sensitive models (GIST1,
GIST4), one resistant model (GIST9), and one model character-
ised by dose-dependent resistance (GIST2). Unsurprisingly, the
imatinib-resistant model produced the lowest number of stat-
istically significant metabolites (Table 2). As the tumour did
not respond to the introduced treatment, the biochemical pro-
cesses inside the tumour were not affected considerably. The
only altered metabolites included xanthosine, a few amino
acid derivatives, acylcarnitines, and phosphatidylcholines.

In contrast, the most pronounced differences were found in
the drug-sensitive GIST4 model; however, this model has some
limitations. The tumours reduced their size vastly after the
treatment, presumably changing the tissue structure. To vali-
date the findings, more data normalisation methods should
be tested to correlate with the number of cancer cells inside
the tumour tissue.

In general, the RP-LC-MS data gave the highest number of
significant metabolites between treated and non-treated

samples across the drug-responding models. Indeed, this is
also because lipids are found in abundance in tissues, includ-
ing the sarcomas.47,48 Lipids play essential roles in tumour
cells as they are building blocks of cell membranes (phospha-
tidylcholine, phosphatidylethanolamine, phosphatidylserine,
and phosphatidylinositol), constitute a source of energy (fatty
acids), and take part in cell signalling. All of these functions
are required for cell proliferation and tumour growth. In
addition, metabolic reprogramming, which is the hallmark of
cancers, is firmly represented in lipid metabolism alterations
promoting tumorigenesis and cancer progression.49 Therefore,
RP-LC-MS is the most essential analytical technique necessary
for assessing changes in the GIST metabolome. However,
regarding the HILIC-LC-MS analysis, this technique proved to
be deficient in detecting alterations in the metabolome of the
GIST1 model. In this respect, GC-MS is a more universal tech-
nique, suitable for all studied xenograft models. Moreover, as
regards the techniques complementary to RP-LC-MS, it can be
observed that a single GC-MS batch resulted in the generation
of a larger amount of information than a single HILIC-LC-MS
run in either positive or negative polarity, revealed from the
number of statistically significant metabolites. The list of all
significant compounds according to both univariate and
multivariate statistical methods is presented in the ESI.†

Metabolite coverage overlap

Based on the statistical comparisons between imatinib-treated
and non-treated GIST samples, the coverage overlap was exam-
ined between the applied analytical techniques. While lipids
are usually detected in the RP-LC-MS analysis, single com-
pounds can also be separated on a HILIC column. A few phos-
phatidylethanolamines, phosphatidylcholines, phosphatidic
acids, and sphingomyelins were detected during the
HILIC-LC-MS analysis. Purines and pyrimidines, which may be
important for imatinib anticancer activity according to our pre-
vious research, can also be determined using GC-MS and
HILIC-LC-MS. Some compounds such as adenine, adenosine,
and xanthosine were observed in GC-MS, HILIC-LC-MS(+), and
HILIC-LC-MS(−). Other metabolites like inosine and guano-
sine are detectable in GC-MS and HILIC-LC-MS(+), while
hypoxanthine and uridine are detectable in GC-MS and
HILIC-LC-MS(−). Other group of compounds that can be separ-
ated by both liquid and gas chromatography are fatty acids
and organic acids. On the other hand, acylcarnitines, which
were found to be affected by the imatinib treatment and are
responsible for fatty acid transportation inside cells, were typi-
cally detected in the HILIC-LC-MS analysis.

Overall, although RP-LC-MS assures the most comprehen-
sive metabolite coverage of the GIST metabolome, it is necess-
ary to include another technique to complement it for polar
compounds. The choice between GC and HILIC mode LC
should be made if one aims to avoid excessive use of solvents
and save analysis time. As stated above, purines, pyrimidines,
amino acids, organic acids, or carbohydrates can be detected
by both techniques. In contrast to the HILIC-LC-MS analysis,
the GC-MS analysis enabled the indication of statistically sig-

Fig. 3 Multivariate statistical analysis of GIST metabolomic profiles
acquired by GC-MS. The PCA score plot is presented in the upper panel,
while the bottom panel shows the HCA dendrogram. GIST1, GIST2, and
GIST9 models are marked in green, blue, and yellow, respectively.

Table 2 Summary of statistical comparisons between imatinib-treated
and non-treated GIST xenografts reported by analytical techniques

GIST model RP (+) RP (−) HILIC (+) HILIC (−) GC-MS

GIST1 73 18 Nonea Nonea 19
GIST2 33 33 17 21 26
GIST4 151 80 49 31 44

aMultivariate OPLS-DA models were not statistically significant.
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nificant metabolites that are affected by the imatinib treatment
in all studied mutation models (Table 1). However, the essen-
tial issue related to limiting only to GC-MS is the loss of acyl-
carnitines in the metabolite coverage.

Their general pros and cons should also drive the choice
between both techniques. GC-MS offers higher reproducibil-
ity in retention times and fragmentation patterns in electron
impact MS sources, making analyte identification more
reliable with commercial libraries. However, the need for
metabolite derivatization makes the sample preparation
process more complicated.30 Moreover, this step requires the
use of harmful reagents such as pyridine. On the other
hand, HILIC is a more complex chromatographic system
involving multiple retention mechanisms; the measurements
are less reproducible than RP, and the peak shape is often
unsatisfactory.50 It should be noted that among HILIC
columns, various sorbents are used (zwitterionic, neutral
diol, neutral amide, and aminoalkyl-based), and each of
them is related with a slightly changed retention mecha-
nism and exhibits different behaviours towards particular
metabolites.51,52 In this study, only the bare silica HILIC
column was considered; hence, another column type might
ensure extra metabolite coverage.

Describing the GIST metabolome thoroughly and continu-
ing the research on its response to TKIs can support the
ongoing research on treatment effectiveness problems in
GIST patients. Although the genetic causes of primary or
secondary tumour resistance are described in the
literature,53–55 metabolomic studies are necessary to find
biochemical processes influenced by imatinib. By comparing
a few mutational models, including imatinib-sensitive and
resistant GISTs, specific metabolic pathways common for
effective treatment may be recognised. It is possible that tar-
geting the treatment via these essential pathways could con-
stitute an approach to resensitise the tumour and improve
treatment response.

Conclusions

To achieve the overriding aim of comprehensively elucidating
the metabolome of GIST and relating it to KIT mutations and
variable patient response to imatinib, the first step was to
verify the untargeted metabolomic method for sample ana-
lysis. Tumour specimens were analysed using three tech-
niques: RP-LC-MS and HILIC-LC-MS in two ionisation modes,
and GC-MS. We found that each technique enables us to show
differences in the GIST metabolome between KIT mutants.
However, HILIC-LC-MS-derived data did not provide sufficient
information enabling us to distinguish imatinib-treated
samples from non-treated controls in all xenograft models.
Therefore, GC-MS is a more appropriate technique to comp-
lement the GIST metabolome with non-lipid more polar com-
pounds in this case. Overall, the application of parallel
RP-LC-MS and GC-MS allows for capturing a comprehensive
global picture of GIST tissue metabolism.
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