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Traditional chemical synthesis, which involves the use of dangerous protocols, hazardous solvents, and
toxic products and catalysts, is considered environmentally inappropriate and harmful to human health.
Bearing in mind its humerous drawbacks, it has become crucial to substitute conventional chemistry
with green chemistry which is safer, more ecofriendly and more effective in terms of time and selectivity.
Elaborating synthetic protocols producing interesting new compounds using both microwave heating
and heterogeneous non-toxic catalysts is acknowledged as a green approach that avoids many classical
chemistry-related problems. In the current study, B-enaminones were used as precursors to the
synthesis of modified 4-hydroxy-2-quinolone analogues. The synthesis was monitored in a benign way
under microwave irradiation and was catalyzed by bismuth chloride Il in an amount of 20 mol%. This
method is privileged by using a non-corrosive, non-toxic, low-cost and available bismuth Lewis acid
catalyst that has made it more respectful to the demands of green chemistry. The synthesized
compounds were obtained in moderate to good yields (51-71%) and were characterized by *H, 3C NMR,
and IR spectroscopy as well as elemental analysis. Compound 5i was subjected to a complete structural
elucidation using the X-ray diffraction method, and the results show the obtention of the enolic

rsc.li/rsc-advances tautomeric form.

Introduction

Microwave-assisted synthesis has constituted a remarkable
revolution in the field of green chemistry and the organic
synthesis of bioactive compounds.* The introduction of micro-
wave irradiation into organic chemistry laboratories has helped
to overcome many problems related to traditional synthesis,
including high reaction times, low yields, and poor selectivity
that can directly affect the effectiveness of synthetic protocols.
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Using microwave radiation as a source of heat increased yields
and shortened reaction times from several hours to a few
minutes or seconds. Furthermore, microwave heating plays
a crucial role in decreasing toxic byproducts and avoiding the
use of hazardous solvents and harsh reaction conditions that
are greatly used in conventional chemistry methods such as
refluxing.

Microwave-heating effectiveness relies on the fact that the
reaction materials themselves absorb microwave electromag-
netic energy and convert it into thermal energy, resulting in
homogeneous and equally partitioned heat all over the reaction
constituents, unlike traditional heating in which the high
temperature is superficially conducted to the external surface of
the material.”

In addition to the use of microwaves as a green method that
decreases reaction times, heterogeneous catalysts have also trig-
gered the interest of scientists with regard to their high utility in
generating new products in a rapid and selective manner.>*
Microwave activation, which consists of deep heating of the
reaction components, combined with solid catalysis, which has
the advantages of reusability, recoverability, and high selectivity,
is recognized nowadays as an effective tool in the synthesis of
different important heterocyclic systems, such as imidazole,’
acridinedione,® quinazolinone,” dihydroquinazolinone,® pyri-
dine,” dihydropyridine,'® and quinolone."

© 2023 The Author(s). Published by the Royal Society of Chemistry
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The chemistry of heterocycles constitutes an important branch
of the field of drug design and the development of new biologi-
cally active compounds. Many natural and synthetic active prod-
ucts bear a heterocycle within their structures; these molecules are
recognized for their vast number of applications in the medical
field, exhibiting various beneficial pharmacological activities.">>
A well-known class of heterocycles, 4-hydroxyquinolin-2-one and
its tautomers (Scheme 1),>* are of great interest in both chemical
and medicinal domains. In 2017, the number of described
molecules containing a 4-hydroxyquinolin-2-one skeleton reached
14 thousand including nearly 7 thousand compounds that had
been subjected to bioactivity studies.”

4-Hydroxyquiolin-2-ones found a large spectrum of applica-
tions as therapeutic agents presenting antibacterial,?* anti-
cancer,”®” antiproliferative,”® analgesic,”**' antiallergenic,**
and antitubercular activities.*® They were also described as
antagonists of cannabinoid type 2 receptor CB2R,* and
modulators of glycogen synthase kinase GSK-3.*

Due to their wide range of biological applications, many
synthetic routes leading to 4-hydroxy-2-quinolones and related
analogues have been reported in the literature,®*® including
classical methods using different catalysts, such as hydrogen
chloride,”” sodium hydride,”® polyphosphoric acid PPA**°
phosphorus pentoxide methanesulfonic acid solution or Eaton's
reagent,*>* TiCl,,* AgNO;,** and Pd/C.** Microwave irradiation
was also used in the synthesis of various 4-hydroxy-2-quinolones
from the condensation of anilines and other reagents comprising
diethylmalonate,* malonic acid,”” and activated arylmalonate.*®

In view of the environmental concerns related to practising
traditional chemical methods that involve the use of dangerous
chemicals, finding a way that will lead to an applied chemistry
that is green, ecofriendly, respectful of human health, and,
simultaneously, more productive and low-cost is an essential
requirement from chemists and scientists, especially in terms
of searching for interesting new potentially active compounds.

In this context, our interest focused on the combination of
the microwave method and the use of the heterogeneous cata-
lyst BiCl; to realize a green high-speed synthesis of modified
analogues of 4-hydroxy-2-quinolones starting from simple,
available, and easily accessible reagents, p-enaminones and
diethylmalonate, resulting in a series of molecules: 4-hydrox-
ydihydroquinoline-2,5-diones.

Results and discussion
Synthesis

In a continuation of our investigation of the use of microwave
irradiation in synthesizing heterocyclic-based derivatives,* as
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H
4-Hydroxyquinolin-2-one

Scheme 1 Main tautomeric forms of 4-hydroxyquinolin-2-one.
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well as the use of B-enaminones as reactive synthetic interme-
diates leading to interesting compounds,*® we have developed
a new, rapid, and environmentally friendly method for synthe-
sizing hydroxyquinolone analogues. This method involves the
condensation of B-enaminones with diethyl malonate CH,(-
CO,Et),, catalyzed by BiCl; under microwave irradiation in the
presence of EtOH.

The general synthetic route for these analogues is outlined in
Scheme 2. The synthesis of the desired compounds occurs in
two steps: first, B-enaminones are obtained using the method
previously described by our group,* including the condensa-
tion of dimedone or cyclohexanedione with primary aromatic
amines under ultrasound irradiation catalyzed by CuBr.

Then, B-enaminone (3a) was selected as a model substrate
(Scheme 3) and was reacted with diethylmalonate under
different reaction conditions in which we used both classical
and green chemistry in order to find the optimal synthetic
method (Table 1). Our first attempt was to perform the reaction
at room temperature (Table 1, entry 1). After 48 hours, no
product was observed. We increased the temperature by using
reflux conditions; a small amount of the desired compound was
obtained within a period of 48 hours (Table 1, entry 2). Due to
the fact that reflux gave the desired product 5a in low yield
within a long period of reaction time, the use of microwave
irradiation as an alternative method of heating was worth
trying. Indeed, the reaction occurred more rapidly with
a significant increase in yield (Table 1, entry 3).

Regardless of obtaining better results when using microwave
irradiation, a 20% yield is considered moderate; that is what
prompted us to try several catalysts (Table 2) in order to improve
the reaction conditions.

Among the catalysts tried, silica gel (Table 2, entry 3) and
montmorillonite (Table 2, entry 4) engendered a minor
improvement in yields by 9 and 4%, respectively, compared to
the reaction conduction without a catalyst. This slight effect
remained insignificant as it was accompanied by an increase in
reaction time. Unlike the above-mentioned catalysts, zinc
acetate (Table 2, entry 2), cesium iodide (Table 2, entry 6),
copper bromide (Table 2, entry 7), and silver nitrate (Table 2,
entry 8) promoted the formation of final product in a better
yield from 35 to 40% and a shorter time (8-11 min).

In the search for efficient catalysts, our attention was
directed to BiCl;, a bismuth salt recognized for its availability
and low toxicity, moreover, it is environmentally benign, criteria
that are highly recommended from a green chemistry perspec-
tive.”” This Lewis acid catalyst and other bismuth-based cata-
lysts have attracted wide interest and had extensive applications
as activators in many chemical transformations, especially in

6} N OH
H
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Scheme 2 Synthetic green route leading to 4-hydroxyquinolin-2-one analogues.

0 o OH Table 1 Optimization of reaction conditions
EtO X . .
o Entry Method Solvent Time Yield (%)
4 .
NH o N o 1 r.t. EtOH 48 h No reaction

EtG 2 Reflux EtOH 48 h 6

3 MW Solvent-free 12 min 20
3a 4 5a

Scheme 3 Model reaction for the synthesis of 4-hydroxy-2-quino-
lone analogue.
Polar solvents play a key role in the generation of microwave
heat that resides in the dipolar polarization mechanism; when
the synthesis of heterocycles.”*® These benefits encouraged us  subjected to the electric field produced by microwaves, mole-
to explore the influence of bismuth(m) chloride on reaction cules with substantial dipolar moments will tend to constantly
progress (Table 2, entry 1). The most promising results were rotate and consequently engender thermal energy.” We have
perceived when using BiCl;, since we noticed a significant studied the effect of solvents on the reaction rate by testing
enhancement in the yield (48%) and a drop in reaction time different polar solvents starting from the safest and greenest
(8 min). one: H,O. The reaction did not occur as expected since the
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Table 2 Optimization of reaction time and catalyst under MW
irradiation

Entry Catalyst Time (min) Yield (%)
1 BiCl; (20%) 8 48
2 Zn[OOCCH;3;], 8 35
3 Sio, 15 29
4 K-10 16 24
5 ZnCl, 9 40
6 Csl 10 35
7 CuBr 10 38
8 AgNO; 11 40

components of the reaction are not miscible with water. Other
polar solvents were chosen for testing in our reaction, as shown
in Table 3, including ethanol, methanol, and acetone. This
choice was made based on the fact that these solvents are less
toxic.

Unexpectedly, despite its polarity, acetone did not improve
the yields nor the reaction time (Table 3, entry 3); methanol had
a negligible impact on reaction time (Table 3, entry 2). In
contrast, the yield was increased and the time was reduced
when using ethanol (Table 3, entry 1).

Under these optimized conditions (microwave irradiation,
catalyst (BiCl; 20%), solvent (EtOH)), targeting potentially active
compounds, several medicinally important substituents such as
halogens (F, Cl), electron-donating groups (OCHj, CHj3), and
electron-withdrawing group (NO,) were introduced in different
positions of the aromatic ring of B-enaminones. Both cyclo-
hexanedione and dimedone were used as dicarbonylic precur-
sors leading to B-enaminones (Scheme 2).

The obtained yields were significantly influenced by the
nature of the substituents. Generally, dimedone-based f-
enaminones led to higher yields, which can be explained by the
presence of the two methyl groups. Additionally, electron-
donating groups such as methyl and methoxy groups present
in para and ortho positions (5¢, 5g, 5k, 51) improved yields by
enhancing NH nucleophilicity. However, the presence of nitro
groups in para positions (5f, 5m) reduced the NH reactivity and
resulted in lower yields.

The main reason why the yields are moderate in most cases
is the fact that the reaction is not complete; an amount of the -
enaminone used as a starting material remains in the reaction,
and a prolongation of the reaction time to more than 15
minutes is not appropriate since it can cause degradation of the
final product.

Spectral characterization. The structures of the synthesized
compounds were confirmed using spectroscopic methods,

Table 3 Optimization of solvents using BiCls under MW

Entry Solvent Time (min) Yield (%)
1 EtOH 5 55
2 MeOH 6 50
3 Acetone 8 46
4 Solvent-free 8 48

© 2023 The Author(s). Published by the Royal Society of Chemistry
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including 'H, >C NMR, and IR as well as elemental analysis. All
spectra are available in the ESI file.t

The FT-IR spectrum showed all the bands of the character-
istic functions present in the structures of the final products:
namely, enolic OH function characterized by stretching at 3236-
3449 cm™ ', ketone and amide functions confirmed by C=0
stretching bands at 1647-1738 cm !, and C=C bonds
absorbing in a range between 1511 and 1650 cm ™.

In the "H-NMR spectrum, the formation of the enolic form
was confirmed by a signal appearing as a singlet in deshielded
chemical shifts (12.37-12.78 ppm) that correspond to enolic
OH. Additionally, the proton attached to the C(a) (the carbon
adjacent to C(OH)) appeared as a singlet at 5.61-5.87 ppm. The
3C NMR spectrum always exhibited signals in the range 95.58-
98.16 ppm that indicates C(a).

Carbonyl groups signals of ketone and amide functions
appeared at 201.27-202.60 ppm and 162.36-164.41 ppm,
respectively, while the C-OH carbon signal appeared at 166.71-
168.20 ppm.

Unlike the other compounds, we obtained para-nitro-
substituted derivative 5m as a mixture of two tautomers, as
presented in Fig. 1, which indicates an equilibrium between two
possible enolic forms: 4-hydroxyhydroquinoline-2,5-dione 5m;
and 2-hydroxyhydroquinoline-4,5-dione 5mj.

The presence of the two forms was concluded based on
a general observation of the "H-NMR spectrum that exhibited all
the expected signals; moreover, identical signals were also observed
in the spectrum in slightly different shifts and in lower intensities.

The tautomeric ratio between the two enolic forms was
estimated by a simple analysis of integrals in the 'H-NMR
spectrum of compound 5m. The results indicate a ratio of 5:1
in which 4-hydroxyhydroquinoline-2,5-dione 5m; is the major
form with a percentage of nearly 83%.

"H-NMR results for the 4-hydroxyhydroquinoline-2,5-dione
5m1 form showed two singlets at 5.87 and 12.36 ppm that
correspond to enolic OH in position 4 and the proton attached
to C(a), respectively. These findings are in perfect agreement
with the NMR results for the rest of the synthesized compounds.

However, the enolic proton in the minor form, 2-
hydroxyhydroquinoline-4,5-dione 5m,, appeared in more
deshielded chemical displacement (13.99 ppm) which can be
related to the negative mesomeric electron delocalization
engendered by the electron-withdrawing nitro group present in
the para position of the aromatic ring.

(0] OH (o] (0]
o ]
N (@] - w N OH
NO, NO,
5my 5m,

Fig.1 Obtained tautomeric forms for compound 5m.
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Mechanistic proposal

Initially, the Lewis acid catalyst BiCl; activates the carbonyl of
the ester function in diethylmalonate, contributing to
enhancing its electrophilicity. Then, the B-enaminone that
contains two active sites performs a nucleophilic attack with its
double bond activated by delocalization of electrons on the
azote. This step is followed by the liberation of one ethanol
molecule. After recovery of the catalyst we obtain an interme-
diate containing an ester function. This latter is activated by
BiCl; as well giving an electrophilic site that is attacked by the
secondary amine of the f-enaminone, leading to the formation
of a heterocyclic compound. Finally, a second molecule of
ethanol is released and the catalyst is recovered, affording the
heterocyclic final product (Scheme 4).

Crystal characterization

A suitable crystal of compound 5i was subjected to a complete
structural elucidation using single crystal X-ray diffraction. The
structural resolution showed that the asymmetric unit consists
of  8-hydroxy-3,3-dimethyl-5-(phenylamino)-3,4-dihydronaph-
thalene-1,6(2H,5H)-dione 5i which crystallizes in the triclinic
crystal system with P1 space group (Table 5).

The ORTEP diagram is represented in Fig. 2. It is worth
noting that the reaction of f-enaminone and diethyl malonate
produced the enolic tautomer instead of the dicarbonylic one.
The presence of the enol group allowed the formation of an
intramolecular hydrogen bond O2-H2---O1 between the enolic
proton and the carbonyl present in the substituted cyclo-
hexenone ring with a length of 1.818 A; this interaction gave
a pseudocycle with S(6) graph-set motif.

The crystal structure is supported by intermolecular inter-
actions of C-H---O type (Table 4) with lengths ranging between

O -
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Fig. 2 ORTEP diagram of compound 5i.

2.424 and 2.695 A forming three graph sets: two infinite chains
and a ring with R,*(8) graph-set motif. An additional intermo-
lecular interaction is perceived between the two identical
oxygen atoms O1:--O1 with a length equal to 3.008 A. These
interactions reinforce the cohesion of the crystal structure and
keep the components linked together. A crystal packing
diagram is represented to explore the repartition of the struc-
tural components in the crystal (Fig. 3). A hydrophobic inter-
action is also present in the structure and consists of -
stacking between the benzylic aromatic rings.

Experimental
Chemicals and methods

All chemicals and solvents were purchased from Sigma-Aldrich
and Thermo-Fisher Scientific and were used as received without
any further purification. All reactions were monitored by TLC on
silica Merck 60 F,s, percolated aluminium plates and were

i “Bicl
ClgBi, 5

o]

L/
(:9
+ CO,E
COHEt
—_—
NN
|
Ph
l—EtOH

+_BICl,

o 1o o (6/B|CI3
H
X CO-Et | CO,Et
- —_—
- BiClg H
NH N
| k,'f
Ph Ph
O OH O OH
= O L
- EtOH iCl. - Bi X
'Il \6/BIC|3 BiCly '}l o)
Ph Ph

Scheme 4 Mechanistic proposal for the BiClz-catalyzed synthesis of 4-hydroxy-2-quinolone analogues.
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Table 4 Distances (A) and angles (°) of hydrogen bonds for compound 5i

D-H---A d(D-H) d(H---A) d(D-A) D-H-A Symmetry

02-H2---01 0.820 1.818 2.553(2) 148.46 X, ), 2

C14-H14---01 0.930 2.593 3.495(2) 163.7 9,255y, —1+z2
C15-H15---02 0.930 2.695 3.595(2) 163.0 59,2, -1+x,y,-1+z2
C8-H8:--03 0.930 2.424 3.344(2) 169.94 X0,2,2—x%1-y,2—-2

Fig. 3 Crystal packing diagram of compound 5i viewed along the a-axis (H-bonds and short contacts are represented as blue dashed sticks).

developed by spraying with ninhydrin solution (10% in EtOH).
Proton nuclear magnetic resonance (‘H-NMR) spectra were
recorded on a Bruker spectrometer at 400 MHz. Chemical shifts
are reported in ¢ units (ppm) with TMS as reference (6 0.00). All
coupling constants (J) are reported in Hertz. Multiplicity is
indicated by one or more of the following: s (singlet),
d (doublet), t (triplet), p (pentet), m (multiplet), dd (doublet of
doublets), td (triplet of doublets), ddd (doublet of doublets of
doublets). Carbon nuclear magnetic resonance (**C-NMR)
spectra were recorded on a Bruker spectrometer at 100 MHz.
Chemical shifts are reported in 6 units (ppm) relative to CDCl;
or DMSO (6 77.0 and 39.0-40.0). Infrared spectra were recorded
on a PerkinElmer 600 spectrometer. The purity of the final
compounds was determined by HPLC-MS analyses which were
performed on a Shimadzu Prominence LC analytical system
consisting of a Shimadzu LC-20AD binary HPLC pump, a Shi-
madzu CTO-10AS column oven, a Shimadzu SIL-20ACHT cool-
ing autosampler, a Shimadzu CBM-20A system controller,
a Shimadzu SPD-20MA diode array detector; and an LC-MS-2020
mass detector with single quadrupole equipped with electro-
spray ionization (all Shimadzu, Kyoto, Japan). The quantifica-
tion was performed on a monolithic Chromolith RP-C18
column (2.1 mm x 50 mm, 1.8 um particle size) with
a gradient mobile phase of H,O/CH;CN (70 : 30, v/v) with 0.1%
of formic acid to H,O/CH;CN (10 : 90, v/v) with 0.1% of formic

© 2023 The Author(s). Published by the Royal Society of Chemistry

acid at a flow rate of 0.5 mL min *

, with UV monitoring at
a wavelength of 254 nm with a run time of 30 min. Microanal-
ysis spectra were performed by an elemental analyser (Euro E.A.
3000-V3.0-single-2007), and the determined values were within
the acceptable limits of the calculated values. Melting points
were recorded on a Biichi B-545 apparatus in open capillary
tubes.

Microwave-assisted reactions were carried out using a Biot-
age Initiator Microwave Synthesizer 2.0 with a nominal power of
400 W. The reactions were carried out in a reactor to microwave
(volume: 10 mL) under pressure.

Crystallography

Crystallographic data for the studied compound 8-hydroxy-3,3-
dimethyl-5-(phenylamino)-3,4-dihydronaphthalene-1,6(2H,5H)-
dione 5i was collected on a SuperNova, Dual, Cu at home/near,
AtlasS2 four-circle diffractometer equipped with an AtlasS2 CCD
detector using Mo K\a (micro-focus sealed tube) radiation (A =
0.71073 A). The crystal was kept at a temperature of 295 K
during data collection.

The crystallographic data and experimental details for
structural analysis are summarized in Table 5. The reported
structure was solved with the SHELXT-2014/5 (ref. 49) solution
program by Intrinsic Phasing with Olex2 (ref. 50) as the
graphical interface. The model was refined with SHELXL-2018/3

RSC Adv, 2023, 13, 28030-28041 | 28035
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Table 5 Crystallographic data and refinement parameters of compound 5i

Formula C1gH1oNO; Absorption coefficient (mm ) 0.089

Formula weight (g mol™") 297.34 F(000) 316.0

Crystal habit, colour Prism, colorless Crystal size (mm) 0.32 x 0.14 x 0.08

Crystal system Triclinic 6 range for data collection (°) 2.360-33.343

Space group P1 Reflections collected 19501

a(A) 6.4370(3) Independent reflections 5272

b (A) 10.9513(4) Rine 0.0259

c(d) 11.3400(6) Number of parameters 202

a(9) 102.588(4) Goodness-of-fit on F* 1.043

8 (©) 102.906(4) Final R indices [I = 20(1)] Ry = 0.0552, WR, = 0.1414
v (9) 91.799(3) R Indices [all data] R, = 0.0799, WR, = 0.1579
Volume (A%) 757.77(6) Largest difference peak and hole (A~%) 0.24, —0.17

z,7 2,0 CCDC deposition no. CCDC 2256921

Density (calculated) (g cm™?) 1.303

(ref. 51) using full matrix least-squares minimization on F>. All
absorption corrections were performed with CrysAlisPro
1.171.42.51a using spherical harmonics implemented in the
SCALE3 ABSPACK scaling algorithm. Crystal structure visuali-
zation and construction of crystal packing diagrams were per-
formed using Mercury 3.8 software.*

General procedure for the synthesis of B-enaminone
derivatives

The synthesis of B-enaminones was done according to the
method described by Redjemia et al.>*

In a microwave reactor (volume: 20 mL) was taken a mixture
of dimedone or cyclohexanedione (1 mmol), an amine (1
mmol), and CuBr (0.05 mmol). The reaction mixture was sub-
jected to ultrasound with a frequency of 40 kHz for an appro-
priate time at room temperature. The progress of the reaction
was monitored by TLC. After completion of the reaction, EtOAc
(5 mL) or DCM (5 mL) was added. The catalyst was recovered
from the residue and the filtrate was concentrated. A (1/1)
mixture of diethyl ether and n-hexane was added to the reac-
tion mixture and the pure product was crystallized to 6 °C
overnight. The product was finally filtered and dried. This
procedure was followed for the preparation of all the B-enami-
nones used in the synthesis of 4-hydroxyquinolin-2-one
analogues.

General procedure for the synthesis of 4-hydroxy-2-quinolone
derivatives

To a glass tube (diameter: 25 mm; thickness: 1 mm; volume: 20
mL) was introduced a 3:1 mixture of diethyl malonate and p-
enaminone in 1 mL of ethanol as a solvent. Then, 0.2 mmol of
BiCl; was added to the reaction mixture. The reaction content
was subjected to microwave irradiation for an appropriate time
varying between 5 and 13 minutes. The progress of the reaction
was monitored by TLC. After completion of the reaction, 5 mL of
ethanol was added and the catalyst was recovered by filtration.
The synthesized derivatives were purified through column
chromatography eluted with a 1: 1 mixture of ethyl acetate and
petroleum ether. Pure layers were then concentrated under
vacuum.
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4-Hydroxy-1-phenyl-7,8-dihydroquinoline-2,5(1H,6 H)-dione
(Scheme 2, entry 5a). Colorful powder; 55% yield; mp = 162-
164 °C; Ry = 0.35 (CH3CO,C,Hs/petroleum ether, 60 :40). IR
(KBr, cm™'): 3261.97, 3063.51, 2943.69, 2890.57, 1710.86,
1592.00, 1574.67, 1530.95, 1492.38; "H-NMR (400 MHz, DMSO-
de): 6 =1.91 (p, 2H,J = 6.4 Hz, CH,), 2.43 (t, 2H, ] = 6.2 Hz, CH,~
C), 2.54 (t, 2H, J = 5.6 Hz, 2H, CH,-CO), 5.63 (s, 1H, CH), 7.23-
7.42 (m, 2H, Ar-H), 7.42-7.64 (m, 3H, Ar-H), 12.71 (s, 1H, OH);
3C NMR (101 MHz, DMSO-dg): 6 = 19.98, 28.86, 35.82, 95.86
(CH), 104.70, 128.14, 128.93, 129.48, 137.35, 162.12, 162.62 (N-
C=0), 167.24 (C-OH), 202.53 (C=0); MS: (m/z) = 256 (M + 1);
anal. calc. for C;3H,3NO; C, 70.58; H, 5.13; N, 5.49; found: C,
70.62; H, 5.10; N, 5.44.
1-Benzyl-4-hydroxy-7,8-dihydroquinoline-2,5(1H,6H)-dione
(Scheme 2, entry 5b). Crystal; 62% yield; mp = 178-180 °C; Ry =
0.41 (CH3CO,C,Hs/petroleum ether, 60:40). IR (KBr, cm ™ ):
3373.50, 1647.22, 1590.66, 1530.19, 1453.38, 1421.55; 'H-NMR
(400 MHz, DMSO-d): 6 = 1.94 (p, 2H, J = 6.3 Hz, CH,), 2.54
(t, 2H, ] = 6.0 Hz, CH,-C), 2.91 (t, 2H, J = 6.1 Hz, 2H, CH,-CO),
5.35 (s, 2H, N-CH,), 5.68 (s, 1H, CH), 7.12-7.19 (m, 2H, Ar-H),
7.24-7.40 (m, 3H, Ar-H), 12.78 (s, 1H, OH); '*C NMR (101 MHz,
DMSO-dg): 6 = 19.91, 27.09, 35.62, 45.90, 95.62 (CH), 105.05,
126.15, 127.26, 128.76, 136.17, 162.22, 162.62 (N-C=0), 167.03
(C-OH), 202.60 (C=0); anal. calc. for C;4H;5NO; C, 71.36; H,
5.61; N, 5.20; found: C, 71.38; H, 5.63; N, 5.18.
4-Hydroxy-1-(p-tolyl)-7,8-dihydroquinoline-2,5(1H,6H)-dione
(Scheme 2, entry 5c). Crystal; 65% Yield; mp = 222-224 °C; R =
0.45 (CH3CO,C,Hs/petroleum ether, 60:40). IR (KBr, cm ™ '):
3391.87, 2957.15, 1655.76, 1607.02, 1511.88, 1441.96; 'H-NMR
(400 MHz, CDCl,): 6 = 1.97-2.03 (m, 2H, CH,), 2.42 (s, 3H,
CHs), 2.47 (t, 2H, J = 6.2 Hz, CH,-C), 2.57 (t, 2H, J = 6.0 Hz,
CH,-CO0), 5.87 (s, 1H, CH), 7.05 (d, 2H, ] = 8.2 Hz, Ar-H), 7.32 (d,
2H, J = 8.0 Hz, Ar-H), 12.43 (s, 1H, OH); '*C NMR (101 MHz,
CDCly): 6 = 20.81, 21.36, 29.41, 36.59, 98.01 (CH), 105.98,
127.63, 130.82, 134.77, 139.70, 160.40, 164.05 (N-C=0), 167.78
(C-OH), 201.59 (C=0); MS: (m/z) = 270 (M + 1); anal. calc. for
C16H;5NO; C, 71.36; H, 5.61; N, 5.20; C, 71.31; H, 5.64; N, 5.23.
1-(4-Chlorophenyl)-4-hydroxy-7,8-dihydroquinoline-
2,5(1H,6H)-dione (Scheme 2, entry 5d). Crystal; 60% yield; mp =
240-242 °C; Ry = 0.62 (CH3CO,C,Hs/petroleum ether, 60 : 40).
IR (KBr, cmY): 3258.20, 2924.99, 1673.74, 1532.55, 1489.79,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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1403.58; 'H-NMR (400 MHz, DMSO-d,): 6 = 1.92 (p, 2H, J =
6.3 Hz, CH,), 2.44 (t, 2H, J = 6.2 Hz, CH,-C), 2.54 (t, 2H, J =
6.0 Hz, CH,-CO), 5.64 (s, 1H, CH), 7.32-7.40 (m, 2H, Ar-H),
7.58-7.66 (m, 2H, Ar-H), 12.70 (s, 1H, OH); ">C NMR (101 MHz,
DMSO-dg): 6 = 19.96, 28.86, 35.82, 95.81 (CH), 104.82, 129.53,
130.21, 133.64, 136.18, 162.10, 162.52 (N-C=0), 167.33 (C-OH),
202.53 (C=0); MS: (m/z) = 290 (M + 1); anal. calc. for
C,5H,,CINO; C, 62.19; H, 4.18; N, 4.83; found: C, 62.15; H,
4.14; N, 4.80.
1-(4-Fluorophenyl)-4-hydroxy-7,8-dihydroquinoline-
2,5(1H,6H)-dione (Scheme 2, entry 5e). Crystal; 60% yield; mp =
226-228 °C; Ry = 0.49 (CH3CO,C,Hs/petroleum ether, 60 : 40).
IR (KBr, cm™'): 3398.70, 2921.08, 1728.10, 1661.78, 1605.05,
1584.15, 1559.12, 1401.03; *H-NMR (400 MHz, CDCl,): 6 = 1.97-
2.08 (m, 2H, CH,), 2.48 (t, 2H, ] = 6.2 Hz, CH,-C), 2.58 (t, 2H, ] =
6.0 Hz, CH,-CO), 5.86 (s, 1H, CH), 7.13-7.19 (m, 2H, Ar-H),
7.19-7.25 (m, 2H, Ar-H), 12.43 (s, 1H, OH); "*C NMR (101 MHz,
CDCly): 6 = 20.78, 29.45, 36.54, 98.02 (CH), 106.16, 117.17,
117.40, 129.82, 129.91, 133.19, 133.22, 160.13, 163.89 (N-C=0),
167.89 (C-OH), 201.58 (C=0); MS: (m/z) = 274 (M + 1); anal.
calc. for C;5H;,FNO; C, 65.93; H, 4.43; N, 5.13; found: C, 65.99;
H, 4.47; N, 5.10.
4-Hydroxy-1-(4-nitrophenyl)-7,8-dihydroquinoline-
2,5(1H,6H)-dione (Scheme 2, entry 5f). Crystal; 51% yield; mp =
120-122 °C; Ry = 0.5 (CH3CO,C,Hs/petroleum ether, 60 : 40). IR
(KBr, cm™"): 3351.01, 2924.80, 1668.38, 1644.20, 1525.04; 'H-
NMR (400 MHz, CDCl,): 6 = 2.03-2.09 (m, 2H, CH,), 2.47 (t,
2H, J = 6.2 Hz, CH,-C), 2.62 (t, 2H, ] = 6.6 Hz, CH,~CO), 5.88 (s,
1H, CH), 7.42 (d, 2H, J = 8.4 Hz, Ar-H), 8.40 (d, 2H, J = 8.3 Hz,
Ar-H), 12.44 (s, 1H, OH); "*C NMR (101 MHz, CDCl;): 6 = 20.77,
29.43, 36.53, 98.16 (CH), 106.46, 125.47, 129.69, 143.41, 148.40,
160.21, 163.41 (N-C=0), 168.25 (C-OH), 201.46 (C=O0); anal.
cale. for C;5H;,N,0s C, 60.00; H, 4.03; N, 9.33; found: C, 60.05;
H, 4.08; N, 9.37.
4-Hydroxy-1-(2-methoxyphenyl)-7,8-dihydroquinoline-
2,5(1H,6H)-dione (Scheme 2, entry 5g). Crystal; 65% Yield; mp
=171-173 °C; Ry = 0.29 (CH3CO,C,Hs/petroleum ether, 60 : 40).
IR (KBr, cm™'): 3401.19, 2952.72, 1682.96, 1650.30, 1528.11,
1503.17, 1410.66; "H-NMR (400 MHz, DMSO-dG): 0 = 1.66-2.05
(m, 2H, CH,), 2.22-2.35 (m, 2H, CH,-C), 2.4-2.68 (m, 2H, CH,-
CO0), 3.76 (s, 3H, CH;), 5.61 (s, 1H, CH), 7.10 (td, 1H, J = 1.2,
7.6 Hz, Ar-H), 7.23 (dd, 2H,J = 1.7, 7.7 Hz, Ar-H), 7.49 (ddd, 1H,
J=1.7,7.4, 8.3 Hz, Ar-H), 12.68 (s, 1H, OH); *C NMR (101 MHz,
DMSO-d,): 6 = 19.97, 27.77, 35.82, 55.86, 95.83 (CH), 104.65,
112.57, 120.93, 125.47, 129.27, 130.72, 154.09, 162.10, 162.36
(N-C=0), 167.19 (C-OH), 202.42 (C=0); MS: (m/z) = 286 (M +
1); anal. calc. for C;6H;5NO, C, 67.36; H, 5.30; N, 4.91; found: C,
67.31; H, 5.25; N, 4.87.
4-Hydroxy-7,7-dimethyl-1-phenyl-7,8-dihydroquinoline-
2,5(1H,6H)-dione (Scheme 2, entry 5h). Crystal; 68% yield; mp =
210-212 °C; Ry = 0.47 (CH3CO,C,Hs/petroleum ether, 60 : 40).
IR (KBr, cm™'): 3429.88, 2963.91, 1676.72, 1592.40, 1536.24,
1455.51, 1405.54; "H-NMR (400 MHz, CDCl;): 6 = 1.03 (s, 6H,
2CH3;), 2.32 (s, 2H, CH,-C), 2.44 (s, 2H, CH,-CO), 5.87 (s, 1H,
CH), 7.13 (d, 2H, J = 7.2 Hz, Ar-H), 7.11-7.18 (m, 2H, Ar-H),
7.46-7.59 (m, 3H, Ar-H), 12.39 (s, 1H, OH); "*C NMR (101 MHz,
CDCly): 6 = 28.14, 32.63, 42.81, 50.16, 97.91 (CH), 104.99,
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128.03, 129.58, 130.26, 137.45, 158.73, 164.13 (N-C=0), 167.62
(C-OH), 201.28 (C=0); MS: (m/z) = 284 (M + 1); anal. calc. for
C,7H,7NO; C, 72.07; H, 6.05; N, 4.94; found: C, 72.10; H, 6.08; N,
4.99.
1-Benzyl-4-hydroxy-7,7-dimethyl-7,8-dihydroquinoline-
2,5(1H,6H)-dione (Scheme 2, entry 5i). Crystal; 69% yield; mp =
168-170 °C; Ry = 0.64 (CH3CO,C,H;s/petroleum ether, 60 : 40).
IR (KBr, cm™'): 3350.20, 3031.30, 2954.97, 1659.17, 1632.99,
1586.34, 1443.85; 'H-NMR (400 MHz, DMSO-dj): 6 = 0.92 (s, 6H,
2CH3), 2.48 (s, 2H, CH,-C), 2.84 (s, 2H, CH,—-CO), 5.37 (s, 2H, N-
CH,), 5.68 (s, 1H, CH), 7.13 (d, 2H, J = 7.2 Hz, Ar-H), 7.25-7.30
(m, 1H, Ar-H), 7.36 (dd, 2H, J = 4.6, 10.1 Hz, Ar-H), 12.65 (s, 1H,
OH); *C NMR (101 MHz, DMSO-dg): 6 = 27.33, 31.85, 45.70,
48.78,95.58 (CH), 104.08, 125.91, 127.21, 128.69, 136.27, 160.56,
162.70 (N-C=0), 166.71 (C-OH), 202.00 (C=0); MS: (m/z) =
298 (M + 1); anal. calc. for C;3H;oNO; C, 72.71; H, 6.44; N, 4.71;
found: C, 72.74; H, 6.40; N, 4.65.
1-(4-Fluorophenyl)-4-hydroxy-7,7-dimethyl-7,8-dihy-
droquinoline-2,5(1H,6H)-dione (Scheme 2, entry 5j). Yellow
powder; 70% yield; mp = 193-195 °C; R; = 0.66 (CH;CO,C,Hs/
petroleum ether, 60:40). IR (KBr, cm '): 3373.70, 2956.29,
1665.73, 1625.38, 1526.83, 1508.41; "H-NMR (400 MHz, CDCly):
6 = 1.04 (s, 6H, 2CH;), 2.31 (s, 2H, CH,—C), 2.44 (s, 2H, CH,-
CO), 5.85 (s, 1H, CH), 7.11-7.14 (m, 2H, Ar-H), 7.20-7.25 (m, 2H,
Ar-H), 12.37 (s, 1H, OH); **C NMR (101 MHz, CDCl,): 6 = 28.15,
32.63, 42.89, 50.07, 97.84 (CH), 105.11, 117.27, 117.50, 129.92,
133.20, 158.68, 161.63, 164.11 (N-C=0), 167.67 (C-OH), 201.27
(C=0); MS: (m/z) = 302 (M + 1); anal. calc. for C;;H;cFNO; C,
67.76; H, 5.35; N, 4.65; found: C, 67.71; H, 5.34; N, 4.61.
4-Hydroxy-1-(4-methoxyphenyl)-7,7-dimethyl-7,8-dihy-
droquinoline-2,5(1H,6H)-dione (Scheme 2, entry 5k). Crystal;
71% yield; mp = 186-188 °C; R = 0.44 (CH3CO,C,H;/petroleum
ether, 60:40). IR (KBr, Cmfl): 3431.97, 2960.15, 1676.28,
1609.50, 1534.74, 1510.66, 1457.69, 1403.88; "H-NMR (400 MHz,
CDCl,): 6 = 1.03 (s, 6H, 2CH;), 2.34 (s, 2H, CH,~C), 2.43 (s, 2H,
CH,-CO), 3.86 (s, 3H, CH), 5.86 (s, 1H, CH), 7.04 (s, 4H, Ar-H),
12.37 (s, 1H, OH); *C NMR (101 MHz, CDCl3): 6 = 28.15, 32.58,
42.87, 50.13, 55.68, 97.79 (CH), 104.98, 115.48, 128.98, 129.85,
159.26, 160.16, 164.41 (N-C=0), 167.55 (C-OH), 201.28 (C=0);
MS: (m/z) = 314 (M + 1); anal. calc. for C;3H;4NO, C, 69.00; H,
6.11; N, 4.47; found: C, 69.04; H, 6.13; N, 4.49.
4-Hydroxy-1-(2-methoxyphenyl)-7,7-dimethyl-7,8-dihy-
droquinoline-2,5(1H,6H)-dione (Scheme 2, entry 5I). Yellow
powder; 61% yield; mp = 176-178 °C; Ry = 0.52 (CH3CO,C,Hs/
petroleum ether, 60:40). IR (KBr, cm '): 3236.20, 2928.01,
1738.11 1668.33, 1532.10, 1496.44, 1455.64; "H-NMR (400 MHz,
CDCl,): 6 = 1.03 (d, 6H, J = 2.2 Hz, 2CH3;), 2.23 (d, 1H, J = 17.6,
CH-C), 2.36 (d, 2H, J = 17.6, CH-C), 2.43 (s, 2H, CH,-CO), 3.80
(s, 3H, CHy), 5.86 (s, 1H, CH), 7.04-7.17 (m, 3H, Ar-H), 7.47
(ddd, 1H, J = 3.5, 5.8, 8.3 Hz, Ar-H), 12.38 (s, 1H, OH); "*C NMR
(101 MHz, CDCl;): 6 = 27.74, 28.61, 32.47, 41.82, 50.19, 55.99,
97.76 (CH), 104.94, 112.55, 121.67, 125.90, 129.31, 131.17,
154.41, 159.75, 163.85 (N-C=0), 167.63 (C-OH), 201.31 (C=0);
MS: (m/z) = 314 (M + 1); anal. calc. for C;3H;0NO, C, 69.00; H,
6.11; N, 4.47; found: C, 69.05; H, 6.17; N, 4.50.
4-Hydroxy-7,7-dimethyl-1-(4-nitrophenyl)-7,8-dihydroquino-
line-2,5(1H,6H)-dione (5m1) + 2-hydroxy-7,7-dimethyl-1-(4-
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nitrophenyl)-7,8-dihydroquinoline-4,5(1H,6H)-dione (5m2)
(Scheme 2, entry 5m). Oil; 53% Yield; Ry = 0.6 (CH3CO,C,Hs/
petroleum ether, 60:40). IR (KBr, cm '): 3449.20, 3380.30,
2962.36, 1737.93, 1663.83, 1598.51, 1563.30, 1529.11, 1510.45;
'H-NMR (400 MHz, CDCl,): (5m1:5m2) (5: 1); 5m1 6 = 1.06 (s,
6H, 2CH3;), 2.30 (s, 2H, CH,-C), 2.47 (s, 2H, CH,-CO), 5.88 (s,
1H, CH), 7.30-7.43 (m, 2H, Ar-H), 8.38-8.46 (m, 2H, Ar-H),
12.37 (s, 1H, OH); 5m2 6 = 1.09 (s, 6H, 2CHj), 2.33 (s, 2H, CH,-
C), 2.67 (s, 2H, CH,-CO0), 5.52 (s, 1H, CH), 6.96-7.04 (m, 2H, Ar-
H), 8.26-8.32 (m, 2H, Ar-H), 13.59 (s, 1H, OH); ">C NMR (101
MHz, CDCl,): 6 = 28.01, 28.16, 31.72, 32.81, 41.41, 42.88, 50.07,
62.43, 90.50 (CH), 98.02 (CH), 104.83, 105.37, 119.59, 125.17,
125.59, 129.70, 142.95, 143.39, 148.40, 151.77, 157.53, 163.58
(N-C=0), 167.95 (C-OH), 170.05, 170.14, 170.41 (N-C=O0),
171.19 (C-OH), 201.20 (C=0), 204.49 (C=O0); anal. calc. for
CysH 6N,Os C, 62.19; H, 4.91; N, 8.53; found: C, 62.23; H,
4.97; N, 8.58.

Conclusions

We have developed a new synthetic method leading to nitrogen-
based heterocycles structurally analogous to 4-hydroxy-2-
quinolones. We adopted a simple, benign synthesis which is
respectful to the requirements of green chemistry by using
microwaves as an effective source of heat and BiCl; as a non-
toxic, safe, and accessible Lewis acid catalyst that activated
the transformation between B-enaminones and diethyl malo-
nate. Another positive aspect of our synthesis is the use of
available and easily prepared starting materials. We obtained
the desired compounds in good yields within a short time,
which was ensured by the successful combination of
microwave-assisted synthesis and heterogeneous catalysis. A
spectral characterization of the structures was carried out using
IR, 'H, and "*C spectroscopy as well as elemental analysis. The
structure of compound 5i was deduced via the single crystal X-
ray diffraction method that confirmed the obtention of the
enolic tautomer.
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