Issue 8, 2021

Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale

Abstract

Characterization of materials at the nanoscale plays a crucial role in in-depth understanding the nature and processes of the substances. Mass spectrometry (MS) has characterization capabilities for nanomaterials (NMs) and nanostructures by offering reliable multi-dimensional information consisting of accurate mass, isotopic, and molecular structural information. In the last decade, MS has emerged as a powerful nano-characterization technique. This review comprehensively summarizes the capabilities of MS in various aspects of nano-characterization that greatly enrich the toolbox of nano research. Compared with other characterization techniques, MS has unique capabilities for real-time monitoring and tracking reaction intermediates and by-products. Moreover, MS has shown application potential in some novel aspects, such as MS imaging of the biodistribution and fate of NMs in animals and humans, stable isotopic tracing of NMs, and risk assessment of NMs, which deserve update and integration into the current knowledge framework of nano-characterization.

Graphical abstract: Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale

Article information

Article type
Review Article
Submitted
30 Sep 2020
First published
03 Mar 2021

Chem. Soc. Rev., 2021,50, 5243-5280

Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale

X. Huang, H. Liu, D. Lu, Y. Lin, J. Liu, Q. Liu, Z. Nie and G. Jiang, Chem. Soc. Rev., 2021, 50, 5243 DOI: 10.1039/D0CS00714E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements