
Digital
Discovery

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.

View Article Online
View Journal | View Issue
Automated routi
aDepartment of Electrical and Computer

Minneapolis, Minnesota, USA. E-mail: ececo
bSeagate Technology, USA

Cite this: Digital Discovery, 2023, 2,
1436

Received 1st May 2023
Accepted 21st August 2023

DOI: 10.1039/d3dd00083d

rsc.li/digitaldiscovery

1436 | Digital Discovery, 2023, 2, 143
ng of droplets for DNA storage on
a digital microfluidics platform

Ajay Manicka, a Andrew Stephan,a Sriram Chari,b Gemma Mendonsa,b

Peyton Okubo,a John Stolzberg-Schray,a Anil Reddyb and Marc Riedela

Technologies for sequencing (reading) and synthesizing (writing) DNA have progressed on a Moore's law-

like trajectory over the last three decades. This has motivated the idea of using DNA for data storage.

Theoretically, DNA-based storage systems could out-compete all existing forms of archival storage.

However, a large gap exists between what is theoretically possible in terms of read and write speeds and

what has been practically demonstrated with DNA. This paper introduces a novel approach to DNA

storage, with automated assembly on a digital microfluidic biochip. This technology offers

unprecedented parallelism in DNA assembly using a dual library of “symbols” and “linkers”. An algorithmic

solution is discussed for the problem of managing droplet traffic on the device, with prioritized three-

dimensional “A*” routing. An overview is given of the software that was developed for routing a large

number of droplets in parallel on the device, minimizing congestion and maximizing throughput.
1 Introduction
1.1 The world of information

The amount of data that the world generates has been
increasing exponentially since the inception of the computer
age. This trend will continue for the foreseeable future, as ever
more IoT devices come online and humans create denser
content in the form of video and virtual reality. The bulk of this
so-called “big data” is stored in hard disk drives (HDDs).1 It is
estimated that the total demand for data storage by 2025 will be
180 zettabytes (1 zettabyte = 1 billion terabytes),2 which would
be a three-fold increase from 2020. Some of this newly gener-
ated data will need to be archived for long-term storage, perhaps
9.3 ZB of it.3 Even if only 5% of stored data is placed in “deep”
offline archives, this would require 46.5 million 20 TB HDDs by
2025. The required capacity for online and on-premise
archiving will be many times larger.

Meanwhile, the supply of storage media is projected to grow
by less than 20% year over year in the same time-frame.4

Without the construction of new HDD and SSD manufacturing
facilities, which are multi-billion dollar investments, demand
for storage is expected to outstrip supply by as much as two-
fold.5 Furthermore, magnetic storage has durability limitations
that make it undesirable for maintenance-free, multi-decade
storage. Also, the proliferation of data centers is causing long-
term environmental damage, as the electricity they require,
mostly for cooling, is a major source of global carbon
Engineering, University of Minnesota,

mm@umn.edu

6–1451
emissions.6 For all these reasons, there has been a strong
interest in identifying new types of storage media.

A strong contender for a type of media that could meet the
future demand for archival storage is DNA. The theoretical
storage capacity of DNA is as high as 200 petabytes per gram,
which is over a thousand times denser than conventional
HDDs.7,8 Most importantly, the energy requirement for writing
is on the order of 10−19 joules per bit which is orders of
magnitude below the femtojoules per bit (10−15 joules per bit)
barrier touted for other emerging technologies.7 The durability
of DNA is unmatched, exceeding centuries, while hard drives
and magnetic tape rarely maintain reliability longer than 30
years.9We point to a review paper that summarizes the potential
of DNA storage systems.10 Orthogonal to work on storage with
DNA, researchers have looked at computing with DNA.11–14
1.2 DNA as a storage unit

Traditional computer systems use the binary code of zeros and
ones {0, 1} as storage units. In its simplest form, a DNA storage
system uses a quaternary code of nucleotides drawn from four
different nitrogenous bases, viz. adenine, guanine, cytosine,
and thymine, denoted A, G, C, and T, respectively. We can map
couplets of zeros or ones directly to each nucleotide, as illus-
trated in Fig. 1. In this way, we use a string of nucleotides to
represent arbitrary data.

With such an encoding, a DNA sequence with n nucleotides
stores 2n bits of data based on binary mapping. Table 1 intro-
duces our concept of a DNA symbol library.† (We note here that
† A DNA symbol library is a set of nucleotide sequences, of some xed length n,
which we can use as building blocks to assemble larger DNA storage units.

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d3dd00083d&domain=pdf&date_stamp=2023-10-05
http://orcid.org/0000-0001-7985-0232
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD002005

Fig. 1 This figure represents the mapping of nucleotide bases to
a binary code. Just as we can string together binary values, we can
assemble DNA nucleotides chemically to represent data.

Table 1 DNA symbol library size based on symbol length

Symbol length
(number of base pairs per symbol)

DNA symbol library size
(number of unique symbols)

1 4
2 16
3 64
4 256
5 1024
6 4096
7 16 384
8 65 536

‡ A symbol is a short double-stranded sequence of DNA whose nucleotides specify
the data that is being stored.

§ A linker is a double-stranded nucleotide sequence that connects two symbols
together in the correct order.

{ A gene is a unit of storage consisting of a sequence of symbols, joined by linkers.
It is the full length of data assembled as a single molecule of DNA. To be clear, we
use the term “gene” but the DNA here has no biochemical function; it is only used
for storage.

k An oligo is a relatively short fragment of DNA.

** A symbol droplet is a droplet containing a symbol.

†† A linker droplet is a droplet containing a linker.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
we use footnotes to dene terms throughout the text.) From
a base set of the 4 nucleotides {A, G, C, T}, there are 16 ways to
select base pairs of length 2; these base pair symbols corre-
spond to binary numbers from 0000 to 1111. If a 2-nucleotide
symbol can represent 16 distinct binary numbers, then a 3-
nucleotide symbol can represent 64 binary distinct numbers. In
general, the addition of each nucleotide quadruples the range of
numbers we can represent. So n base pairs can represent 4n

distinct numbers for n > 0.
Ever since Watson and Crick rst described the molecular

double helix structure of DNA,15 its potential for storage has
been apparent to computer scientists. It seems that most
practical work is based on liquid-handling robotics. The power
consumption of liquid-handling DNA storage systems is on the
order of hundreds of joules per seconds (ref. 10) for a DNA
synthesis rate on the order of kilobytes per seconds. Overall,
these machines use a substantial amount of energy for limited
gain. Many creative ideas and novel technologies, ranging from
nanopores16 to DNA origami,17 are also being investigated. The
leading approach appears to be phosphoramidite chemistry.18

The main barrier to building DNA storage systems that can
compete with existing forms of archival storage is the write
speed, so the rate of DNA synthesis. Hard drive write speeds
hover around 50 to 120 MB s−1 (ref. 19) while solid-state storage
systems achieve write speeds exceeding 200 megabytes per
second.19 All existing DNA storage systems have write speeds
many magnitudes slower than this.20

This paper does not consider the process of reading data
stored in DNA (i.e., sequencing it). With current technology,
reading DNA is orders of magnitude more efficient than writing
it, so the impetus is improvements in write speed. Of course,
a complete solution must consider both operations. Nanopore-
based devices for sequencing DNA could provide the requisite
technology,21 as they are compatible with the digital micro-
uidic technology discussed here.
© 2023 The Author(s). Published by the Royal Society of Chemistry
1.3 A solution: increasing rate of DNA synthesis

Achieving practically useful write speeds will require two things.
First, a way to introduce massive parallelization. Second, a chem-
ical protocol that writes as much data as possible per operation,
thereby increasing the bit rate (write speed in bits per unit time).
This paper proposes a solution to the synthesis speed problem
with a dual library of “symbols‡” and “linkers§”. The two libraries
work in tandem to allow the synthesis of long “genes{” each with
symbols in the required order, corresponding to the data that is
being written. With linkers attached, multiple symbols can be
attached to one another in the same droplet. Accordingly, massive
parallelization is possible. This is in contrast to most existing
schemes for DNA storage, in which each operation attaches
a single nucleotide to the end of the sequence, for instance with
phosphoramidite chemistry.22 Details regarding our scheme with
symbols and linkers are given in Section 4.

Instead of liquid-handling robots, we perform assembly of
DNA with a digital microuidic biochip (DMFB). This tech-
nology offers the advantages of low reagent consumption, high
precision, and miniaturization.23 Further details are given in
Section 2.1.

A DMFB device can be idealized as a 2-D grid, shown in
Fig. 2. Most of the 2-D grid serves to route individual droplets.
In our device, a subset of the available grid points performs
dedicated operations: Gibson assembly (concatenation);24

polymerase chain reaction, or PCR (replication);25 and puri-
cation (correction). One edge of the biochip houses short
fragments of DNA in the form of the symbols while the
opposite edge holds short fragments in the form of linkers.
Also, one of the edges houses PCR stations where depleted
stores of DNA symbols and linkers can be relled. Gibson sites
– locations where symbols are linked together – and purica-
tion sites are strategically positioned throughout the device.
The Gibson assembly process is discussed in more detail in
Section 2.2. We do not discuss the purication process in this
paper.

The task of writing DNA begins with an encoding of the data
in a gene. When the order to assemble a certain gene is received
by the device, it dispenses the requisite DNA symbols, linkers,
and chemical reagents as individual droplets along the grid's
edge. The droplets corresponding to symbols and linkers
contain oligos.k When a symbol droplet** and a linker
droplet†† meet at a grid point, they merge forming a larger
droplet. This larger droplet is routed so that it meets and
Digital Discovery, 2023, 2, 1436–1451 | 1437

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 2 A high-level visual of a digital microfluidic biochip (DMFB). Two sides contain the DNA oligos corresponding to the symbols and linkers.
The other two sides contain Gibson, PCR, and “purify” sites, along with the chemicals necessary to complete each chemical process. The figure
illustrates the path that eight droplets take, each containing a symbol or a linker. Each symbol meets up with a linker, merging into a larger
droplet. The resulting droplet will then be routed to a Gibson site, where the symbol and linker are chemically joined.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
merges with a chemical droplet.‡‡ This larger droplet is then
routed to a station for Gibson assembly: this is where the
symbol and linker oligos are chemically joined to form a single
DNA strand.

Routing all the droplets is a signicant challenge, one that
we confront in this paper. The routing problem becomes more
complex as more droplets are pulled to assemble longer
genes. To solve the problem, we use an algorithm called 3-D
prioritized A*.§§ The algorithm considers three dimensions:
the horizontal axis of the DMFB grid, the vertical axis of the
DMFB grid, and the axis of time. It is called prioritized
because it chooses to create routes for droplets by giving
priority to the droplet which is furthest from its goal node,
i.e., the droplet which has to travel the largest distance across
the grid to reach its intended target location. The routing
algorithm allows many droplets to move simultaneously while
avoiding unwanted collisions. It also allows individual drop-
lets to take the optimal path within the constraints given to
them by higher priority droplets. Further details are given in
Section 4.2.

1.4 Related work

DNA storage technology is a rapidly expanding area of research.
Here, we reference some relevant literature7,20,29–32 in the DNA
storage space. Our approach to DNA storage differs from prior
‡‡ A chemical droplet is a droplet containing the necessary enzymes for Gibson
assembly.

§§ 3-D prioritized A* was selected as the routing algorithm of choice because it is
a complete26 and optimal27 heuristic-based algorithm that is guaranteed to nd
the shortest route between a start and goal point, even in the presence of
obstacles.28

1438 | Digital Discovery, 2023, 2, 1436–1451
work: (1) in our use of DMFB technology; and (2) with our novel
“symbol” and “linker” dual library.

With respect to the routing algorithm that we use, this paper
builds upon an extensive body of prior work. Numerous papers
have discussed routing on DMFB devices, for a variety of
applications.33–35 Many discussed versions of the A* approach
that we use.33,36,37 Other strategies have been considered, for
instance, using an evolutionary multi-objective optimization
algorithm.38 Many papers discuss exciting applications of
DMFB, for instance, DNA sequencing and clinical diagnosis.39–41

Almost all prior work has considered routing on small
grids, generally less than 50 × 50 in size. DNA storage pres-
ents very different constraints, particularly with respect to
the size of the grid and the degree of parallelism. We target
grid sizes that are 6 to 7 orders of magnitude larger. For such
large grid sizes, algorithmic runtime is the preeminent
concern.
1.5 Organization

The contents of this paper are organized as follows. First, in
Section 2, we provide some background information on DMFB
technology and DNA synthesis. Then, in Section 3, we discuss
the target write speeds and the parameters of a DMFB device
that can achieve them. Next, in Section 4, we describe our
method of automating DNA assembly, with symbols and
linkers. Then we discuss the routing requirements for this
scheme. Next, in Section 5, we describe the soware architec-
ture of our system. Then, in Section 6, we present simulation
results characterizing the performance, runtime, and memory
usage of our soware. Finally, in Section 7, we summarize the
main results of the paper and discuss areas for future work.
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 4 A high-level illustration of the Gibson assembly protocol. It
begins with two separate overlapping DNA strands and ends with
a single combined strand with two overhangs. Created with https://
BioRender.com.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
2 Background
2.1 Digital microuidics (DMF) technology

DMF is a uid-handling technology that precisely moves small
droplets on a grid by manipulating electrical charge. It works on
the principle of electrowetting.42 Aqueous droplets naturally
bead up on a hydrophobic surface. However, a voltage applied
between a droplet and an insulated electrode causes the droplet
to spread out on the surface, as shown in Fig. 3.

Electrical signals are applied to an array of such electrodes.
Droplets are moved by turning the voltage on and off in
succession across adjacent electrodes. The same mechanism
can be used to dispense, merge, and mix droplets. These basic
operations become the building blocks to perform biochemical
reactions. DMFB technology reduces the volume of uid, and so
generally reduces the cost, compared to technology like liquid-
handling robotics.43 It has been studied extensively in
academia,44 and in recent years, has been applied for specic
tasks in industry.45 However, it is fair to say that DMFB remains
a niche technology. Scaling down the size of the droplets and
increasing the grid dimensions, so increasing the number of
droplets on the device, is an expensive proposition in terms of
research and development.46

We are working with proprietary DMFB technology that
Seagate, a leading storage technology company, is developing. It
is of a much greater scale than has been previously demon-
strated with very large grid sizes – millions of electrodes. This
technology is not the focus of this paper. Nevertheless, the
concepts that we present for DNA storage are predicated on it.
In particular, we formulate algorithms to tackle the routing of
large numbers of droplets in parallel across Seagate's DMFB
platform. Achieving high data throughout, in terms of DNA
storage units synthesized per unit of time, is the main objective.
2.2 Gibson assembly protocol

The synthesis of data in the form of DNA begins with DNA
fragments, using a process called “Gibson Assembly”. In 2009,
Fig. 3 Electrowetting: aqueous droplets spread when a voltage is
applied between a droplet and an insulating electrode (shown in
orange). The droplet rests upon a hydrophobic dielectric (shown in
red). Top: no voltage. Bottom: high voltage.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Gibson et al. proposed a method for joining multiple DNA
fragments in a single reaction.47 These fragments must have
overlapping ends, several base pairs in length. In addition to the
fragments to be assembled, three enzymes are also required:
exonuclease, DNA polymerase, and DNA ligase. Using these
enzymes, Gibson assembly connects two double-stranded DNA
together.

The Gibson assembly is general-purpose and widely used for
cloning DNA fragments. We adapted it to constructing long
data-storage strands. A visualization of the Gibson assembly
process is shown in Fig. 4.

In the context of the DMFB, we place a symbol, linker, and
three enzymes into three separate droplets. These are all routed
to a “Gibson site”. The chemical reactions for Gibson assembly
are performed at this site, resulting in a larger droplet with the
symbol and linker combined.
3 Write speeds

Here, we discuss the parameters of a DMFB that could compete
with hard disk drives (HDDs) in terms of data write speed. The
write speed of modern HDDs is on the order of 100 mega-
bytes{{ per second (MB s−1), so this is our target write speed.
3.1 Goal: a DMF system that writes 100 MB of data per
second

We need to load 100 MB of data in the form of DNA symbols
onto the device per second. Each symbol is 8 nucleotides long,
with 2 bits per nucleotide, so each symbol represents 16 bits or 2
bytes of information. Therefore, to meet our target write speed,
we must load 50 million symbols, each in a separate droplet,
onto the DMFB every second. Using milliseconds as our unit of
time, we must load 50 000 symbols per millisecond. We must
also load linkers and different chemical reagents. Loading and
moving so many droplets is a demanding task – one that
requires mature DMF technology. To achieve our target write
{{ A megabyte is 106 bytes. A byte is 8 bits of data.

Digital Discovery, 2023, 2, 1436–1451 | 1439

https://BioRender.com
https://BioRender.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
speed, we estimate that the DMF device may have the following
parameters:

(1) A grid size of 100 000 by 100 000 electrodes – so 10 billion
electrodes.

(2) Droplet reservoirs or sinks at all four edges – so 400 000
total.kk

(3) The ability to load droplets onto the device at a rate of 5
kHz – so a new droplet loaded every 1/5000-th of a second, or
200 ms. Also, the ability to move droplets from electrode to
electrode across the device at the same rate.

(4) Handling of droplets that are on the order of a femtoliter
in volume.

With four edges to a square grid, symbol droplets will be
loaded onto the device from the rst edge; linker droplets from
the second edge; and various reagents from the third.
Completed genes will be loaded off the devices from the fourth
edge.

Given the target of loading 50 000 symbol droplets per
millisecond onto the chip, with a loading rate of 5 kHz we must
load 10 000 symbol droplets simultaneously every 200 ms. (We
assume that wemust also load 10 000 linker droplets and 10 000
chemical droplets simultaneously every 200 ms.) With 100 000
reservoirs containing symbols arranged along the rst edge of
the device, we assume that a symbol is loaded from 1 out 10
reservoirs every 200 ms.

DMF technology that moves droplets at this speed has been
demonstrated.48–50 However, no DMFB with millions, let alone
billions, of electrodes has been built. Undoubtedly, building
such a large DMFB is an expensive proposition. We note that
there is a trade-off between DMFB grid size and droplet speed:
the grid size required to achieve a given write speed decreases as
the speed of droplets increases. If the speed of DMF technology
improves beyond 5 kHz, the required grid size will be consid-
erably smaller.

The write speed is measured by the number of completed
storage genes produced per second (given a gene length of xed
size). We make the following assumptions:

(1) Each storage gene is assembled from 10 000 symbols.
(2) The system can assemble 10 000 storage genes

concurrently.
(3) Assembly is pipelined.***
With these assumptions, we can achieve our target write

speed of 100 MB of data per second:

1 gene=200 ms ¼ 5 genes per ms

¼ 50 000 symbols per ms

¼ 100 000 bytes per ms

¼ 100 megabytes per ms

These calculations target write speeds that would match
current hard drive technology. Of course, the premise of this
kk Droplets are loaded onto the device from reservoirs and loaded off the device
into sinks.

*** Pipelining in this context means that we do not wait until assembly of
a storage gene is complete before beginning assemble of the next. We begin
assembly of the next immediately only one time step later. As a result,
a complete storage gene is produced every time step.

1440 | Digital Discovery, 2023, 2, 1436–1451
work is that DNA storage systems could outpace improvements
in both the capacity and write speed of hard drives. This
requires scaling the parameters further. In the realm of elec-
tronics, devices with more than 10 billion electrodes are not
physically implausible. Indeed, modern microprocessors
contain tens of billions of transistors.51 There are simply too
many unknown parameters for us to provide meaningful
calculations here. Still, we postulate that a DMF device con-
taining tens or even hundreds of billions of electrodes could
achieve write speeds surpassing the capabilities of hard drives.
4 DNA assembly and droplet routing
4.1 Automated DNA assembly

There are two requirements for our DNA synthesis system:
(1) To represent arbitrary data, it must assemble DNA oligos

in any given order.
(2) To assemble DNA oligos efficiently, several strands must

be assembled simultaneously in one Gibson process, without
risking misalignment.

These two requirements are contradictory. If oligos can come
in any order, one cannot join more than two simultaneously;
they could join in the wrong order. To ensure desired ordering,
it is necessary for segments to be uniquely matched with one
another.

We resolve this contraction with a dual library of oligos we
call “symbols” and “linkers”, illustrated in Fig. 5. The symbols
allow us to represent arbitrary data when assembling them
together. The linkers allow parallelization in the assembly
process, ensuring correct ordering.

Data genes comprise long chains of alternating symbols and
linkers, with relevant information contained in the symbols
only. All symbols have unique interior segments composed of 8
base pairs, allowing each to encode 16 bits. By using multi-bit
symbols instead of assembling one base pair at a time, we
exchange much of the fabrication time for overhead in main-
taining the symbol library.

All symbols share the same beginning (le-side) and end
(right-side) sequences. The le and right ends are not
Fig. 5 An example of a linker library and a symbol library. The linker
library contains two sets of linkers: a left linker set that attaches to the
left end of a symbol, and a right linker set that attaches to the right end
of a symbol. Universal overhangs (in gray) are used to attach any linker
to any symbol. The highlighted regions of the linker sets are
complementary to each other so that they can link together specifi-
cally during a Gibson reaction. Created with https://BioRender.com.

© 2023 The Author(s). Published by the Royal Society of Chemistry

https://BioRender.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 6 A graphical representation of the symbol-linker assembly process. A set (i–iii) of three symbols are joined to two linkers each in a first
reaction. The resulting one-symbol assemblies are assembled in a second reaction into a three-symbol assembly via the linkers. The ‘+’ symbol
refers to the ‘Gibson-Move’ (transport) instruction and the ‘/’ refers to the ‘Gibson’ (assembly) instruction. Please see Section 5.1 for more
information regarding instruction codes. Created with https://BioRender.com.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
complementary, disallowing direct Gibson assembly of two
symbols. Complementary ends are shared by all linkers, but
each linker only has one end matched with those of the
symbols. The other end binds with its unique, complementary
linker. Thus, any desired chain of symbols can be assembled by
rst using Gibson assembly to separately attach each symbol to
the appropriate linkers and then bringing all attached symbol-
linker pairs together in another Gibson assembly process.

The linkers will naturally order themselves according to their
unique matches and the symbols will automatically fall into the
appropriate order. This process is demonstrated in Fig. 6.
Following assembly, the new string of symbols undergoes
purication and polymerase chain reaction (PCR).52 This
product is a storage gene that holds encoded information in its
symbols.

Any gene requiring more symbols than what can be reliably
handled by a single assembly process can be constructed by
repeated assembly processes. Now, linkers on the ends of longer
segments – each consisting of multiple symbols – specify the
order in which these should be assembled.

Assembling large data sets, consisting of millions, billions,
or trillions of symbols, will require vast numbers of individual
Gibson assembly operations. This presents a non-trivial
problem in the form of managing droplet traffic routes and
congestion. Given an arbitrary list of symbols to be encoded in
a gene, droplets must be created, destinations chosen, and
routes calculated. This multistep process necessitates an auto-
mated system capable not only of routing traffic but also
deciding what Gibson assembly operations must be performed
and when to build the desired gene.
4.2 Routing algorithm for droplet pathing

Our system routes droplet traffic to desired Gibson, PCR, and
purication sites using prioritized 3-D A*53 on the DMFB. First,
© 2023 The Author(s). Published by the Royal Society of Chemistry
generic A*54 will be explained, and then the prioritized 3-D A*
algorithm that we use will be discussed in detail.

The goal of A* is to nd the lowest cost path from point A to
point B on a given graph. A graph is a generic collection of
nodes connected via edges, and cost refers to the length of the
path. The costs of paths are calculated using two scores,
referred to as g and h scores. The g score is the cost to get to the
current node (the path already traversed), and the h score is the
distance from the current node to the end node (the path to
traverse). In general, this h score is determined via a specic
user-chosen heuristic; our implementation of A* uses
Manhattan distance. The h and g scores are added to become
the f score, or the total score for the path. Fig. 7 shows an
example of A* on two droplets moving in 2-D space. Ideally, the f
score should be as small as possible.55

Starting from point A, we look at each edge extending out
from A and calculate the f score for the surrounding nodes. The
nodes and f score are placed into an open set, usually repre-
sented as a data structure in memory. From there, paths are
extended by looking at each node in the open set, starting with
the lowest f score. The f scores for the nodes connected to the
current node are then updated and placed back into the open
set. This continues until B is reached, or it is concluded that no
path to B is available.

To contextualize this algorithm, the nodes in the graph
represent grid spaces on the DMFB, and edges indicate which
grid spaces are next to each other. In the explanation below,
point A represents a droplet's starting position while point B is
its local destination which can be one of many things. It can be
an intermediate location where the symbol and linker droplets
mix into a larger droplet. It can also be a location where Gibson
mixing occurs between the larger droplet and a Gibson mix
reagent droplet. For both situations, this target location is the
site of droplet mixing in some form.We classify the collection of
these droplets as a merge group.
Digital Discovery, 2023, 2, 1436–1451 | 1441

https://BioRender.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 7 The top table shows the f and g scores for each path at every
time step. The bottom figure illustrates 2-D A* with a simple example
of 2 droplets shown in a 2-D plane. These 2 droplets wish to mix at the
goal coordinate (2, 4). The droplet corresponding to the blue route
starts at (0, 0), and the droplet corresponding to the red route starts at
(4, 1). Both droplets must consider an obstacle located at (2, 2) while
computing routes. The blue route will be calculated first due to the fact
that it has the largest distance to the goal coordinate. The red route will
then be calculated after. The table contains both the g and h scores of
each path at each time step for the paths taken.

Fig. 8 This figure illustrates 3-D routes with a simple example for 3
droplets. These 3 droplets wish to mix at the goal coordinate (8,8). The
droplet corresponding to the blue route starts at (0,0,0), the droplet
corresponding to the red route starts at (4,0,0) and the green droplet
starts at (2,2,0). The movement of the droplet is shown by increasing
the time value (z-axis value) by 1. The A* algorithm is projected to the
3-D space, and the blue route is planned first because it has the
farthest Manhattan distance to travel. The routes are designed to avoid
unwanted collisions with each other until they reach the desired
location as no paths intersect. The merged droplet, which is bigger, is
shown in purple at (8,8,4).

Fig. 9 Diagram of the digitization of droplet shadow and occlusion
zones. A droplet centered on a grid space with relative coordinates (0,
0) has a sufficient radius to touch the four nearest neighboring grid
spaces, making five shadow blocks. All grid spaces adjacent to the
shadow blocks are designated as occlusion zones.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
We adapt the generic A* algorithm in our application to the
prioritized 3-D A* form. It is prioritized because the algorithm
tackles routing the droplet with the furthest Manhattan
distance to travel rst. It operates on 3 dimensions, with two
dimensions representing the DMFB 2-D grid layout and the
third representing time. All droplets are routed sequentially
using the 3-D A* priority scheme. All droplets must move one
grid space at a time simultaneously as all routes are planned
beforehand. The algorithm is called ND times, where ND is the
number of droplets on the grid. 3-D A* would be called once per
newly pulled droplet. Once each droplet has its route, they will
move together one time step at a time. The A* algorithm itself is
called upon every merge operation and route completion as the
resultant droplet now needs to be assigned a new route. Visu-
alization of such routing movement is shown in Fig. 8

To prevent the unwanted merging of droplets, the notion of
a droplet shadow and occlusion zone are introduced, as illus-
trated in Fig. 9. These are projected into a 3-D space such that
for ND droplets, there are 3ND occlusion zones where each
occlusion zone is present for the previous, current, and future
time steps of the droplet. Droplets that are not in the merge
group of the current droplet see the occlusion zones as obsta-
cles they must route their paths around. Since routing is
completed by taking all 3 dimensions into consideration and
before any droplet movement occurs, the obstacles are static
meaning they do not appear at random to block a droplet's
1442 | Digital Discovery, 2023, 2, 1436–1451
route. This method of routing is advantageous because it
prevents unwanted collisions from occurring while having each
droplet take the optimal path given the constraints imposed by
previously routed droplets.
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 10 Block diagram of the software modules that plan and execute
the automated gene assembly. The Compiler reads the desired input
and consults a preprogrammed chemical protocol to generate the
necessary chemical operations and properly order them. The Manager
reads the resulting instruction codes and coordinates the creation,
destination selection, and routing of droplets. The Virtual Lab provides
feedback on droplet movements to the manager.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
5 Architecture

We discuss the architecture of the soware that controls the
DMFB device. We use a modular hierarchy to solve the droplet
traffic management problem, shown in Fig. 10. At the top of the
hierarchy, we have the Compiler, which is responsible for
reading a user's desired data, in the form of a DNA storage gene
P, and breaking down the basic chemical steps that must be
performed to create it. These basic chemical steps are passed
down to the Manager, which is responsible for assigning the
droplets' destinations and issuing commands. At the bottom of
the hierarchy is the Virtual Lab, which emulates a real DMFB.
The lab houses a group of grid spaces and chemical droplet
objects, which represent their physical equivalents and behave
in similar ways within their virtual space.

Our Virtual Lab takes into account the time required for all
droplet operations, including storing and retrieving droplets
from reservoirs located at the perimeter of the grid. In our
simulations, we assume that all the chemical reactions for DNA
assembly complete in a single time step. While this assumption
may or may not be realistic, chemical reactions generally
complete quickly with femtoliter volumes. It is important to
note that this “real” time is distinct from the “runtime”
required for the 3-D prioritized A* algorithm. Of course, in the
eventual production-level device, all routing must be done in
real-time, so our routing algorithm must complete faster than
the time taken by physical droplet routing.

5.1 Assembly protocol

The system requires an assembly protocol to follow to automate
the construction of user-determined strings of DNA. This
protocol species the sequence of chemical reactions that
attaches multiple independent pieces of double-stranded DNA
to one another. An instruction produced by the protocol takes
the form of a list in the following format:

[<Instruction Type>, <droplet 1>, <droplet 2>, .]
© 2023 The Author(s). Published by the Royal Society of Chemistry
where <InstructionType> is a string. Each droplet is represented
by a list of strings in the following format:

[<reagent 1>, <reagent 2>, ., <reagent N>]

containing N reagents, although it is oen the case that N = 1.
We note that we use the ‘[]’ notation deliberately to distinguish
droplets from reagents. Droplets are represented by a list of
strings (list[str]) while reagents are simply strings (‘str’). This is
helpful when we wish to issue a “Gibson-Move” or a “Gibson”
type of command. In the case of the “Gibson-Move” instruction,
it accepts an arbitrary number of arguments of type list[str]
since it can handle a variable quantity of droplets. On the other
hand, the “Gibson” instruction accepts one list[str] because it is
designed to operate on a single droplet containing multiple
reagents.

When reading the instructions, the manager will execute
a case structure based on <Instruction Type> using component
droplets matching the descriptions given by <droplet 1>,
<droplet 2>, etc. An example instruction might be [‘Gibson-
Move’, [_S0_], [L1], [‘Gibson-mix’]], indicating that the manager
should identify three droplets containing the symbol 0, the
linker 1, and some Gibson mixing chemicals and bring them
together on a suitable Gibson site.

An example of the instruction codes for a single assembly
step using the Gibson symbol-linker protocol is given below.
This list assembles the data string S1–S0–S2, corresponding to
symbols numbered 1, 0, and 2, respectively, from the total list of
symbols available.

(1) [‘Gibson-Move’, [‘L0’], [‘_S1_’], [‘Gibson-mix’]]
(2) [‘Gibson’, [‘L0’, ‘_S1_’, ‘Gibson-mix’]]
(3) [‘Gibson-Move’, [‘L1’], [‘L2’], [‘_S0_’], [‘Gibson-mix’]]
(4) [‘Gibson’, [‘L1’, ‘L2’, ‘_S0_’, ‘Gibson-mix’]]
(5) [‘Gibson-Move’, [‘L3’], [‘_S2_’], [‘Gibson-mix’]]
(6) [‘Gibson’, [‘L3’, ‘_S2_’, ‘Gibson-mix’]]
(7) [‘Gibson-Move’, [‘L1_S0_L2’], [‘L3_S2_’], [‘_S1_L0’],

[‘Gibson-mix’]]
(8) [‘Gibson’, [‘L1_S0_L2’, ‘L3_S2_’, ‘_S1_L0’, ‘Gibson-mix’]]
(9) [‘Purify-Move’, [‘_S1_L0L1_S0_L2L3_S2_’], [‘Purify-mix’]]
(10) [‘Purify’, [‘_S1_L0L1_S0_L2L3_S2_’, ‘Purify-mix’]]
(11) [‘PCR-Move’, [‘_S1_L0L1_S0_L2L3_S2_’], [‘PCR-mix’]]
(12) [‘PCR’, [‘_S1_L0L1_S0_L2L3_S2_’, ‘PCR-mix’]]
In the list above, the rst two steps create the symbol-linker

droplet [‘_SI_L0’] through Gibson moving and mixing steps.
The rst instruction has the instruction type ‘Gibson-Move’
with three droplets containing the linker 0, the symbol 1, and
some Gibson Mix. It will move and merge the droplets to an
available Gibson site, creating a larger droplet. The second
step initiates Gibson mixing and assembly on the larger
droplet to assemble all reagents into a larger gene [‘_SI_L0’].
Likewise, steps 3 to 6 produce the droplets [‘L1_S0_L2’] and
[‘L3_S2_’]. Steps 7 and 8 take these three larger droplets and
perform Gibson assembly on them at a suitable Gibson site.
This creates the droplet [‘_S1_L0L1_S0_L2L3_S2_’]. The nal
four steps take the nal droplet to purify (clean) and to PCR
(amplify) sites to create the nal data string S1–S0–S2 held
together with linkers.
Digital Discovery, 2023, 2, 1436–1451 | 1443

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 11 Simplified diagram of a small assembly tree data structure. In
red, the leaf nodes each contain a single symbol. The root node
represents the final desired symbol sequence or gene. Non-leaf nodes
contain assembly instructions readable by the manager. We note that
the linkers between the symbols have been excluded for readability.
See Fig. 12 for more details on individual nodes.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
5.2 Compiler

The Compiler is analogous to a soware compiler which
translates user input into a set of primitive instructions. The
input consists of a list of characters representing the afore-
mentioned “symbols” such as ‘S1–S0–S2’. The job of the
compiler is to determine how to build the given DNA strand by
repeated and recursive applications of its assembly protocol.
We designate the desired nal product P, with a length of LP
symbols.

The compiler must rst determine how to construct P using
assembly operations that can combine at most NA segments
simultaneously, with the limit NA being set by the assembly
protocol. In this case, NA is the reliability margin of the symbol-
linker Gibson assembly. We employ an NA-ary data tree to store
the construction blueprint. The root node stores P. The
compiler symbolically breaks P up into NA separate segments
and stores each segment in a child node below the root. These
segments are broken up in the same way, with new nodes
storing the new, smaller segments. The tree is built from the
bottom up until the nal nodes contain segments of one symbol
in length. This abstract string-building is mimicked by the DNA
strand assembly.

Algorithm #1 and Algorithm #2 explain the algorithms for
building the assembly tree step-by-step. (We note that not all
details are included in the pseudocode given here.)

With the ordering of the tree determined, the compiler will
populate the instructions for each node by consulting the
chemical protocol and giving the strands of a node's children as
its inputs. This is outlined in Algorithm #3. This implies nodes
without children (leaf nodes) have no instructions. The result-
ing ‘assembly tree’ provides a blueprint for constructing the
nal product P. The leaf nodes, each holding one symbol, can
be read from le to right to give the individual symbols of P. The
rst layer of non-leaf contains the NA-length products of the rst
1444 | Digital Discovery, 2023, 2, 1436–1451
set of assembly operations as well as the instructions needed to
carry them out. The next layer further groups those segments in
length N2

A, and so on. The root node contains instructions for
the nal assembly of P, grouping the remaining segments
together. Fig. 11 illustrates the assembly tree data structure
used to assemble ‘S1_S0_S2_S4’ with linkers omitted. The
instruction codes for assembling ‘S1–S0–S2’, described above in
the assembly protocol subsection, are carried by the le-hand
instruction node in the graphic.

Besides encoding the organization of substrings and the
individual instructions necessary to chemically assemble P, the
nodes also interface with the manager in real-time to track the
disposition of droplets created for each node. This will be dis-
cussed in more detail below.
5.3 Virtual lab

The Virtual Lab simulates each droplet and each DMFB grid
space as independent objects in a continuous loop representing
the passage of real-time. At each time step the lab checks for any
update commands, activating or deactivating the
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 12 Detailed contents of an assembly tree node object. Three
items are carried by each non-leaf node. The data string corresponds
to the sequence of symbols and linkers produced by the node.
Instructions, a list of the requisite fluidic and chemical operations.
Droplets, a mutable hashmap of currently extant droplets being used
for instructions by this node on the virtual lab.

Fig. 13 Three single-species droplets merge, becoming a larger
droplet with mixed species. The droplet undergoes Gibson assembly,
becoming a different species.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
corresponding grid spaces, if any. Then each droplet checks its
surroundings for active grid spaces and updates its location
according to the droplet movement model. For convenience, all
droplet objects maintain references to each grid space they
currently contact, and each grid space object similarly holds
references to any and all droplets touching it. This location
update step is where the lab detects errors.

The droplets are tracked in terms of their current ‘shadow’,
which is a digitization of the droplet's shape. Assuming
a droplet is centered in the middle of a grid space, the shadow is
a list of grid space coordinates, relative to the center space,
which also touch the droplet. This is used by the manager to
determine which electrodes to use for moving the droplet. This
also allows easy calculation of an occlusion zone, the layer of
grid spaces around a droplet that is as close as possible without
touching. This layer is used as a barrier, off-limits to all other
droplets that are not intended to mix. For instance, a small
droplet that only touches the grid spaces nearest to its center in
the four cardinal directions would have a shadow S = [[0, 0], [1,
0], [0, 1], [−1, 0], [0, −1]] and an occlusion zone O = [[1, 1], [1,
−1], [2, 0], [0, 2], [−1, 1], [−2, 0], [−1,−1], [0, −2]] as shown in
Fig. 9. As droplets merge and grow, their shadows and occlusion
zones increase commensurately. During routing, a droplet's
shadow and occlusion zone are projected both forward and
backward in time by one step to ensure no undesired mixing
can happen.

5.4 Manager

With a simulated lab to house the droplets and a compiler to
provide the basic mix and merge instructions, there is one nal
task. The instructions must be translated into actual commands
for the lab to execute. This entails selecting reservoirs from
which to pull droplets of appropriate types, choosing destina-
tions for them, and determining routes that will see them to
their destinations without any unwanted misadventures along
the way. This is the manager's job. The manager interfaces with
the assembly tree and the lab. It runs in a loop matching the
lab's time steps, providing new commands at each step while
© 2023 The Author(s). Published by the Royal Society of Chemistry
also tracking long-term progress toward each assembly node's
instructions.

The manager must be able to track the droplets in the lab,
knowing their locations and contents at each step. It is useful to
reference droplets by their contents rather than location since
this allows easymatching of droplets to instructions that call for
specic reagents. Fig. 13 visualizes the changes in droplet
references aer merging and performing Gibson assembly.

We now have a complete description of the information
contained in the node objects. As shown in Fig. 12, they contain
immutable data and instruction values consisting of the
symbol-linker representation of the DNA strand they construct
and the instructions used to build it. They also contain
a mutable dictionary of droplet objects which changes
throughout the manager-lab time loop.

The manager runs in a loop lock-stepped with the lab,
maintaining a list of active nodes drawn from the assembly tree
and stepping through their instructions in parallel. It also
creates a list of lab commands which begins each iteration
empty, lls up during the node advance and droplet routing
steps, and is subsequently passed to the lab for execution. For
each iteration, it runs four processes in order as shown in
Algorithm#4. Initially, the active nodes list consists of all the
lowest level non-leaf nodes.

When checking node progress, the system evaluates the
node's current instruction list and its droplet's location and
sees if the node is ready to move to the next instruction. If the
node is ready to advance its instructions, it will check the
instruction codes and advance to the next instruction.

Aer nishing with the nodes, the manager checks for
droplets that have been newly assigned to destinations and
Digital Discovery, 2023, 2, 1436–1451 | 1445

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 14 Image of the simulation's GUI displaying droplets being routed
in a 40 × 40 size grid. The number of full command execution rounds
is shown at the top as the lab time.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
those that could not be routed during the last iteration. The
manager attempts to plan a route for each of these.

The manager's routing algorithm uses the 3-D prioritized A*
method discussed above in Section 4.2. Droplets are organized
into ‘merge groups’, which are collections of droplets that are
seeking to combine into one conglomerate. All routes that are
generated obey the following anti-collision constraint that
applies to any two droplets dx and dy of different merge groups.
Any grid space occluded by dx until time ta may not be over-
shadowed by dy during any time tb such that ta $ tb.

With priority given to merge groups containing droplets with
the farthest Manhattan distance to travel, all selected droplets
are routed one at a time using a 3-D A* graph traversal. Two of
the dimensions represent the virtual–or physical–DMFB grid
layout, while the third is time.

For each droplet d the router takes droplet shadow Sd and
occlusion zone Od into account at every step, projecting them
into the 3-D space. These zones are off-limits for other droplets
during their own routing phase. This includes droplets that will
be routed during this or any future time steps. The space is
initially free of occlusion zones when the highest-priority
droplets are routed and becomes more populated as the other
droplet routes are lled in. Of course, there may also be occlu-
sion zones generated by the routing phase in the previous time
step, which all droplets during this time step must avoid
regardless of their priority level. There will be at most 3ND

occlusion zones present on the grid at a given time, where ND is
the total number of extant droplets. This is because each droplet
generates occlusion zones for its most recent, current, and
immediately subsequent steps to satisfy the anti-collision
constraint. This routing method allows many droplets to
move simultaneously while avoiding unwanted collisions.
Furthermore, each individual droplet takes the optimal path
within the constraints given to it by the droplets higher in the
priority queue and the droplets routed during previous time
steps.

We note that the modularity of the systemmakes it relatively
easy to implement a different routing scheme. Incorporating
more advanced electrowetting technology, which would allow
for more exible movement, would only require the redesign of
the routing subroutine itself, leaving the other parts of the
soware to function as normal. One possible redesign to
routing is to make it contamination aware.56 Another possibility
includes incorporating the algorithm “Moving Target D* Lite”,57

which has been shown to be effective in problems where
obstacle occurrences appear dynamically over time.

Aer planning routes for all droplets, the manager performs
the movement of droplets according to the instructions and
routes that have been set up. Aer these steps are complete, one
loop iteration is concluded.

6 Results and discussion
6.1 Simulation results

Having presented the soware architecture for our automated
DNA assembly system, we now present simulation results. We
note that our simulation does not incorporate physical latencies
1446 | Digital Discovery, 2023, 2, 1436–1451
present with DMFBs such as the electrode switching rate58 and
the delay with mixing operations.59 Accordingly, a comparison
of runtimes with other DNA synthesis technology is speculative,
at best.

In our simulation, we wish to evaluate the impact of
computer hardware, virtual lab grid size, and target gene length
on our system's performance. We draw conclusions about their
impacts on the system's runtime. The simulated DMFB system
for DNA assembly was written in Python. Fig. 14 displays
a snapshot of the simulation's GUI displaying routed droplet
movement in real-time. Additionally, benchmarking results
were captured to better understand the distribution of function
workload and the limitations of the current model.

6.1.1 Grid size results. The program's performance was
evaluated across a range of grid sizes on a single machine. Here,
we used machine 3. With respect to grid size, runtime respon-
ded quadratically (Fig. 15a), memory usage responded linearly
(Fig. 15b), and CPU usage responded constantly (Fig. 15c). For
very large grid sizes, RAM availability will become the limiting
factor to affect runtime as a linear increase in grid size yields
a linear increase in peak RAM usage. Once peak RAM usage
nears the maximum available RAM, performance will deterio-
rate substantially. The CPU metrics do not have much impact
on the runtime when sweeping across large grid sizes as they
continue to consume the entirety of one thread.

We comment on the relationship between grid size and
runtime. When the grid dimension, i.e., the length along one
side, is increased from n to (n + 1), the number of locations
available on the grid increases by (n + 1)2 − n2 = 2n + 1. Thus,
there is a linear relationship between the number of available
locations and the grid dimension.

However, the impact on runtime is more complex. Assume
we are choosing several start and destination pairs on a n by n
grid. The number of possible pairs on such a grid is

n2

2

!
¼ n2ðn2 � 1Þ

2
z

n4

2
: (1)
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 15 Runtime vs. grid size (a). The runtime of the simulation synthesizing a gene of length 5 was captured for grid axes lengths of 500 to 1500.
There is a clear quadratic increase in runtime with a linear increase in grid size. Peak RAM usage vs. grid size. (b) The peak RAM usage (in GiB) of
the simulation synthesizing a gene of length 5 was captured for grid axes lengths of 500 to 1500. There is a clear linear increase in memory
consumption with a linear increase in grid size. Average CPU usage vs. grid size. (c) The average CPU usage of the simulation synthesizing a gene
of length 5 was captured for grid axes lengths of 500 to 1500. For all grid sizes, an average of 99% of a single thread was consumed. Because the
machine has 16 threads, the results showed slightly less than 6.25% of CPU used across all grid sizes. There is no meaningful impact on CPU
usage from changed grid sizes.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
Accordingly, an exhaustive search of all possible pairs means
that the algorithm would have an O(n4) dependence on the grid
dimension. However, our algorithm is heuristic, not exhaustive.
Fig. 15a suggests that the runtime dependence on the grid
dimension is approximately quadratic.

6.2 High impact functions

The open-source visualization soware Gephi was used to
record the runtimes of the simulation's local functions over
three trials. The trials were chosen such that as the problem size
increased, the congestion remained constant. In the context of
these trials only, congestion is computed as the total number of
droplets pulled from reservoirs divided by the number of total
grid points. The exact simulation input parameters are dis-
played in Table 2.

In these trials, the functions advance and Route_Droplets
were identied as methods of interest. The lab's function
advance computes an entire time step of the simulation.
Advance iterates over the grid points and droplets multiple
times in order to update their contents. The manager's function
Route_Droplets computes the routes for droplets that have yet
Table 2 Table 2 local runtime trials. The table illustrates the rationale
behind the parameters used in each trial displayed in Fig. 16. The
parameters for these trials were chosen such that the local runtimes of
the simulation's functions could be examined as the problem size
increases, but the congestion remains constant. In this situation,
congestion is measured as the ratio of the total number of droplets
pulled from reservoirs to the number of grid points. Droplet counts
and grid sizes are discrete, thus the congestion is only approximately
constant

Trial Grid size Gene length Droplets Congestion

1 50 2 9 0.00360
2 76 4 21 0.00364
3 96 6 33 0.00358

© 2023 The Author(s). Published by the Royal Society of Chemistry
to be routed with the prioritized 3-D A* routing algorithm. The
proportion of the total runtime spent computing each function
is shown in Fig. 16. As the problem size increases, advance's
proportion of runtime increases. The proportion of the time
consumed by Route_Droplets also increases as the problem size
increases, overtaking the combined runtime of all other
subroutines. In the last trial, it is evident that these two func-
tions will dominate the share of the simulation's runtime as
larger, more realistic input parameters are chosen. It may be
inferred that the computation of advance on an exponentially
Fig. 16 Runtime distribution bymajor function. This data was obtained
by running the simulation at an approximately constant congestion
ratio. Here the congestion ratio is the total number of droplets pulled
from reservoirs divided by the number of grid points. The approximate
constant congestion ratio used was 0.0036 droplets gridsize−2 which
was chosen by convenience. The parameters for these trials are shown
in 2.

Digital Discovery, 2023, 2, 1436–1451 | 1447

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
increasing input tends to be slower than the computation of the
prioritized 3-D A* routing algorithm on a linearly increasing
number of pulled droplets.

Improving the runtime of advance is worth attention in
future work. This task is difficult as it requires an optimized
approach to iterating over all grid points and droplets. Addi-
tionally, this is a function that runs on the simulated lab, and it
is likely the speed of advancing droplets on a real DMFB will be
different. The simulation may benet in runtime by considering
alternatives to the prioritized 3-D A* routing algorithm used in
Route_Droplets. Currently, the algorithm considers all possible
routes for each droplet; however, there may be room for
improvement by implementing methods that return an
acceptable suboptimal route while only evaluating a fraction of
the input space. Finding an acceptable suboptimal route for
problems that can face a lot of congestion and time consump-
tion has been studied by literature and shown to be effective in
similar situations.60,61 These algorithms dene an acceptable
threshold for a path to be executed and then create the route
once a path is found that meets the threshold limit.
6.3 Limitation testing

This section explains the input spaces of interest where the
program may face serious bottlenecks or failures at a high level.
The inputs used to test the simulation specify a random gene
consisting of 5 symbols at the expected grid size of 1000 × 1000
grid points. When the input grid size exceeded this grid size the
program's runtime increased beyond practicality, taking over an
hour to synthesize the gene routing about 30 droplets.

On the other hand, the program fails when grid sizes are
small enough to generate considerable congestion. Within the
context of the simulation, when the grid size becomes smaller
than 40 × 40, given all other default parameters, there are
issues with synthesis due to droplet congestion. A gene of
length 5 pulls a total of 29 droplets as shown in Fig. 17, and all
Fig. 17 Max Concurrent droplets vs. total droplets. This data was
obtained by running the simulation at a constant grid size of 45 × 45
over a range of gene lengths two to twelve. The number above each
point represents the gene length. The vertical axis displays the
maximumnumber of droplets recorded on the chip during the entirety
of the simulation while the horizontal axis displays the total amount of
droplets pulled from reservoirs to synthesize the gene.

1448 | Digital Discovery, 2023, 2, 1436–1451
of these droplets need to be routed without causing collisions.
In these situations, droplet paths may be blocked long enough
to trigger a timeout where the synthesis of the gene is no longer
pursued.

Aside from grid size, the number of reaction sites (Gibson,
purication, PCR) can limit runtime and potentially cause
timeout from congestion if very few of these sites exist on the
chip. Moreover, there is a limited amount of chemistry sites the
DMFB will allow due to its physical grid size. The number of
reaction sites the DMFB contains depends on its physical grid
size. Additionally, the number of reaction sites cannot exceed
the number of possible reaction site locations.
6.4 Congestion testing

Fig. 18 shows a visualization of multiple droplets being routed
to a Gibson site. The yellow squares represent the shadow of
a droplet and the blue squares are their occlusion zones. We
display the paths of various droplets shown as gray squares to
indicate these as “no-go” zones for other droplets. To other
droplets, these gray squares are temporarily forbidden from
crossing to avoid contamination of the droplet as it may pick up
debris from a previously routed droplet, which is undesirable.
Of course, this issue is hardware specic, but it is considered
a constraint in our simulation and therefore contributes to
congestion calculations.

The program can time out under conditions of extreme
congestion. This may occur for a number of input
Fig. 18 Image of the simulation's GUI displaying droplets being routed
in a 45 × 45 size grid at a gene length of 10 with additional droplet
information visualization. The number of full command execution
rounds is shown at the top as the lab time, and the congestion as
a value out of 100 is shown. Congestion is computed as the sum of
routed (gray), shadowed (yellow), and occluded (blue) grid points
divided by the total number of grid points. Here, congestion of 3.259
means 3.259% of the total available lab squares are occupied with gray,
yellow, and blue squares. The green arrows indicate the direction of
path traversal for each droplet. The gray squares are included in
congestion calculations as they are counted as used grid space for
droplet routes. Congestion, in this sense, is a broad description of the
simulated lab's congestion as a whole. Routed grid points are included
in the calculation to indicate routing congestion for the prioritized 3-D
A* algorithm. This figure was edited using https://Biorender.com.

© 2023 The Author(s). Published by the Royal Society of Chemistry

https://Biorender.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Fig. 19 Total droplets vs. Max Congestion. This data was obtained by
running the simulation at a constant grid size of 45 × 45 over a range
of gene lengths two to twelve. The number above each point repre-
sents the gene length. The vertical axis displays the total congestion
and the horizontal axis displays the total amount of droplets pulled
from reservoirs to synthesize the gene. The relationship between the
number of pulled droplets and the maximum congestion is approxi-
mately linear.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
combinations, most notably when the grid size becomes too
small. In these cases, there may be too few reaction sites, or too
many droplets (as a consequence of synthesizing a long target
gene). Any combination of these factors may lead to a situation
where droplet paths are blocked and progress cannot be made.
The simulation then times out and the synthesis of the target
droplet is abandoned.

To analyze congestion, the program was run on a range of
gene lengths of two to twelve on a single machine at a constant
grid size (45× 45). For each gene length, the number of droplets
pulled, the maximum number of concurrent droplets, and the
grid's maximum congestion were recorded. Congestion is
computed as the number of routed, inhabited, and occluded
Fig. 20 Total droplets vs. runtime. This data was obtained by running
the simulation at a constant grid size of 45 × 45 over a range of gene
lengths two to twelve. The number above each point represents the
gene length. The vertical axis displays the total congestion and the
horizontal axis displays the runtime of the simulation. The relationship
between the number of pulled droplets and runtime is approximately
exponential.

© 2023 The Author(s). Published by the Royal Society of Chemistry
grid points divided by the total number of grid points. The
number of droplets pulled is directly related to the length of the
target gene. In Fig. 17 and 19, data points are labeled with their
gene length for reference. As the total number of droplets
increases (due to increasing gene length) the maximum number
of concurrent droplets and maximum congestion increase
linearly. Analyzing runtime again but in the context of conges-
tion, we see that as the number of total droplets pulled from
reservoirs increases, the runtime increases approximately
exponentially (Fig. 20).

7 Conclusions

Ever since Watson and Crick rst described the molecular
structure of DNA, its information-bearing potential has been
apparent to computer scientists. In principle, DNA could
provide a storage medium that is many orders of magnitude
denser than conventional media. Spurred by the biotech and
pharma industries, the technology for both sequencing
(reading) and synthesizing (writing) DNA has progressed
rapidly. Nevertheless, a large gap remains between what is
theoretically possible in terms of reading/writing speed and
what has been demonstrated in practice. The industrial partner
in this research, Seagate, is developing a digital microuidic
device to close the gap.

This paper discusses our strategy for DNA synthesis with this
device and proles the soware that will control it. DNA storage
units called “genes” are assembled from smaller DNA frag-
ments. A key innovation is the use of a dual library of DNA
fragments: “symbols” and “linkers.” Data is conveyed through
the sequence of nucleotides in the symbols. Linkers, attached to
the ends of symbols, determine in what order these symbols will
link together. The linkers allow parallelization in the assembly
process: multiple symbols can be linked together in the same
droplet on the digital microuidic device, with the linkers
assuring that they hybridize in the correct order. This paral-
lelism in synthesis is the key to achieving the write speeds
needed for a DNA storage device to compete with existing
systems that use magnetic, optical, or solid-state media.

The digital microuidic device that Seagate is building will
be on a scale far greater than any built with this technology
today. The soware to control it has to route thousands of
droplets across this grid to assemble the target DNA genes. We
discussed the architecture of the soware that we developed for
this task and presented simulation results proling its perfor-
mance. The core of the soware is the routing algorithm:
a prioritized 3-D A* algorithm, with two of the dimensions
being the x-y coordinates of the electrodes, and the third being
time.

We found when grid size was swept from 500 × 500 to 1500
× 1500, it was seen that runtime grew exponentially, RAM usage
increased linearly, and CPU usage remained constant. The
majority of the runtime was spent advancing node instructions
and moving droplets while time spent routing droplets with the
3-D A* algorithm was relatively less.

In future work, we plan to explore routing on the device
under conditions of extreme congestion, that is to say when
Digital Discovery, 2023, 2, 1436–1451 | 1449

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
droplets occupy nearly all the available electrodes. The simu-
lation must be parameterized with congestion in mind; factors
such as grid size, number of reaction sites, and gene length
inuence grid congestion and consequently runtime. It might
be advantageous to incorporate algorithms designed for
memory management if peak RAM becomes the limiting factor
for large grid sizes. Algorithms like A* and Moving Target D*
Lite are heuristic-based. They will nd the shortest path under
given constraints. However, they do not consider the search
time and memory requirements necessary to nd such a path.
There exists a family of algorithms called Conict-Based Search
(CBS) which help prune unnecessary branches of the search tree
in order to manage memory and improve speed. Conict-based
searching might be particularly efficient if the problem is
formulated in terms of multiagent path nding.62–64

Finally, this paper did not consider the process of reading
data stored in DNA (i.e., sequencing it). With current tech-
nology, reading DNA is orders of magnitude more efficient than
writing it, so the impetus is to focus on improvements in write
speed. In future work, we will prototype and report experimental
results on the complete system: a digital microuidic device for
writing DNA at a high speed to compete with existing solid-state
storage media.
Data availability

The manuscript is accompanied with a versioned archive
available on Zenodo (DOI: 10.5281/zenodo.260063) and Github.
Please follow the link to access the archive directly: https://
zenodo.org/record/8260063. Instructions to use this are
included in the README.md le located in the top level
directory of this repository.
Author contributions

A. Manicka is the primary author. A. Stephan designed and
implemented the soware and also contributed substantial
portions of the text. S. Chari analyzed and improved the core
algorithms for droplet routing. G. Mendonsa devised the
synthesis procedure with symbols and linkers, along with
colleagues at Seagate. She also contributed the background
material on Gibson assembly. P. Okubo performed soware
testing on the system. J. Stolzberg-Schray wrote the description
of the A* routing algorithm. A. Reddy and M. Riedel were the
principal investigators for the project. All authors have
contributed to the writing of this article.
Conflicts of interest

There are no conicts to declare.
Acknowledgements

We would like to thank Matthew Boros and Hershen Nair for
their comments and edits that greatly improved the manu-
script. This work was funded in part by the National Science
1450 | Digital Discovery, 2023, 2, 1436–1451
Foundation's Division of Computing and Communication
Foundations, grant #2227578.

References

1 J. Li, R. J. Stones, G. Wang, X. Liu, Z. Li and M. Xu, Reliab.
Eng. Syst. Saf., 2017, 164, 55–65.

2 IDC, Worldwide Global DataSphere Forecast, 2021–2025: The
World Keeps Creating More Data—Now, What Do We Do with
It All?, US Pat., 46410421, 2021.

3 C. Mellor, Zettabyte Era Brings Archiving Front and Center,
2022, https://blocksandles.com/2022/07/11/zettabyte-era-
brings-archiving-front-and-center/.

4 IDC, Worldwide Global StorageSphere Forecast, 2021–2025: To
Save or Not to Save Data, That Is the Question, US Pat.,
47509621, 2021.

5 J. Monroe and R. Preston,Market Trends: Evolving Enterprise
Data Requirements—How Much Is Not Enough?, Gartner Inc.,
2020.

6 E. Leproust, Data Centers Are Unsustainable. We Need to Store
Data in DNA, 2022.

7 G. Church, Y. Gao and S. Kosuri, Science, 2012, 337, 1628.
8 Barracuda Fast SSD: Compact Portable SSD with USB-C:
Seagate US, https://www.seagate.com/products/external-
hard-drives/barracuda-fast-ssd/.

9 A. El-Shaikh, M. Welzel, D. Heider and B. Seeger, NAR:
Genomics Bioinf., 2022, 4, lqab126.

10 L. Ceze, J. Nivala and K. Strauss, Nat. Rev. Genet., 2019, 20,
456–466.

11 L. M. Adleman, Science, 1994, 266, 1021–1024.
12 D. Soloveichik, G. Seelig and E. Winfree, Proc. Natl. Acad.

Sci., 2010, 107, 5393–5398.
13 H. Jiang, M. D. Riedel and K. K. Parhi, 2013 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD),
2013, pp. 721–727.

14 S. A. Salehi, H. Jiang, M. D. Riedel and K. K. Parhi, IEEE
Trans. Mol. Biol. Multi-Scale Commun., 2015, 1, 249–264.

15 J. D. Watson and F. H. Crick, Cold Spring Harbor Symp.
Quant. Biol., 1953, 123–131.

16 K. Chen, J. Zhu, F. Bošković and U. F. Keyser, Nano Lett.,
2020, 20, 3754–3760.

17 G. D. Dickinson, G. M. Mortuza, W. Clay, L. Piantanida,
C. M. Green, C. Watson, E. J. Hayden, T. Andersen,
W. Kuang, E. Graugnard, R. Zadegan and W. L. Hughes,
Nat. Commun., 2021, 12, 2371.

18 A. Meares, K. Susumu, D. Mathur, S. H. Lee, O. A. Mass,
J. Lee, R. D. Pensack, B. Yurke, W. B. Knowlton,
J. S. Melinger, et al., ACS Omega, 2022, 7, 11002–11016.

19 M. Hepisuthar, et al., Turk. J. Comput. Math. Educ., 2021, 12,
3635–3641.

20 Y. Erlich and D. Zielinski, Science, 2017, 355, 950–954.
21 M. Jain, H. E. Olsen, B. Paten andM. Akeson, Genome Biol.,

2016, 17, 1–11.
22 E. Leproust, Data Centers Are Unsustainable. We Need to Store

Data in DNA, 2022.
23 W. Guo, S. Lian, C. Dong, Z. Chen and X. Huang, ACM

Trans. Des. Autom. Electron. Syst., 2022, 27, 1–33.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://zenodo.org/record/8260063
https://zenodo.org/record/8260063
https://blocksandfiles.com/2022/07/11/zettabyte-era-brings-archiving-front-and-center/
https://blocksandfiles.com/2022/07/11/zettabyte-era-brings-archiving-front-and-center/
https://www.seagate.com/products/external-hard-drives/barracuda-fast-ssd/
https://www.seagate.com/products/external-hard-drives/barracuda-fast-ssd/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

3
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d
on

 1
1/

7/
20

25
 4

:2
9:

56
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
24 S. De Munter, A. Van Parys, L. Bral, J. Ingels, G. Goetgeluk,
S. Bonte, M. Pille, L. Billiet, K. Weening, A. Verhee, et al.,
Int. J. Mol. Sci., 2020, 21, 883.

25 I. M. Mackay, K. E. Arden and A. Nitsche, Nucleic Acids Res.,
2002, 30, 1292–1305.

26 E. R. Firmansyah, S. U. Masruroh and F. Fahrianto, 2016
6th International Conference on Information and
Communication Technology for The Muslim World (ICT4M),
2016, pp. 275–280.

27 J. Yao, C. Lin, X. Xie, A. J. Wang and C.-C. Hung, 2010
Seventh International Conference on Information Technology:
New Generations, 2010, pp. 1154–1158.

28 O. O. Martins, A. A. Adekunle, O. M. Olaniyan and
B. O. Bolaji, Sci. Afr., 2022, 15, e01068.

29 N. Goldman, P. Bertone, S. Chen, C. Dessimoz,
E. M. LeProust, B. Sipos and E. Birney, Nature, 2013, 494,
77–80.

30 R. N. Grass, R. Heckel, M. Puddu, D. Paunescu and
W. J. Stark, Angew. Chem., Int. Ed., 2015, 54, 2552–2555.

31 J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig
and K. Strauss, Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2016, pp. 637–649.

32 M. Blawat, K. Gaedke, I. Huetter, X.-M. Chen, B. Turczyk,
S. Inverso, B. W. Pruitt and G. M. Church, Procedia Comput.
Sci., 2016, 80, 1011–1022.

33 F. Su, W. Hwang and K. Chakrabarty, Proceedings of the
Design Automation & Test in Europe Conference, 2006, pp. 1–6.

34 T. Xu and K. Chakrabarty, Proceedings of the 44th Annual
Design Automation Conference, 2007, pp. 948–953.

35 Y. Zhao and K. Chakrabarty, IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., 2012, 31, 242–254.

36 K. Bohringer, IEEE International Conference on Robotics and
Automation, 2004, pp. 1468–1474.

37 H. Tsung-Wei and T. Ho, IEEE International Conference on
Computer Design, 2009, pp. 445–450.

38 J. Juárez, C. A. Brizuela and I. M. Mart́ınez-Pérez, Inf. Sci.,
2018, 429, 130–146.

39 C.-H. Liu, H.-H. Chang, T.-C. Liang and J.-D. Huang, 2013
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2013, pp. 615–621.

40 S. J. Lehotay and J. M. Cook, J. Agric. Food Chem., 2015, 63,
4395–4404.

41 F. Perut, D. Dallari, N. Rani, N. Baldini and D. Granchi,
Curr. Pharm. Biotechnol., 2016, 17, 1079–1088.

42 F. Mugele and J.-C. Baret, J. Phys.: Condens.Matter, 2005, 17,
R705.
© 2023 The Author(s). Published by the Royal Society of Chemistry
43 B. F. Bender, A. P. Aijian and R. L. Garrell, Lab Chip, 2016,
16, 1505–1513.

44 R. B. Fair, Microuid. Nanouid., 2007, 3, 245–281.
45 D. Millington, S. Norton, R. Singh, R. Sista, V. Srinivasan

and V. Pamula, Expert Rev. Mol. Diagn., 2018, 18, 701–712.
46 Y.-T. Yang and T.-Y. Ho, Front. Chem., 2021, 9, 676365.
47 D. G. Gibson, L. Young, R.-Y. Chuang, J. C. Venter,

C. A. Hutchison and H. O. Smith, Nat. Methods, 2009, 6,
343–345.

48 E. Y. Basova and F. Foret, Analyst, 2015, 140, 22–38.
49 J.-u. Shim, R. T. Ranasinghe, C. A. Smith, S. M. Ibrahim,

F. Hollfelder, W. T. Huck, D. Klenerman and C. Abell,
ACS Nano, 2013, 7, 5955–5964.

50 D. Li, Y. Cao, B. Huang, M. Han, X. Wu, Q. Sun, C. Zheng,
L. Zhao, C. Ma, H. Jin, et al., Langmuir, 2021, 37, 1297–1305.

51 D. Etiemble, 2022, preprint, arXiv:2206.03201, DOI:
10.48550/arXiv.2206.03201.

52 C. R. Newton, A. Graham and J. S. Ellison, PCR, BIOS
Scientic Publishers, Oxford, UK, 1997.

53 J. Wang, Z. Wu, M. Tan and J. Yu, IEEE Trans. Syst. Man
Cybern. Syst., 2019, 51, 2904–2915.

54 M. G. Bell, Transp. Res. B: Methodol., 2009, 43, 97–107.
55 Z. Zhang, J. Wu, J. Dai and C. He, IEEE Access, 2020, 8,

122757–122771.
56 T.-W. Huang, C.-H. Lin and T.-Y. Ho, 2009 IEEE/ACM

International Conference on Computer-Aided Design-Digest of
Technical Papers, 2009, pp. 151–156.

57 X. Sun, W. Yeoh and S. Koenig, Proceedings of the 9th
International Conference on Autonomous Agents and
Multiagent Systems: volume 1, 2010, vol. 1, pp. 67–74.

58 Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan,
V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell
and M. G. Pollack, Anal. Chem., 2010, 82, 2310–2316.

59 T. Loveless, J. Ott and P. Brisk, Proceedings of the 18th ACM/
IEEE International Symposium on Code Generation and
Optimization, 2020, pp. 171–184.

60 Y. Liu and L. Zhu, 2018 International Symposium on
Networks, Computers and Communications (ISNCC), 2018,
pp. 1–5.

61 S. Katoch, S. S. Chauhan and V. Kumar, Multimed. Tools.
Appl., 2021, 80, 8091–8126.

62 Z. Ren, S. Rathinam and H. Choset, IEEE Trans. Autom. Sci.
Eng., 2022, 20, 1262–1274.

63 J. Li, Z. Chen, D. Harabor, P. J. Stuckey and S. Koenig,
Proceedings of the AAAI Conference on Articial Intelligence,
2022.

64 P. Pianpak and T. C. Son, 2021, preprint, arXiv:2109.08288,
DOI: 10.4204/EPTCS.345.24.
Digital Discovery, 2023, 2, 1436–1451 | 1451

https://doi.org/10.48550/arXiv.2206.03201
https://doi.org/10.4204/EPTCS.345.24
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00083D

	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform

	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform

	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform

	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform

	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform

	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform

	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform
	Automated routing of droplets for DNA storage on a digital microfluidics platform

