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Global environmental issues and sustainable development call for new technologies for fine chemical
synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional
organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins
with admirable biocatalytic functions. The recent development of deep-learning based structure prediction
methods such as AlphaFold?2 reinforced by different computational simulations or multiscale calculations has
largely expanded the 3D structure databases and enabled structure-based design. While structure-based
approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of
potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era
for accelerated predictions. Here, we review the approaches and applications of structure-based and
Received 29th February 2024 machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on
DOI: 10.1039/d4cs00196f effectively employing enzyme design approaches integrating traditional molecular simulations and machine
learning, and the importance of database construction and algorithm development in attaining predictive ML
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1. Introduction

Over the past decade, enzyme biocatalysis has become a
promising alternative to traditional chemical transformations
for the sustainable production of valuable chemicals such as
biofuels and pharmaceuticals’ and hence has attracted
increasing attention from both academia and industries. In
order to meet the requirements of large-scale industrial pro-
duction, new biotechnologies have been developed to discover
novel enzymes or optimize existing enzyme biocatalysts to
improve their catalytic activities, substrate specificity, selectivity,
stability, etc.” The success of structure-based enzyme design
strategies has been exemplified in numerous cases in rational
design, semi-rational design and de novo design. However, it
remains challenging to design novel biocatalysts for specific
reactions by navigating the vast protein fitness landscape.
Recently, machine learning has emerged as an efficient strategy
to harness the available data, accelerating the discovery of enzyme
biocatalysts and enabling the accurate prediction of mutation
sites to achieve biocatalysts with desirable properties.®™°

1.1 Structure-based enzyme design

The semi-rational enzyme design approach is based on the
prior knowledge of enzyme structure and function to navigate
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models to explore the sequence fitness landscape for the design of admirable biocatalysts.

the vast theoretical sequence space by screening a small
sequence library generated from random mutagenesis or tar-
geted mutagenesis.'’ Efficient procurement of mutant variants
with the desired functionalities may be achieved by construct-
ing smart mutant libraries and employing appropriate experi-
mental or computational high-throughput screening
methods.'®™* Rational enzyme design requires detailed knowl-
edge of the enzyme’s mechanism of action, e.g. how it binds to
substrates and catalyzes reactions, to guide enzyme engineer-
ing for improved or altered function. In addition to mutations
based on existing natural sequences, the functional enzymes
can be designed from scratch through pre-construction of
catalytic sites and selection of protein scaffolds, followed by
atomistic simulations."™"’

Structure-based enzyme design requires the identification
of active sites and substrate binding pockets, however, many
enzymes of interest lack resolved structures, and their
sequences often exhibit low homology with the known pro-
teins with available crystal structures, making homology
modeling unsuitable for obtaining reasonable starting
structures. In the past few years, deep-learning based
protein structure prediction tools such as AlphaFold2'® and
RoseTTAFold"® have shown great success in predicting pro-
tein 3D structures. Ligand binding mode and the dynamic
properties of protein complexes can be further explored by
using molecular docking and molecular dynamics simula-
tions. The functions and catalytic mechanisms of enzymes
are highly intricate, and are dependent on binding affinities

This journal is © The Royal Society of Chemistry 2024


https://orcid.org/0000-0001-9063-8056
http://crossmark.crossref.org/dialog/?doi=10.1039/d4cs00196f&domain=pdf&date_stamp=2024-07-11
https://rsc.li/chem-soc-rev
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cs00196f
https://pubs.rsc.org/en/journals/journal/CS
https://pubs.rsc.org/en/journals/journal/CS?issueid=CS053016

Open Access Article. Published on 11 July 2024. Downloaded on 2/20/2026 6:28:45 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review Article

of the substrates and the reaction kinetics of the enzymes.
Hybrid molecular mechanics and quantum mechanics (QM/
MM) enable the prediction of enzyme-catalyzed reaction
kinetics. It is worth noting that structure-based enzyme
design requires advanced knowledge in molecular modeling
and is also computationally prohibitive for screening a large
database to identify the enzyme sequences with desirable
functions.

1.2 ML-accelerated enzyme design

In the era of big data, enzyme sequence and structural and
functional data have been accumulated and shared at an
unprecedented pace. This provides a wealth of information
resources for machine-learning guided enzyme design by learn-
ing the inherent patterns from data to make predictions.
However, the surge in data also brings about the challenge of
efficiently harnessing the data to generate generalized ML
models to make accurate predictions for accelerating the
design of enzymes with improved properties.>* >

In this review, we summarize the techniques and applica-
tions of computer-aided enzyme design using molecular simu-
lation approaches and machine learning techniques. We also
provide our perspectives on effective enzyme design through
the synergetic combination of molecular simulations, machine
learning and experimental validations.
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2 Computer-aided enzyme design
tools and applications
2.1 Enzyme modelling methods

2.1.1 Molecular modeling. The rationale of structure-based
enzyme engineering is that the structures of enzymes dictate
their functions. Designing biocatalysts with admirable func-
tions, or optimizing specific catalysts to achieve improved
catalytic efficiency, selectivity or stability often requires an in-
depth understanding of the relationship between their struc-
tures and functions. For this, accurate acquisition of enzyme
structures is essential.

Compared with the vast protein sequence space in nature
(with over 244 million protein sequences in the UniProt
database® as of May 2024), the number of protein structures
is much smaller (with over 220 thousand structures in the
Protein Data Bank®!). Currently characterized structures only
account for less than 10% of the total protein sequences, and
the capability of structure characterization largely lags behind
that of sequence acquisition (Fig. 1a). Experimentally determin-
ing the three-dimensional structure of a protein is a costly and
time-consuming process and some proteins are highly flexible,
which makes structural determination even more challenging.
When the 3D structures of proteins are not available, computa-
tional methods become powerful tools in predicting protein
structures based on their sequences.
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Fig.1 Molecular modeling in enzyme engineering. (a) Growth rate of the data in the Protein Data Bank and UniprotKB/TrEMBL database. (b) Protein
modeling approaches. (c) Modelled structures for a new sesquiterpene synthase JeSTS4 using different protein modeling approaches.?> HM*: homology
model was built using the crystal structure of the sesquiterpene synthase Copu9 from coniophora puteana (PDB: 7OFL?®) as a template (sequence
identity: 25%); ab initio models were built using I-TASSER and Alphafold2, respectively. (d) Modelled structures for the Ga98 variants®’ with three

progressed single mutations using ColabFold.

2.1.1.1 Traditional modeling methods. When 3D structures of
proteins are not available, computational methods have shown
their power in predicting protein structures based on their
sequences.>® Structure prediction approaches can be classified
into template-based modeling represented by homology
modeling and protein threading, or template-free modeling
(ab initio modeling)*® (Fig. 1b).

For sequences that share certain homology with crystal
structures, their homology models can be built using tools
such as Modeller®® and Swiss-Model.**

For sequences with low sequence identity to known crystal
structures, the fold recognition method (e.g. protein threading)
can be used to predict structures by matching the query
sequence directly onto the 3D structures of other solved
proteins.

For sequences with no structural similarity to any solved
proteins, ab initio modeling can be used to predict protein
structures from scratch.

In principle, the global lowest energy conformation of a
protein can be obtained using molecular simulations. In 1998,
molecular dynamics simulations (MD simulations) disclosed a
marginally stable folded conformation during the folding pro-
cess of a 36-residue peptide,®* marking the first simulation-
based ab initio modeling. Due to the demanding computational
cost, it is impractical to predict full length protein structures
using simulation-based ab initio modeling.

8204 | Chem. Soc. Rev,, 2024, 53, 8202-8239

Currently, most of the ab initio protein structure prediction
tools are composite approaches that combine fold recognition,
structure assembly, and structure refinement. For example, I-
TASSER developed by Zhang lab* utilizes protein threading to
identify similar structural motifs from the structure database,
to assemble the well-aligned motifs. For the unaligned regions,
Monte Carlo based modeling is used to predict the structure. In
Rosetta developed by Baker,** the target sequence is segmented
into a consecutive window of three or nine residues and its
structure is predicted by selecting fragments that are then
assembled by a Monte Carlo strategy to construct the structure.

2.1.1.2 Deep learning-based structure prediction methods.
AlphaFold1®® secured the top ranking in the CASP13 free
modeling (FM) category.*® AlphaFold1 extracts co-evolutionary
information and employs neural networks to generate residue
contact maps, which are then used to predict protein
structures.

In contrast, AlphaFold2"® employs a completely new archi-
tecture, differing significantly from previous methods which
relied on residue contact maps to indirectly predict protein
tertiary structures. The approach to predict protein structures is
to learn the three-dimensional structure of proteins directly
from their amino acid sequences, a so-called ‘“‘end-to-end”
learning method. AlphaFold2 has significantly advanced the
development of “end-to-end” structure prediction, wherein the

This journal is © The Royal Society of Chemistry 2024
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3D structures of proteins are directly predicted using the multi-
ple alignment of sequences of homologues as the input.
DeepMind’s AlphaFold2 achieved remarkable performance in
the CASP14 competition,®” showcasing the accuracy and speed
in predicting protein structures for the majority of the test
cases. It utilized a so-called ‘Evoformer’ neural network block,
which allows the exchange of information between the evolu-
tional MSA and the spatial residue pair distances. The Evofor-
mer network is followed by a structure module which produces
the coordinates of each composition residue with the iterative
refinements of local structures fulfilled by a novel equivariant
transformer method. The constructed 3D structures are then
relaxed using the OpenMM>® with the Amber99sb force field.*

During the preparation of this review, DeepMind recently
released AlphaFold3*® and provided a server for structure
prediction (https://www.alphafoldserver.com). Compared to
AlphaFold2, AlphaFold3 can predict ligand-receptor interac-
tions. It simplifies the Evoformer algorithm and evolved into
the Pairformer algorithm (by reducing the number of blocks)
and adds a diffusion model after the Pairformer to predict the
atom coordinates directly. However, there are still some limita-
tions of AlphaFold3: firstly, the success rate of predicting
complex structures with ligands is significantly lower than that
of apo-protein; secondly, there is an insufficient accuracy in
predicting ligand chirality during benchmark tests; and thirdly,
there is a probability of substantial atomic clashing between
subunits in multimer structures. Additionally, the AlphaFold3
server currently only supports the prediction of binding sites
for dozens of common ligands/co-factors and ions, without
support for custom ligands.

Additionally, inspired by AlphaFold2 and also serving as an
improvement upon it, ColabFold*' combines the fast homology
search function of MMseqs2** with AlphaFold2, and acceler-
ated the prediction speed. AF-cluster®® samples multiple pro-
tein conformations on protein energy landscape by clustering
MSA based on sequence similarity, which allows exploring the
protein functions associated with different conformations.

Another recent implementation of deep learning in protein
prediction is RoseTTAfold." RoseTTAfold also used the proper-
ties extracted from MSA and contact maps as the inputs for
“end-to-end” prediction, but it utilized a three-track neural
network architecture which allows the information retrieved
from 1D sequences, 2D maps and 3D structures communicated
via the transformer and attention mechanism and hence
achieved accurate prediction of protein structures.

The large language model ESMFold developed by Meta AI is
able to predict protein structures one magnitude faster with
comparable accuracy, so it can be used for protein structure
prediction for metagenomic proteins and it generated ESM
Metagenomic Atlas database containing over 600 million
proteins.**

The development of Alphafold2 has significantly expanded
the reservoir of the 3D protein database. The AlphaFold Protein
Structure Database created jointly by DeepMind and EMBL’s
Bioinformatics institute (EMBL-EBI) contains over 200 million
predicted proteins from human proteomes and 47 other

This journal is © The Royal Society of Chemistry 2024
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proteomes, which are free for public to download individually
or via Swiss-Prot interface.

The sequence of a protein determines its structure, which in
turn, determines its function. However, sequences lacking
similarity may also exhibit similar catalytic sites.”® Benefiting
from the above structure prediction tools, the 3D predicted
structures in the sequence database have been greatly enriched.
Ali Al-Fatlawi et al. showed that AlphaFold2 was able to uncover
structures with similar core structural elements, whereas
BLAST was unable to identify these similar structural features
due to a lack of significant sequence similarity.*>*” Although
protein structure search methods have shown great potential,
sequence search methods such as BLAST still have advantages.
For example, sequence alignment using BLAST is more suitable
than structure alignment for structures containing more dis-
ordered regions.

Alphafold2 provides a reasonable starting point for enzyme
design. For example, for a novel class I terpene synthases from
moss Jungermannia exsertifolia,”® the low sequence identifi-
cation (25%) with the template resulted in an poor homology
model, particularly for the prediction of a key loop region 106-
201 around the catalytic site, for which the corresponding
structure is absent in the template. In contrast, the loop region
was better defined by utilizing I-Tasser witch ab initio modeling
and was further refined by AlphaFold2 (Fig. 1c).

Mutagenesis in enzyme engineering often only involves
single or few mutations but could cause significant impact on
enzyme structures and functions. Understanding the impact of
structural changes caused by point mutation would accelerate
the optimization of enzymes. However, it remains a matter of
debate whether ab initio models are sufficiently accurate to pick
up the effect of point mutations on local structural change. For
instance, the ability of AlphaFold in predicting the effect of
single mutations on protein stability (AAG) and function was
evaluated and little correlation was observed between the
parameters derived from enzyme structures predicted by Alpha-
Fold and the experimentally measured changes in protein
stability or fluorescence levels.*® Whereas another research
indicated that AlphaFold2 was able to predict the effect of
single mutations on local structural deformation for a large
range of proteins, using the measure of effective strain (ES).*’
AF-cluster®® also demonstrated to be able to predict the con-
formational transition caused by point mutations in the case of
KaiB from Rhodobacter sphaeroides.

These recent deep learning-based protein prediction meth-
ods can soon be widely applied in protein structure predictions.
An interesting example was for predicting the structures of a
designed chameleon protein Ga98 and its three variants with
progressed single mutations. The NMR structures of the four
proteins have been reported,?” and exhibit transitions between
monomeric and folds, so were compared with the predicted
structures. Parui et al. utilized ESMFold, AlphaFold2, and
ColabFold to predict these structures,’® and ColabFold showed
the best performance for the prediction of Ga98 among all,
although it failed to predict the correct fold for GB98-T25I
(Fig. 1d). The “AF-Cluster” method was able to accurately

Chem. Soc. Rev., 2024, 53, 8202-8239 | 8205


https://www.alphafoldserver.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cs00196f

Open Access Article. Published on 11 July 2024. Downloaded on 2/20/2026 6:28:45 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chem Soc Rev

predict the structure of GB98-T25I but failed to predict the
structures of Gb98 and GB98-T25I/L20A correctly.*?

Structure prediction tools can serve as initial points for
structural and functional analysis of enzymes, however careful
inspection has to be conducted for the structure model
obtained. Moreover, understanding the subtle mutation effects,
particularly single mutations on enzyme properties such as
enhanced stability or activity requires more precise structural
simulations and sampling.

2.1.2 Molecular dynamics simulations

2.1.2.1 Classical MD simulation method. In structure-based
drug discovery, protein targets are usually treated as fixed to
allow large scale virtual screening to identify potential hits, by
evaluating the binding affinities of small ligands in the binding
pocket of the drug target, which can then be processed for
bioassay. However, in biocatalysis, due to the promiscuity of
enzyme’s catalytic pocket induced by mutations or ligand
binding, it is inappropriate to neglect the dynamic conforma-
tions of enzymes, which cannot be obtained by experimental
X-ray, NMR or the ab initio models. Molecular dynamics pro-
vides an effective way to describe the dynamic properties of
enzymes at the atomic level to interpret their functions.>" The
development of molecular dynamics (MD) methodology tai-
lored for biological macromolecules such as GROMACS,>>
AMBER,” CHARMM® and OpenMM®® and acceleration of
simulations by graphics processing units (GPU) on high-
performance computing (HPC) has enabled accurate and fast
prediction of protein structures as well as the binding modes of
protein-ligand or protein—protein interactions.

CHARMM is one of the most widely used MD software
packages and the CHARMM force field has been developed
along with the software since the 1980s.”> A user-friendly
graphic interface CHARMM-GUI’® was developed to prepare
the input of simulations interfaced with widely used MD
simulation packages such as CHARMM, GROMACS, AMBER and
OpenMM. GROMACS™ is known for its highly optimal computing
efficiency and open-source code and has become one of the most
popular MD software packages for biomacromolecules. It is inter-
faced with different forcefields including AMBER99SB,*
CHARMMS36,”” GROMOS™® and OPLS-AA/M.>*®® Benchmark stu-
dies on the commonly used MD simulation packages showed that
GROMACS was optimal for biomolecular simulations of medium-
sized systems at the microsecond level.*®> The AMBER package®
includes the AMBER simulation software with the AMBER force-
field. The program assembly package AmberTools is freely acces-
sible and convenient for preparing the input and result analysis.
The input filed generated by AmberTools can also be converted by
third-party scripts such as ParmEd (https://github.com/ParmEd/
ParmEd) and acpype (https://github.com/alanwilter/acpype) so as to
be readable by other MD software packages like GROMACS. Other
efforts have been reported to automate the process of preparing the
AMBER inputs and conducting result analysis.®> OpenMM™® is an
open-source MD simulation package with a layered and modular
architecture, making it easily integrable with other applications. It
is highly extensible, allowing for the implementation of various

plugins.
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2.1.2.2 Enhanced sampling methods. Depending on the soft-
ware, hardware and molecular system, the timescale of MD
usually ranges from tens to hundreds of nano seconds. It has
been demonstrated by a number of MD simulation case studies
that the properties of protein-ligand complexes can be cap-
tured using simulations at the nano second time scale. How-
ever, it is difficult to observe large conformational changes for
enzyme complexes e.g. from the reactant to product states of
the enzyme by traditional MD simulations, because high energy
barriers need to be overcome for the transitions between
different conformations to take place, making it challenging
to extensively sample free energy landscape.

Potential of mean force (PMF)*' is a modern statistical
method commonly used to characterize the energetics of tran-
sitions in biomolecules. However, it is impractical to compute
PMF directly from MD simulations because of the large config-
urational space of proteins and also a large energy barrier along
the reaction coordinate. Various sampling techniques have
been developed to effectively and accurately compute PMF.
An effective technique in enhanced sampling to gain large-
scale conformational changes is enhanced sampling®® includ-
ing the umbrella sampling method,®® metadynamic method,®”
accelerated molecular dynamics method (AMD)®® and replica
exchange molecular dynamics, REMD.®’

Umbrella sampling®® is one of the most widely used
enhanced sampling methods in MD.”® The conformations
between the thermodynamic states are sampled in a set of
umbrella windows along the reaction coordinate &. At each
window ¢; (i = 1,2,3...N), MD simulations are conducted with a
bias potential (umbrella potential) added to restrain the system
around a narrow space around ¢&; so as to enable more efficient
conformational sampling in this region.

The bias potential is usually calculated using a harmonic
function

(1)

where k; is the force constant.

The free energy at the position ¢; is calculated with the bias
potential added onto the unbiased total energy of the state U(R),
which is a function of the coordinate R

U = UR) + V() @)

For each umbrella window, the probability distribution P{&)
along the reaction coordinate is represented by an umbrella
histogram #,(¢). The weighted histogram analysis algorithm
(WHAM) is a widely used technique in umbrella sampling to
calculate PMF from the histogram, to resume the unbiased free
energy profile by umbrella integration to obtain the complete
free energy landscape along the minimum free energy pathway.

Umbrella sampling is traditionally combined with the post-
analysis process. Following the MD runs for a number of biased
window simulations, the neighbouring overlapping windows
are combined, which allows the system to transit from one
conformation state to another and generate the free energy over
a large range of reaction coordinates. Adaptive umbrella

This journal is © The Royal Society of Chemistry 2024
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sampling”" constructs a good biasing potential to counterba-
lance the free energy barrier, so as to allow self-consistently
determining the bias potential with less human intervention to
achieve a uniform distribution.

Metadynamics is also a bias potential-based metho
Bias potential is placed on the Hamiltonian of the system thus
the system would skip the transition barrier provided the
growing bias potential counterbalances the transition barrier.
This strategy can escape local minimum and allows for navigat-
ing free energy landscape as a function of a few collective
variables (e.g. bond to be formed or broken, bond angle or
dihedral) related to enzyme-catalyzed reactions with acceler-
ated sampling. The choice of independent collective variables is
crucial for those reactions for which prior knowledge of reac-
tion coordinates is not available.®”

Both umbrella sampling and metadynamics methods
require prior knowledge on the degree of freedom for the
motion of interest, based on either reaction coordinates or
collective variables. The accelerated molecular dynamics
method (aMD) does not need prior knowledge of potential
energy wells or saddle points to explore the rare events that
are related to the reaction. A bias potential is added to the true
potential such that it is easier for the system to escape from the
potential well and move from one low-energy basin to another.
This strategy accelerates the sampling of the conformational
landscape while converging to correct probability distribution.
Replica exchange molecular dynamics based on a replica-
exchange method (REM) also does not need knowledge of
reaction coordinates. It generates an ensemble consisting of
multiple copies (replicas) at different temperatures, and the
copies are exchanged to overcome high-energy barriers so as to
effectively explore the transitions among different states and
conformational space.

These enhanced sampling methods have largely sped up the
conformational sampling, however, they may still be slow
processes while sampling irrelevant states so that not suitable
to be used to refine the large scale predicted ab initio models.
The Bayesian-based modeling employing limited data
(MELD)”*”> method applies restraints to incorporate data in
MD simulations with coarse physical insight, which harnessed
weak information and generated multiple-funnel landscape,
and sped up the sampling by up to five orders of magnitude.
Recently, MELD combined with REMD (MELD x MD) was
employed to predict the ab initio models of Ga98 and its
variants (Fig. 1d)*° and accurately predicted all of the four
structures.

The advancement of deep learning algorithms has also
contributed to the development of enhanced sampling
techniques.”®”” For example, Tao et al developed a deep
learning enhanced adaptive sampling method that can predict
larger conformational changes efficiently.”® Tiwary et al. devel-
oped an enhanced sampling method that combined
AlphaFold2 with deep learning enhanced MD to generate a
collection of Boltzmann-weighted protein conformations from
sequences, using the structures predicted by AlphaFold2 as the
initial inputs.””®*® Combining deep learning with statistical

4.72.73

This journal is © The Royal Society of Chemistry 2024

View Article Online

Chem Soc Rev

mechanics, Noé et al. developed an adaptive sampling method
that generated unbiased equilibrium samples of protein con-
formations using Boltzmann generators initialized by meta-
stable states, without the need of prior knowledge of reaction
coordinates.®

2.1.2.3 Binding free energy calculations. The catalytic effi-
ciency of enzyme biocatalysts is dependent on both the thermo-
dynamic binding free energy and reaction kinetic activation
energy of the enzymes. The binding affinities of substrates in
enzymes can be estimated by binding free energy calculations.
The commonly used methods are MM/PB(GB)SA.%>"%*

In MM/PB(GB)SA, the MD simulation is run for the system
solvated in a periodic box with water and counterions. Then the
binding free energy between the enzyme and its substrate can
be calculated for MD simulated structures processed by strip-
ping the solvent and counterions, according to eqn (3):

AGBinding = Ggs — Gg — Gg (3)

where E denotes the enzyme and S the substrate. In turn,
AGgindging can also be represented as eqn (4):

AGBinding =AH — TAS = AEMM + AGSO] - TAS (4)

Here, AH represents the binding enthalpy and —TAS
accounts for the conformational entropy change upon ligand
binding. AH can be decomposed into different terms: the gas
phase free energy contributions AEy (eqn (5)) and the solva-
tion free energy contributions AGs (eqn (6)).

AEMM = AEbond + AEangle + AEdihedral + AEele + AEvdW

()

In eqn (5), AEym includes the internal energy (AEpond,
AE;ngie and AEgjhedral), €lectrostatic contribution (AEc) and
van der Waals contribution (AE,qw).

AGsol = AGpol + AGnon-pol = AGPB/GB + AGnon—pol

(6)

In eqn (6), the solvation energy can be decomposed into
electrostatic term AGp,, and non-electrostatic term AGnon-pol-
The PB and GB models estimate the polar component of the
solvation. AGpg/gg is calculated with the electrostatic compo-
nent calculated using the Poisson-Bolzmann equation or the
generalized Born model.

The nonpolar free energy AGhonpol is proportional to the
molecule’s total solvent accessible surface area (SASA), with a
proportionality constant y derived from experimental solvation
energies of small non-polar molecules (eqn (7)).

AGron-pol = 7SASA + b @

To decide the minimum free energy pathways between
states of an enzymatic system, the free energy pathway can be
explored by umbrella sampling breaking down the distance
along the reaction coordinates into a series of very small
coupling parameter 4 (4 varies from 0 to 1). MD simulations
are run at the fixed reaction coordinates along the reaction
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pathway and then the free energy change at each point is
calculated by integrating the mean values of the derivatives

(eqn (8)).
o[ e

Another class of methods is alchemical methods, where
binding free energy is estimated by the statistical analysis of
the simulated thermodynamic pathway between two end states.
Free perturbation (FEP)* and thermodynamic integration
(T1)°*®*® methods are commonly used alchemical methods to
explore the enzyme conformation landscape. In free energy
perturbation (FEP),*> the free energy difference between two
states of a system is calculated using eqn (9).

AG; = ~RTIn{e- -7 ©)
2

where the triangular brackets denote an average of thermo-

dynamic windows over a MD simulation run for state A.

In thermodynamic integration (TI),** the free energy
difference between two states is calculated by the integration of
the ensemble average of the derivative of Hamiltonian with
respect to A at different A values for alchemical reaction pathways.

These robust free energy methods are accurate in principle
but require extensive sampling from long MD simulations.
They have been combined with conformational sampling tech-
niques such as umbrella sampling and alchemical simulations
to speed up the calculations.

2.1.3 Quantum mechanics and multiscale simulations.
The catalytic efficiency of enzymes is not only dependent on
the binding free energies of reactants, but also the reaction
barriers of the -catalytic reactions. Quantum mechanics
(QM) and hybrid QM/MM methods are commonly used to
evaluate the reaction mechanism of enzymes, with the initial
structures taken from either crystal structures or MD simulated
structures.

2.1.3.1 QM cluster method. In the QM cluster method, the
active site of the enzymes is calculated by QM methods most
commonly density functional theory and the remainder of the
enzyme is fixed and treated using the continuum solvent with
dielectric constant ¢ = 4 to reduce the computing cost. The QM
region is usually composed of the substrates, cofactors, metals
and interacting residues with side chains truncated. The
method is usually applied using different sized models; a
smaller model to quickly explore possible reaction pathways,
and a larger model to study the environment of the active site.®”
With the increasing computing power, QM can contain more
than 300 atoms nowadays.*®

QM-Cluster methods optimize only truncated active site
models, eliminating the degree of freedom of the region
beyond the active site and hence reducing the complexity of
the sampling problem. However, during the geometry optimi-
zation of a QM cluster model, geometric constraints have to be
introduced to avoid the deformation of the active site in
absence of the full protein environment. Dasgupta et al.

8208 | Chem. Soc. Rev,, 2024, 53, 8202-8239

View Article Online

Review Article

proposed to apply a harmonic confining potential to the
terminal atoms (“anchor atoms”) of the QM model, rather
than using fixed- atom constraints adopted in traditional QM-
cluster methods. This approach improved optimization effi-
ciency and robustness in locating the transition states,®” and
would be particularly useful for those enzymes with large
conformational change during the reaction process involving
notable entropic effects.

It is usually impossible to achieve reliable kinetic and
thermodynamic results by calculating a small QM cluster
model. A “maximal” QM cluster model with a residue inter-
action network of the entire protein was developed and pro-
vided reliable results.*> QM methods have similar computing
costs to QM/MM calculations and are popular to those who are
only interested in the overall reaction mechanism; however,
they may generate different conformations compared to those
predicted by QM/MM methods.

2.1.3.2 QM/MM method. Hybrid quantum mechanics/mole-
cular mechanics (QM/MM) methods combine accurate QM
methods to study the reactions and classical MM force field
methods to capture the conformational energetics and have
been widely used to study enzyme-catalyzed reactions.’**° The
starting structures can be obtained either from experimental
X-ray or NMR structures or reliable molecular modeling followed
by proper sampling from multiple replicas of MD simulations.

Additive QM/MM is a popularly used scheme based on the
following equation:

Erotal = Eqmr,r) T EMMm(r) T Eom/MMm(r,r)

The effect of the MM region on the QM region is
calculated using either electrostatic embedding or mechanical
embedding. For accurate QM/MM studies, the polarization
effect of MM estimated using the Drude oscillator (DO) model
is insignificant for enzyme systems that involve no significant
charge transfer.'® Appropriate choice of the QM region in the
QM/MM calculations is crucial for attaining meaningful
results.

Bim et al. recommended a mechanism-based practice for
predicting the mutation effect on enzyme kinetics,'®" which
was in good agreement with the experimental value. It com-
bined QM/MM and QM, where QM/MM is used to optimize the
geometries of reactants, transition states, intermediates and
products and QM is used to estimate the energies.

2.1.3.3 QM/MM MD method. QM cluster and QM/MM meth-
ods are suitable for exploring the potential energy surface of
reactions. Since the enzymatic reaction process involves con-
formational dynamics, a combination of QM/MM and MD can
be employed to extensively sample the potential energy surface.
However, QM/MM MD simulations are computationally very
expensive because the QM energy and forces are computed
from a converged SCF at every step. For example, a QM/MM MD
simulation with a QM region containing 49 atoms, using B3LYP
density functional with the 6-31G* basis set and on an NVIDIA
V100, can achieve only 1.86 ps per day.'** The scalable QM/MM
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MD calculation framework MiMiC'*® enables running several
ps per day in a single simulation using thousands of standard
CPU cores.

Alternatively, a less expensive semiempirical method has
been adopted in QM/MM MD to reduce the computing cost. For
example, the PM3 semiempirical method was employed in a
steered QM/MM MD in the hydride transfer mechanism study
of zinc-dependent hydrogenase/reductase.'**

The steered QM/MM MD method'®® has been used to study
the enzymatic reactions at an affordable time scale. This
method applies harmonic forces on selected atoms to the
reaction mechanism along the reaction coordinate and has
been used for the design of industrial catalysts such as
glycosyltransferases,'°® o-transaminase,'®” and MHETase.'®

In enzyme engineering, it is useful to know the binding free
energy contribution from individual residues. Recently, an
ab initio QM/MM"*® method was reported to obtain the electro-
static, polarization and van der Waals contributions from each
residue to the activation barrier, as well as the contributions
from different collective variables along the reaction coordinate
to explore the possible reaction mechanism. This was achieved
through a mean force integration along the free energy pathway
and the reaction coordinate by analyzing the MD simulation
trajectories.

For tutorial and practical guidance on the QM cluster, QM/
MM and QM/MM MD multiscale simulations on biomolecules,
we recommend reading recent reviews.''*'"?
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2.2 Enzyme design applications

There are perennial challenges in enzyme design to identify the
active site related to the reaction mechanism and fine-tune
enzymes to improve their properties. The enzyme fitness land-
scape describes the relationship between the enzyme variants
and fitness, which measures how well a given enzyme can
perform a target function (Fig. 2a). However, the potential
protein sequence space is vast, necessitating effective strategies
to search through it and identify sequences with desired
functions. Common strategies include random mutagenesis,
semi-rational design, rational design, and de novo design.

Random mutation is conducted when structures are not
available and is often combined with high-throughput screen-
ing. Hence, we will not discuss this strategy in our review.
Compared to high-throughput screening, rational and semi-
rational enzyme design strategies demonstrate significant pro-
mise due to their reduced cost and efficiency.

The semi-rational design strategy is based on structures and
prior knowledge of enzyme functions. It constructs small
libraries by performing site-directed mutagenesis on several
specific residues, which are identified around the catalytic site
of the enzyme.

Rational design strategies typically utilize molecular model-
ing and structural sampling methods to explore enzyme-sub-
strate binding modes. Additionally, dynamic structures are
considered through molecular dynamics simulations and the
reaction mechanism is explored by employing quantum

e) De novo design
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Fig. 2 Enzyme design approaches. (a) The fitness landscape map of an enzyme shows the relationship between different variants of an enzyme and their
fitness (such as catalytic efficiency, thermal stability, substrate specificity, etc.). Each variant corresponds to a point on the map and the height of the point
represents the fitness of the variant. (b) Directed evolution mimics the natural evolution process to improve the function of proteins through multiple
rounds of random mutation, screening and selection. (c) In the semi-rational design approach, the key sites identified based on enzyme structures are
mutated with saturation mutagenesis to improve the enzyme function. (d) In the rational design approach, the sites identified based on the dynamic
structures and catalytic mechanism of enzyme are mutated to improve protein function. (e) De novo design methods are used to construct protein

backbones from scratch to generate protein structures with new functions.
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mechanical calculations, thereby greatly reducing the search
space on the fitness landscape.

Both semi-rational and rational approaches focus on mod-
ifying natural enzymes to alter or confer new catalytic func-
tions, while de novo enzyme design strategies aim to generate
novel enzymes usually by incorporating the active site of the
reaction into a simplified artificial protein scaffold.

There are many structure-based enzyme design/engineering
studies. Here we focus on recent computer-aided enzyme
design cases that were guided by semi-rational and rational
design strategies to improve the enzyme properties, such as
enhancing enzyme’s activity, controlling regio- or enantio-
selectivity preferences, broadening substrate scope and altering
enzyme function.

2.2.1 Improving activities. Crystal structures can serve as a
basis for semi-rational design strategies. Several studies have
reported the successful application in enhancing enzyme cata-
lytic activity by combining site-directed mutagenesis. For exam-
ple, based on the X-ray solved crystal structure and docking
studies of Leucine dehydrogenase (LeuDH, EC 1.4.1.9), which
can catalyze o-keto acids and free ammonia to produce a-amino
acids, Mu et al. selected 6 key residues and mutated them
into hydrophobic residues of different sizes for pocket
reshaping."”® The designed variants with double mutations
increased the catalytic efficiency toward the natural and non-
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natural substrates. Based on the crystal structure of flavin-
dependent halogenase, Chaiyen et al. engineered the inter-
mediate (HOX) transfer tunnel that connects two active sites,
as a result, to reshape the tunnel, so that the engineered
enzyme showed the improved catalytic efficiency (Fig. 3a).""

Multichemical state analysis (MCSA) is an enzyme design
method developed for the redesign of enzymes with multiple
substrates. Large structure ensembles were abstracted from MD
simulation to model each of the chemical states, and library
design was performed by sub-designs comprising overlapping
subsets of the total designed positions, thus the sequence space
was explored effectively. The enzyme sequences were optimized
and a ranked list, which is based on Boltzmann-weighted
sequence energies averaged over the structural ensembles,
was used to generate a position probability matrix (PPM) for
each sub-design. Screening a designed small combinatorial
library for aminotransferase gave promising variants with up
to 200-fold improvement in catalytic efficiency.'®

In the absence of a crystal structure, different modeling
methods can be used to generate enzyme structures. Qin et al.
constructed the structure of r-lysine hydroxylase from Niastella
koreensis (NKLH4) through homology modeling and achieved a
24.97-fold increase in activity for 1-lysine by employing semi-
rational combinatorial active-site saturation test (CAST) on four
positions.*"”

b) Structure modelling
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Fig. 3 Hotspot region identification in semi-rational design approaches. (a) Engineering the tunnel (shown in green) passing through the FADH ™ binding
site and the tryptophan binding site. The structure is produced based on the crystal structure of flavin-dependent halogenase (FDH) (PDB ID: 7CU2). (b)
Structural modeling of Wild Type JeSTS4 by |-Tasser and AlphaFold2. (c) The two hotspot regions were identified for JeSTS4 by combining coevolution
and the structural information obtained from MD simulations. Reproduced with permission.2> Copyright 2022, American Chemical Society.
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For proteins with low sequence homology with any possible
templates, AlphaFold2 offers significant advantages over tradi-
tional modeling by using deep learning to predict protein
structures. For example, a novel class I terpene synthase
discovered from Jungermannia exsertifolia for bicyclogerma-
crene synthesis shares a low sequence identity with any
enzymes. AlphaFold2 outperformed traditional modelling, par-
ticularly in loops near the active site>® (Fig. 3b). Guided by
structural information along with co-evolution analysis, we
identified two hotspot regions (Fig. 3c¢) and mutations resulted
in a significant increase in conversion. Furthermore, based on
the structure of glutamate dehydrogenase (GluDH) predicted
from AlphaFold2, Yang et al. designed the A145G/P144A/V143A
mutant, which expanded the substrate binding pocket and
exhibited a remarkable increase in catalytic activity towards
bulky substrates.'*® In another research, a thermostable P450,
CYP175A1 was engineered by tunnel engineering the hot spot
residues identified by MD simulations, leading to improve-
ments in hydroxylation activity and regioselectivity of the
enzyme.''® Many other successful semi-rational design strate-
gies by reshaping of active sites have been employed to enhance
the catalytic efficiency of enzymes, just to name a few ADH
enzymes, >*"*" P450 enzymes,">>'** and PET hydrolase,"* etc.

Rational enzyme design strategies are based on an under-
standing of enzyme structure-function relationships to predict
potential mutations with desired properties. Reasonable recon-
struction of the residue interaction network of the active site,
including hydrogen bonds, salt bridges, hydrophobic interac-
tions and other interactions formed between the substrate and
the enzyme active site residues, can influence the enzyme
catalytic processes (substrate binding, transition state stabili-
zation, and product release). Mutation or substrate binding
usually induces conformational change of enzymes. In rational
design strategies, the dynamic conformations of enzyme
should be considered.

Local conformational changes introduced by remote muta-
tions of remote site residues may propagate into the active site
so as to affect enzymes’ catalytic efficiency, specificity and
substrate scope by reshaping the active site pocket. Mutating
a second sphere residue caused the conformational change of
adjacent loops as disclosed by MD simulations, which resulted
in different preferences of stereo-regio selectivity by the
reshaped binding pocket."*® Directed evolution of P450LA1
catalyzed the oxidation of arylalkene to produce ketone pro-
ducts with high activity and enantioselectivity. MD simulations
disclosed the distal mutations resulted in a packed and rigid
active site compared to the WT with increased dynamic net-
works, i.e. the dynamic interaction between distal residues and
their surrounding residues, which preorganized the active site
favourable for the carbocation intermediate."*®

Flexible loops are often observed in enzymes serving as the
lid of the active site. Manipulating the loop conformational
dynamics has become a powerful strategy in enzyme engineer-
ing to regulate enzyme functions."”” The effect of distal loop
fluctuation on enzyme properties is yet to be known, which
brings out the challenge to identify distal loops for enzyme

This journal is © The Royal Society of Chemistry 2024
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engineering. Recently, a remote flexible loop of a transglutami-
nase was identified from MD simulations and the mutants were
generated by saturation mutagenesis of the residue using
Rosetta enzyme design, among which two mutants were iden-
tified with increased activity and thermostability."®

Quantum mechanics methods enable precise modeling of
the electronic structure of enzyme-catalyzed reactions. Through
QM/MM calculations, key information such as -catalytic
mechanisms, transition state structures, and reaction pathways
can be revealed to help understand the functional mechanism
of enzymes. Computational simulations of the phosphoryl
transfer catalyzed by bimetallic phosphatase of the flavobacter-
ium (PafA) enzyme showed that the mutation of the second-
sphere residues modulated binding of the charged substrate
rather than the transition state. Additionally, the cumulative
mutations modulated the level of hydration of active sites and
water-mediated H-bond networks and hence resulted in
increased catalytic efficiency."?® From MD simulations followed
by QM/MM calculations, we disclosed that the regioselectivity
and activity of a PA50BM3 variant IV-H4 for the hydroxylation of
terpenoid artemisinin were originated from the control of the
substrate entrance by a hydrogen bond to adopt an open
conformation so that it demonstrated different regioselectivity
from other variants."*°

For multi-domain enzymes, mutation of interface residues
can be guided by the structure of the multimer and it impacts
the enzyme’s catalytic efficiency and specificity. Based on the
crystal structure of B-amino acid dehydrogenases (AADH), the
substrate binding pocket is located at the dimeric interface of
the enzyme. The E310G mutations combined with A313Y
achieved increased enzyme activity by 200-fold in the asym-
metric synthesis of (R)-B-homomethionine'*"***(Fig. 4).

2.2.2 Controlling stereoselectivity and regioselectivity. One
of the outstanding advantages of enzymes is their potential for
stereoselectivity in the production of high-value-added chiral
compounds. Semi-rational design strategies based on steric
preference have been used to improve enzyme stereoselectivity.

Ene-reductases are flavin proteins from the old yellow
enzyme family (OYEs) that catalyze the asymmetric hydrogena-
tion of alkenes to give chiral products and are of great interest
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Fig. 4 Engineering interface residues for enzymes with multiple domains.
Engineering the interface residue E310 into small glycine in B-amino acid
dehydrogenase would create additional space, thereby expanding the
substrate spectrum.
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to industry.'*® Based on the crystal structure and homology
models of variants, the preference toward the admirable (R)-
enantioselectivity was achieved for both E- and Z-citral isomers,
by only introducing one or two mutations for a NADPH-
dependent OYE enzyme OYE3."*" Site-directed mutagenesis
based on the crystal structural analysis of two stereocomple-
mentary OYE enzymes GsOYE and BfOYE4 gave stereodivergent
products.***

Cytochrome P450 enzymes are a superfamily of enzymes
that are important for the synthesis of complex bioactive
molecules such as natural products and drug metabolism.
Based on the crystal structure, the regioselectivity of P450
BM3 was tailored to give hydroxylated derivatives at different
positions of a sesquiterpene lactone compounds parthenolide
(PTL) and micheliolide (MCL)."**"*” Based on the analysis of
the crystal structures of two P450 enzymes IkaD and CftA, it was
suggested that the structural difference at the polar moieties of
the two enzymes accounts for the regioselectivity and chems-
electivity for PoTeM,"*® and the regioselectivity of a P450
enzyme IkaD for a polycyclic tetramate macrolactams (PoTeM)
ikarugamycin was altered by fine-tuning the catalytic pocket.'*®

In the search for stereocomplementary serine lipase CALB,
all four stereodivergent variants of serine lipase CALB were
obtained by only screening an ultra-small variant library con-
structed based on the MD simulated structures preferable to

Bulge M/
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the four respective stereoisomer products.’** By employing a
workflow combining Rosetta enzyme design and MD
simulation-based free energy ranking, Delgado-Arciniega et al.
introduced 6-8 simultaneous mutations in a ketoreductase and
altered the enantioselectivity. They experimentally character-
ized only four variants and found three variants exhibited
inverted enantioselectivity in the reduction of acetophenone-
like substrates and an o-keto ester, significantly reducing the
experimental screening workload."*°
Based on the substrate binding mode of wild type cyclohex-
anone monooxygenase (WT-CHMO) studied from MD simula-
tions, we found that the substrate is sandwiched between the
top or bottom of the binding site featured by two residues F434
and L437 (Fig. 5a). A single mutation at either position led to a
complete reversal of enantiopreference towards 4-alkyl and 4-
phenyl substituted cyclohexanones.'*' However, there is still
room for further improvement in reversing the enantioselec-
tivity for cyclohexanone with short substituents like a methyl or
ethyl group. Therefore, we designed the F4341/L437A/T435L
triple mutation to reconstruct a smaller binding pocket and
achieved complete reversal of enantiopreference for cyclohex-
anone with short substituents.'**> Furthermore, we found that
replacing F279, located in the second sphere near the active site
and forming hydrophobic interactions with F434, with a larger
residue like tryptophan, would achieve a marked improvement

$441-5444 »
P440
2

Fig. 5 Mutations of Baeyer-Villiger monooxygenases (BVMOs) for improved properties. (a) Single mutation at two active residues F434 or L437
surrounding the substrate reversed the natural enantiopreference of WT-CHMO.**! The crystal structure of CHMO (PDB ID: 4RG3*) was used. (b)
Engineering the second sphere residue F279 into smaller residues like Valine reversed the enantioselectivity of CHMO toward diverse substrates.**®
(c) Expanding substrate scope of PAMO by engineering the bulge region that is present in PAMO but absent in CHMO.*** (d) Improving the thermal
stability of CHMO by creating additional disulfide bonds between two adjacent cysteine residues.

8212 | Chem. Soc. Rev., 2024, 53, 8202-8239 This journal is © The Royal Society of Chemistry 2024


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cs00196f

Open Access Article. Published on 11 July 2024. Downloaded on 2/20/2026 6:28:45 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review Article

in enantio- or regioselectivity across a wide range of substrates.
Conversely, replacing it with smaller residues would achieve a
complete reversal of enantiopreference (Fig. 5b)."**

For the design of terpene synthases, the water flow regions
identified from MD simulations provided guidance on reshap-
ing the active site of a sesquiterpene synthase to catalyze the
synthesis of a valuable terpenoid product while avoiding the
hydroxylated product."*> A single mutation of another sesqui-
terpene synthase, pentalenene synthase, diverted the reaction
pathway to give different products, because of the reshaped
binding pocket disclosed by molecular docking and MD
simulations.™*®

QM/MM and MD simulations disclosed the reversed regio-
selectivity of thermostable CHMO (TmCHMO) for 4-phenyl-2-
butanone to give the abnormal product attributed to the con-
formational changes in the Criegee intermediate and transition
states in the reaction pathway.'*” MD simulations and QM/MM
calculations elucidated the catalytic mechanism of PAMO
toward its native substrate phenylacetone and the alkyl migra-
tion mechanism of the Criegee intermediate decay.'*® Further-
more, based on MD simulations of PAMO, we proposed the
requirements for a catalytic pocket favourable for non-native
linear substrate 2-octanone, which provides structural insight
for further engineering the enzyme to accommodate linear
substrates.'”® QM cluster calculations disclosed that the
change in the chirality of the Criegee intermediates and transi-
tion states accounts for the regioselectivity so as to give the
normal or abnormal products by the WI-TmCHMO and its
variants, respectively.'*°

2.2.3 Broadening the substrate spectrum. Bayer-Villiger
monooxygenases (BVMOs), comprising many subfamilies of
enzymes depending on their respective substrates, such as
cyclohexanone monooxygenases (CHMO), pheynylacetone
monooxygenase (PAMO) and cyclopentanone monooxygenase
(CPMO), catalyze the insertion of an oxygen atom in ketones to
give esters or lactones. There are universal hotspot regions in
different Baeyer-Villiger Monooxygenase (BVMO) subfamilies
that are responsible for the enzymes’ properties such as sub-
strate scope, enantio- and regio-selectivities and stability.'*"

PAMO is a thermostable enzyme with high industrial
value. However, it has a narrow substrate acceptance range
compared to CHMO. Structural comparison showed a bulge
(S441-S444), which is present in PAMO, but absent in CHMO
(Fig. 5¢). Deleting the bulge in PAMO turned the enzyme into
a phenylcyclohexanonase (PCHMO), which showed a broa-
dened substrate spectrum.'** Saturation mutagenesis of
the bulge region in PAMO using codon degeneracy was con-
ducted and variants that accept 2-aryl cyclohexanone were
attained."® Mutating a second sphere residue P440 around
the bulge achieved the acceptance of a range of substrates.'”® In
another work, structure-guided rational design altered
the functionality of CHMO to allow it to reduce a range of
substituted aromatic a-keto esters. With high catalytic activity
and stereoselectivity. The created reductive activity was attrib-
uted to shortened reaction coordinates favourable for hydride
transfer in the ketoreductase-like variants in comparison with

This journal is © The Royal Society of Chemistry 2024
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the WT enzyme, as observed from docking and MD
simulations.**

The types of tunnels in metalloenzymes catalyze the reduc-
tive or oxidative transport and positioning of small gaseous
substrates such as H,, N,, NH;, CH,, O,, CO, CO,, etc. dictates
the substrate preference, and therefore reshaping the gaseous
tunnels would affect substrate selectivity and enzyme
functions.™® The substrate tunnel of a soluble methane mono-
oxygenase (sMMO) hydroxylase has been revealed based on
different approaches such as crystallography, MD simulations
and mutagenesis of the tunnel-lining residues.">®

Engineering the composition residues lining the access
tunnel of P450.3 changed the substrate preference.**” Hotspot
identified by MD simulations of haloalkane dehalogenase for
the catalytic transformation of linear and branched substrate
disclosed the requirements for substrate specificity.'*®

2.2.4 Tailoring enzymes’ function. The biosynthetic path-
way of many enzymes involves multiple reaction steps due to
the promiscuity of the enzymes. Engineering enzymes by
reshaping the active sites may control the reaction to change
the product distribution or change enzyme functions.

Ergothioneine sulfoxide synthase from Candidatus Chloraci-
dobacterium (EgtBc,) possesses both EgtB- and Egtl-type activ-
ities with the EgtB-type feature more prominent than the Egt1-
type; however, the latter is more industrially valuable. By
leveraging active site information from EgtBcy, crystal struc-
tures, EgtBcy, variants were designed using Rosetta enzyme
design™® and three mutants were tailored to exhibit Egtl-type
characteristics."®°

Comparison of the key active-site residues in the crystal
structures of MPD and MDD that are involved in the bifurcated
mevalonate (MVA) pathway, combined with sequence analysis,
disclosed the key active-site residues that confer substrate
specificity, which facilitated distinguishing enzyme classes
involved in two MVA metabolic pathways.'®* In another exam-
ple, sequence comparison and structural analysis of the homol-
ogy models of two homologous maize terpene synthases TPS4
and TPS10 disclosed the difference in the key active site
residues that determined product specificities, and combined
mutation of the different residues in the first and second
sphere turned TPS4 into TPS10."?

5-Methylene-3,5-dihydro-4H-imidazol-4-one  (MIO)-enzyme
family comprises two classes of enzymes with different func-
tions, ie. aromatic amino acid ammonia lyases (ALs) and 2,3-
aminomutases (AMs). Based on the crystal structure of an AL,
the substrate binding tunnel of AM was engineered, and the
resulting variant showed enzyme function of AL.'®

Based on the homology model of a sesterterpene synthase
SmTS1 and multiple sequence alignment, engineering the
substrate binding site residue displayed the function of diter-
penes synthase.'®® Similarly, in a semi-rational design based
on the crystal structure of a diterpene synthase VenA, VenA
was changed to a sesterterpene to accommodate larger
substrates.'®

2.2.5 Changing the pH-activity profiles. Modifying the
polarity of amino acids near the substrate binding site can
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significantly impact the pH-activity profile of an enzyme.
Numerous studies have shown that changing the polarity of
the catalytic site residues can shift the optimal pH, as exem-
plified in engineering xylanase,'®® glycosidase,'®” phytase,'®®
amylase,'®>'”® dehydrogenase'”" and phytase.'”” Further MD
simulations may provide insight into the effect of mutations on
the dynamic residue-residue interaction network in the active
site and hence the pH-activity.

The surface charge of enzymes also plays a crucial role in
determining their pH-activity profile."”>"7> For example: the
NADH Oxidase from bacillus subtilis exhibits maximum activity
at pH 9.0, whereas the pH of its coupled enzyme dehydrogenase
is close to 7.0, making the practical industrial application
challenging.’® Introducing negatively charged residues on
the enzyme surface using Rosetta design lowered the optimal
activity pH to 7.0."77 In industrial production, vanillin is
produced from waste biomass resources and then vanillin is
converted to vanillic acid by vanillin dehydrogenase (VDH)
under alkaline conditions; however, VDH displayed poor activ-
ity at alkaline pH. By mutating non-conserved, negatively
charged surface residues to positively charged arginine, the
optimal activity was shifted from pH 7.4 to pH 9.0."”" The
comparison of the crystal structures of two SGNH family
esterases CrmE10 and AlinE4 showed that the two enzymes
have different electrostatic potentials on enzymes’ surfaces.
Engineering the charge of CrmE10 surface residues from acid
to basic improved the alkaline adaption and therefore
increased the enzyme’s activities (Fig. 6)."”®
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2.2.6 Improving thermostability. The most common sec-
ondary structures of proteins are alpha helices, beta sheets,
beta turns and loops, among which alpha helices are more
tolerant to multiple mutations than beta sheets,'”® and hence
engineering helices would be more liable than engineering beta
strands. An enzyme engineering strategy to improve the ther-
mostability of enzymes is replacing the glycine or proline in
alpha helices into alanine, which is beneficial to improve the
thermostability of helices and hence the overall enzyme
thermostability.'®® Zhou et. al improved the thermostability of
an alkaline pectate lyase (PelN) from Paenibacillus sp. by repla-
cing glycine at position 241 on a helical structure with alanine
or valine. Additionally combining mutations at positions on
beta sheets and the resulting double mutant K93I/G241A
retained the high thermostability with improved enzyme
activity,"®" which potentiates its industrial applications.

Highly flexible residues may be responsible for protein
unfolding and denaturation, leading to decreased thermo-
stability. The highly flexible residues in levansucrase were
identified by root mean square fluctuation (RMSF) for MD
simulations of the enzyme crystal structure and these residues
were mutated to improve the thermostability.'®” The difference
in free energy (AAG) between the mutant and wild-type enzyme
was calculated to assess the stability of mutants and experi-
mental evaluation shows that the designed K82H/N83R mutant
is more thermostable than the wild type. A similar design
strategy combining MD simulations and AAG -calculations
has been used to guide the design of carrageenase,'®®
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Fig. 6 Effect of surface electrostatic potential on activity. (a) Protein surface electrostatic potential of two homologous enzymes of the esterase family
CrmE10 (top right, PDB: 7C23'78) and AlinE4 (bottom right, PDB: 7C8278). (b) Superimposition of CrmE10 and AlinE4 with the key polar residues on the
surface shown in stick mode. (c) The pH/activity profile of CrmE10 and AlinE4.
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4 which attained variants with

lipase,"®* and tyrosinase,'®®
improved thermostability.
Disulfide bonds can reduce the configurational entropy of
the unfolded polypeptide to stabilize the structures of
protein.'®® Disulfide bonds can be introduced at non-catalytic
residues using MODIP,'®” DbD2"'®® or BridgeD"®® server and the
effect of designed disulfide bonds on thermostability can be
evaluated by calculating AAG between the designed mutants
and the WT enzyme. Two disulfide bonds (S61C-S115C and
E190C-E238C) were designed for Rhizopus oryzae lipase (ROL)
to rigidify the enzyme, and the thermal stability of the enzyme
successfully increased by 5.0 °C and 6.9 °C, respectively."*® The
introduction of disulfide bonds near the binding site of diva-
lent cations (e.g. Ca®>", Mg*") effectively improved the thermo-
stability of polyethylene terephthalate (PET) hydrolase.'”* A
simultaneous improvement of stability against oxidation of
and thermostability of CHMO was achieved by introducing
new disulfide bonds guided by a computational study'*'®
(Fig. 5d). In some enzymes, cysteine and methionine are liable
to be oxidized and therefore hamper enzyme activity. Mutating
the cysteine and methionine into non-polar residues or serine
may enhance oxidative stability and hence thermal stability.'**

3. Machine learning-accelerated
enzyme design

Molecular dynamics simulations and the QM/MM method
provide valuable insight for atomic level conformational
dynamics mechanisms, and the enzymatic reaction mecha-
nism; therefore, they have been widely used to explore con-
formational space and structure-function relationship.
Furthermore, the advances in computer hardware along with
the development of accurate force fields and highly efficient
sampling methods have enabled employing molecular simula-
tions for enzyme design.'®>'°® For example, modulating the
protein stability guided by MD'®® and enzyme engineering for
natural product biosynthesis aided by QM/MM.>*°

With the dawn of the big data era, various biological
databases have become available and machine learning meth-
ods have been applied in enzyme engineering.”"**'°* The
advent of a tremendous amount of data from the literature
or databases enables us to build machine learning models
and implement them into the screening protocol, for
example, machine learning guided protocols were reported to
predict the properties of mutants so as to reduce the screening
demands by traditional experimental high throughput
screening.?°%2%7

Machine learning (ML) benefits from molecular modeling
and accumulated experimental data. It has been implemented
in molecular modeling based on atomistic MD and quantum
mechanics and facilitated the effective multiscale or coarse-
grained modeling, and therefore enabled exploration of the
vast space of functional enzyme sequences speeding up
the screening of functional enzyme variants.>®'® The
three-pronged atomistic simulations, machine learning and
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experimental validation, can be synchronized, functioning just
like a troika, and would speed up the efficient screening of
potential mutants in the enzyme design protocol, with
enhanced accuracy in predicting the effect of mutations.

To enable interdisciplinary collaboration between experi-
mentalists and computational scientists, it is essential to
understand how computers store and process data in a way
that is understandable by both parties to facilitate
collaborations.”""

In this section, we will introduce the data processing meth-
ods, including the methods of generating descriptors from
small molecules and proteins, and utilizing various databases
as the data resources for machine learning. Model building and
evaluation methods will also be introduced. Finally, the latest
machine learning research on enzyme engineering will be
reviewed.

3.1 Descriptors for small molecules

To retrieve meaningful patterns and rules in machine learning,
the databases need to be processed and converted into numer-
ical descriptors. For example, molecular descriptors represent-
ing molecular features are developed to predict the biological
activities and screen potential lead compounds in QSAR.*'?
These molecular descriptors are classified as 1D global prop-
erty, 2D planar features or 3D stereo features.

3.1.1 Descriptor selection and combination. Feature selec-
tion is crucial for machine learning, and the molecular repre-
sentations should not only capture the diversity of chemical
space, but also distinguish the subtle differences among
molecules.”® The descriptors should be simple while retaining
key information and consistent and interpretable to assure that
the pattern learned from the model would reflect the mean-
ingful relationship between the descriptors and properties
rather than being affected by noise.

Removing irrelevant descriptors may improve the accuracy
of the prediction to develop robust models. Khan et al. reviewed
descriptor selection methods in different drug design cases,*'?
including the filter method that gradually deletes the low-score
features by calculating relevance scores of the descriptors and
Wrapper method that gradually deletes descriptors guided by
the errors in a validation subset using a support vector
classifier.

3.1.2 Global property descriptors. Global property descrip-
tors are referred to as physicochemical descriptors of small
molecule substrates, which are estimated based on the 2D
structure of the molecules. e.g., those properties in Lipinski’s
rule of five including molecule weight, Log P, the number of H-
bond donors/acceptors, etc. which are essential properties for
drug’s pharmacokinetics and hence have been widely used in
drug development.'* In addition, atom-type counts, bond-type
counts, and molar refractivity are also global descriptors. It
should be noted that most of the global descriptors lack
information on the molecular structure or atom connectivity.

3.1.3 Quantum-chemical descriptors. Quantum-chemical
descriptors including atomic charges, molecular orbital ener-
gies, Frontier orbital densities and molecular polarizabilities
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are also used in machine learning to predict electrostatic
interactions, chemical reactivities, physicochemical, biochem-
ical or pharmaceutical properties of molecules.>'®> Combining
QM descriptors in machine learning may predict molecular
interaction fields and chemical reactivities more accurately.*'®

3.1.4 Molecular fingerprints and graph descriptors. The
chemical structure features and atom connectivity require 2D
representation of molecules (Fig. 7). String representation
approaches such as SMILES*'” and InChI*'® were used to store
the 2D information of molecules, which can efficiently repre-
sent molecular graphic information using standardized and
machine-readable formats.

Additionally, molecular structures are compressed into
library-based 2D representation by a molecular ‘“fingerprint”,
which projects the structure information of molecules into
binary codes, with each bit representing molecular structure
features or the presence/absence of certain structures. The
binary representations such as MACCS** are compatible for
data storage and also liable for comparing the similarity among
molecules.

In contrast to library-based fingerprint representation, cir-
cular fingerprints®*® such as Morgan fingerprints, extended-
connectivity fingerprints (ECFPs) and functional-class finger-
prints (FCFPs) take into consideration of the local environment
of molecules to generate a bit vector. For example, the Morgan
fingerprint with a radius of 2 considers the connectivity of each
atom to other atoms which are linked to the first atom by up to
two chemical bonds; it assigns a value of 1 if such a
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neighborhood is present in the molecule, otherwise, it assigns
0. These fingerprint methods have been implemented in RDKit
toolkits.*** The vectors generated by fingerprint methods are
high dimensional and sparse, and often bring about the issue
of bit collision. Google Inc. compared the quality of word
representations in vector space for a very large dataset in a
word similarity task and reported two model architectures with
promising prediction accuracy and efficiency.>*>

Convolutional neural network and natural language proces-
sing (NLP) techniques have been used in molecular graphic
representations. Fuller and Turk et al. reported a Mol2vec
algorithm®®® to represent the substructures of a molecule
as word vectors and the whole molecule as a sentence.
Thus each substructure in the molecule can be more efficiently
represented.

Molecular structures can also be represented by molecular
graphs. With the development of the graph neural network,
each atom in a molecule can be considered as the nodes in
graphic structures and the connectivity among atoms are
defined as edges. The graphic frame can describe the compli-
cated relationship among the substructures by graphs.
Utilizing the graph neural network (GNN), molecular graph
descriptors have been widely used in predicting drug-target
interactions.”**>*

To evaluate the catalytic efficiency of enzymes, it is impor-
tant to estimate the enzyme-substrate interactions as well as
enzyme-catalyzed reaction kinetics. Skoraczynski et al. devel-
oped binary classification models for predicting the reaction
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