Correction: Expanding plastics recycling technologies: chemical aspects, technology status and challenges

Houqian Li, a Horacio A. Aguirre-Villegas, b Robert D. Allen, c,d Xianglan Bai, e Craig H. Benson, f Gregg T. Beckham, c,d Sabrina L. Bradshaw, f Jessica L. Brown, e,g Robert C. Brown, e,g Victor S. Cecon, h Julia B. Curley, c,d Greg W. Curtzwiler, h Son Dong, i Soumika Gaddameedi, j John E. Estela-Garcia, a Ive Hermans, a,i Min Soo Kim, a Jiaze Ma, a Lesli O. Mark, i Manos Mavrikakis, a Olumide O. Olafasakin, e Tim A. Osswald, k Konstantinos G. Papanikolaou, a Harish Radhakrishnan, e Marco Antonio Sanchez Castillo, l Kevin L. Sánchez-Rivera, a Khairun N. Tumu, h Reid C. Van Lehn, a Keith L. Vorst, h Mark M. Wright, e Jiayang Wu, a Victor M. Zavala, a Panzheng Zhou a and George W. Huber a

DOI: 10.1039/d2gc90120j
rsc.li/greenchem

Correction for ‘Expanding plastics recycling technologies: chemical aspects, technology status and challenges’ by Houqian Li et al., Green Chem., 2022, 24, 8899–9002, https://doi.org/10.1039/D2GC02588D.

The BHET structure was displayed incorrectly in Fig. 28 of the original article. The corrected Fig. 28 is shown below.
The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Fig. 28 Strategies for PET chemical recycling discussed in this section, and their most common products. (TPA = terephthalic acid, EG = ethylene glycol, DMT = dimethylterephthalate, DET = diethylterephthalate, BHET = bis-2-hydroxyethylterephthalate, BDM = benzenedimethanol, MHET = mono-2-hydroxyethylterephthalate.)