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This review presents a brief scenario regarding the development of cathodes, anodes, and electrolytes
for next-generation Li-ion batteries (LIBs) and supercapacitors for future energy technologies. The
specific capacity and power density are two prime requirements for energy storage devices, which are
mainly decided by the microstructure and composition of electrodes. Electrolyte, which is the highway
for ions between electrodes, plays a crucial role in developing advanced batteries. Miniaturized
electrode-based LIBs with high energy storage densities are a smart approach toward huge future
energy demands, where nanomaterials play a crucial role. The ultra-large surface of nanostructure-
based electrodes offers improved electrochemical performance per unit electrode area and/or material
Porous nanostructured material-based electrodes/electrolytes provide fast and shortened
transportation pathways for carriers, facilitating improved reaction kinetics. This review presents the
fabrication and electrochemical performances of different nanomaterial-based LIBs, including their
critical challenges such as thermal runaway and dendrite growth. An overview of all-solid-state Li-ion

mass.
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Accepted 19th June 2022 batteries (ASSLIB), with the potential to bridge the gap between the laboratory and market, is presented.
DOI: 10.1039/d2ya00043a Finally, the status, challenges, and outlook for enhancing the performance of cathodes, anodes,

electrolytes, and their integration in ASSLIB are briefly covered for the attention of the wider functional
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and energy material communities.

1. Introduction to energy systems

Currently, society depends on fossil fuels to generate electricity,
drive vehicles, and power industries using internal combustion
engines." Battery-driven energy has found a realistic way to
liberate society,” where green energy can be generated from
natural resources such as solar energy, hydro power, wind-
turbines, and wave upthrust.®” After harvesting energy, it needs
to be stored it in an efficient system for long-lasting and
maximum intercalation-deintercalation. According to the litera-
ture, energy storage systems have existed since ancient times. The
first energy storage system was introduced by Agastya Rishi (Sages
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in Ancient Indian civilization) approximately ~5000 BC.® In 1780
AD, Luigi Galvani performed a unique electricity experiment on a
frog, called the frog legs experiment.” Later, based on the concept
of the frog legs experiment, an Italian physicist, Sir Alessandro
Volta, used metallic elements instead of a biological cell or living
entities to produce electricity. Then, he investigated a way to store
the produced energy, which was called a battery.'® In continuation
of the investigation of energy storage devices, Edison invented the
nickel-iron battery in 1968, producing a rechargeable system
having nickel oxide-hydroxide positive plates and negative iron
plates, with potassium hydroxide as the electrolyte."* Thus, the
development of energy storage systems dates back to the study by
Agastya Sanhita, resulting in high energy density for the applica-
tion of ASSLIB in HEV and smart/mobile devices.

1.1 Solid-state electrolyte/batteries

The major challenges associated with electric-drive vehicles
include their cost and performance, especially regarding their
batteries, which are responsible for a large portion of the cost of
these vehicles.">™* The main thrust as the foundation for Li-ion
batteries (LIBs) occurred after the oil crisis in the 1970s.
Subsequently, the research community focused on developing
the fossil-fuel-free natural energy harvesting and energy storage
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sectors to fulfill energy requirements globally.">*® Accordingly,
a suitable candidate with potential for energy storage was the
LIB, which is a green energy storage system with a no-memory
loss effect.'”*° The operative mechanism of LIBs is a simple
principle similar to that of other storage systems, i.e., moving
electrons from one region (anode) to another (cathode), which
generates an electrical current. LIBs are considered safer
compared to conventional batteries such as lead-acid and
CdsS, which exhibit several issues including the emission of
toxic gases and overheating during charging and discharging.

All-solid-state batteries (ASSBs) have attracted significant
attention for application in future technologies due to their
safety and high energy densities. However, many ASSBs are
limited by their Coulombic efficiency, poor power performance,
and short cycling life due to the high resistance at the interfaces
in ASSBs. Banerjee et al.>" explored suitable materials that can
serve as SEs for the fabrication of ASSBs, namely, materials with
high ionic conductivity (s1;+ > 0.1 mS cm™", which are com-
monly referred to as ‘“‘superionic conductors”, but possess
lower electronic conductivity (7. < 1077 mS cm ). These
materials include polymer-, oxide-, and sulfide-based electro-
lytes. Before elaborating on LIBs, solid-state electrolytes (SSE)
enable the utilization of Li metal anodes, which are considered
the most promising anodes for next-generation rechargeable
batteries due to their ultrahigh theoretical specific capacity of
3860 mA h g~ ' and lowest negative electrochemical potential
(—3.04 V versus the standard hydrogen electrode). However, in
conventional organic electrolytes, lithium metal suffers from an
unstable solid-state interphase, dendrite penetration, and pul-
verization issues. The state-of-the-art batteries possessing SSEs
have been reviewed by Xu et al.>* to guarantee the development
of next-generation battery systems with improved energy den-
sity and high safety. Numerous compounds including oxides,
sulfides, and polymer ionic conductors have been developed
and several achievements comparable to liquid electrolytes
have been obtained. Materials possessing high theoretical
capacities, such as lithium, sulfur, and lithium intercalation
compounds, have also been introduced in the “solid family.”

The novel class of fast lithium ion-conducting metal oxides
with the chemical composition LisLazM,04, (M = Nb and Ta)
possess a garnet-related structure. Among the investigated
compounds with garnetrelated structures, LigBaLa,Ta,O;,
exhibit the highest Li* ion conductivity of 4 x 107> S cm™ " at
22 °C with an activation energy of 0.40 eV; however, its bulk and
total conductivity at room temperature are not sufficiently high
to develop an ideal all-solid-state lithium ion rechargeable
battery. Murugan et al.> reported that due to the high lithium
ion conductivity, good thermal and chemical stability against
reactions with prospective electrode materials, environmental
benignity, availability of its starting materials, low cost, and
ease of preparation and densification of Li;Laz;Zr,0,, make it
a promising solid electrolyte for all-solid-state lithium ion
rechargeable batteries (ASSLIBs).

Lithium garnet (i.e., Lig4LasZr; 4Ty 015, LLZTO) particle-
based composite membranes and Li-salt-free polyethylene oxi-
des (PEOs) as SSE were reported by Zhang et al.,** which were
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crucial for the enhancement in the conductivity of the mem-
branes containing 40 nm LLZTO particles due to the difference
in the specific surface area and related to the percolation effect.
Compared to the conventional PEO doped with lithium salt, the
insulating PEO in PEO:LLZTO membrane electrolyte was con-
ductive to the suppression of lithium dendrite growth because
it hindered the current flow. The PEO:LLZTO membrane electro-
Iyte exhibited a conductivity of 2.1 x 107" S em™" at 30 °C and
56 x 107" S em™" at 60 °C, and consequently the solid-state
LiFePO,/PEO:LLZTO/Li and LiFe, ;sMn, sPO,/PEO:LLZTO/Li cells
delivered energy densities of 345 W h kg™" (662 W h L") and
405 W h kg™" (700 W h L', without the package weight or
volume) with a good rate capability and cycling performance. The
combination of nano-scale Li-ion-conducting particles and an
insulating polymer provided a promising solution to produce
powerful SSEs for high-performance solid-state lithium batteries
(SSLBs). Thus, a polymer with improved stability is available, and
consequently SSLBs can be constructed with enlarged voltage
cathodes such as LiNiysMn; 50, to further increase the energy
density.

Zhang et al.>® reported that Lig ;5sLa;Zr; 75T 2501, (LLZTO)
ceramics could trigger structural modification in the
poly(vinylidene fluoride) (PVDF) polymer electrolyte, which
was prepared using the conventional solution-casting method.
The LLZTO-modified PVDF membrane was shown to be a
promising electrolyte material for use in ASSLIBs with signifi-
cantly enhanced performances (a high ionic conductivity of
about 5 x 10°* S em ™" at 25 °C, high mechanical strength, and
good thermal stability). Furthermore, the LiCoO,|PVDF/LLZTO-
CPE|Li cell presented a satisfactory rate capability and cycling
stability at room temperature, which showed that PVDF/LLZTO-
CPE has great potential to be used as the electrolyte in SSLBs.

An electrical current is created in LIBs because of the
chemical reactions and movement of ions inside these bat-
teries. Electrons move in the cell from the anode to cathode,
which are located at the opposite ends of the cell. Significant
progress has been achieved in the development of rechargeable
LIBs since their introduction in the early 1990s, which are an
integral part of all portable electronics and popular for power-
ing hybrid vehicles.”®*” They can be recharged by using appro-
priate adaptors for several cycles (500-1000 cycles). The
electrolytes inside these batteries also play an important role
in the migration of ions from the anode to cathode, and vice
versa. In the case of solid electrolytes, they can simultaneously
act as a separator between the anode and cathode.?

In the modern digital era, among the various energy storage
systems, LIBs represent the most popular rechargeable bat-
teries for use in portable electronic devices such as mobile
phones and laptops due to their long cycle life and high specific
capacity. LIBs can also be formed into many shapes, making
them ideal for use in the essential products of laptops, tablets,
and cell phones. LIBs are widely used in these devices because
of their rechargeability and negligible memory effect. Owing to
their long cycle life and high capacity, LIBs are considered
suitable for next-generation advanced mobile electronic devices
(flexible and transparent devices), electric vehicles (EVs), hybrid

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Li-ion battery demand forecast (https://about.bnef.com/electric-vehicle-outlook/)

electric vehicles (HEVs), and renewable energy storage appli-
cations.>® Fig. 1 shows the increasing demand of LIBs since 2015
and will continue to rise sharply over the next few decades.

The greatest demand for electric passenger/commercial
vehicles is expected to occur in the near future with stationary
storage systems. However, the relatively low charge/discharge
rates and safety concerns of these systems have limited their
use in applied applications requiring both high-power density
and high capacity for EVs and HEVs. Thus, the major scientific
challenge associated with ASSLIBs is enhancing their power
density, cycle life, recyclability, and safety concerns.*** The
energy obtained from different sources can be stored in LIBs,
and subsequently used according to the demand. Fig. 2(a)
presents an overview of the energy production and storage
from various energy sectors, including the functions of LIBs.
To determine suitable candidates for the fabrication of LIBs,
active, hybrid, and Si-based nanostructured materials must be
tested to fulfill requirements of reversible capacity, good ionic
and electrical conductivity, long cycle life, high lithium diffu-
sion rate in the active material, and conclusively low cost and
eco-compatibility.

Currently, LIBs are the dominant power source for mobile
phones, laptops, and numerous other portable electronic devices.
Also, they have been increasingly used in electric vehicles (EVs)
and flexible/mobile electronics since their commercialization. The
Sony Corporation (1991) commercialized the first modern LIB,
which held twice the energy density and was almost 10-times
cheaper than the existing Li batteries.>® The Li-battery was first
introduced by the American chemist Gilbert Newton Lewis (G. N.
Lewis) in 1912,%® while the first lithium battery was invented in the
1970s, and the first attempts to develop rechargeable batteries
were made in the 1980s by Bell Labs.*®

Lithium (Li) is one of the lightest metals with the highest
electrochemical potential, which can provide the largest specific

© 2022 The Author(s). Published by the Royal Society of Chemistry

energy density. It requires careful and systematic handling, where
the development of breakthrough technologies based on new
anodes, cathodes, and non-aqueous electrolytes can enable a
steady improvement in high-energy lithium battery systems.
Although LIBs are expensive, they have never experienced the
memory issues that affect other battery technologies. LIBs
exhibit a slightly lower energy density than lithium metal
batteries; however, LIBs are safer than Li batteries and provide
certain precautions during charging and discharging. Also, the
LIB is a low-maintenance battery, and no schedule is required
for cycling to prolong its lifetime. Compared to nickel-
cadmium (Ni-Cd) batteries, the self-discharge of LIBs is less
than half and is well-fitted for modern fuel gauge applications.

Based on the enormous success achieved from the labora-
tory to daily life, the discovery of lithium-ion batteries led to
the 2019 Nobel Prize in Chemistry. The three key contributors
to the development of LIBs were John B. Goodenough, M.
Stanley Whittingham, and Akira Yoshino. Stanley Whittingham
focused on developing titanium disulfide (TiS,)-based cathodes
for LIBs, which possess space for ion intercalation, as shown in
Fig. 2b. The metallic lithium was used as an anode for lithium
batteries, which easily provides electrons. The battery had a
very high energy density and a voltage of 2 V.*” The discovery of
this battery was a big announcement at that time, but the
formation of lithium whiskers/dendrites potentially led to
short-circuiting in the battery (Fig. 2c). Goodenough investi-
gated this failure and proposed the use of transition metal
oxide-based cathodes instead of TiS,. His group discovered that
lithium-cobalt oxide (LiCoO,) is a suitable cathode material,
which was stable during cell operation (Fig. 2d). They success-
fully increased the voltage to 4 V.*®?° Then, another scientist
interested in the development of lightweight LIBs was Akira
Yoshino from the Asahi Kasei Corporation, Japan. He used
LiCo0O, as a cathode and tried different carbon materials as the

Energy Adv.,, 2022, 1, 457-510 | 459
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Fig. 2 (a) Contribution of worldwide energy storage projects to grid applications. (b) Lithium-based battery using Li,TiS; as the cathode. (c) Formation
of lithium whiskers/dendrites potentially leading to short-circuiting. (d) Lithium-based battery using Li,CoO, as the cathode. (e) lon transfer cell lithium-
jon battery configuration. (©Johan Jarnestad/Royal Swedish Academy of Sciences).

anode. Finally, petroleum coke was used as the anode and a full
battery was developed (Fig. 2e), which demonstrated a high
capacity and voltage.*’

1.2 Principle of LIBs

An LIB consists of four components including a positive
electrode (cathode), a negative electrode (anode), a separator
(to separate electrodes), and electrolyte for the movement of
ions through chemical reactions. The existing LIBs use LiCoO,
as the cathode and graphite as the anode. The standard
electrolyte is liquid LiPFe, soaked by the separator between
electrodes. For the cathode, Al is used as a current collector,
and for the anode, Cu is used as a current collector (Fig. 3).
During charging, the cathode releases Li" (Li-ions), which

460 | Energy Adv, 2022, 1, 457-510

moves through the electrolyte and gets accommodated in the
anode (means energy stored). Meanwhile, electrons flow
through the external circuit and the separator blocks the flow
of electrons due to its insulating nature and provides easy
access for ions. In the discharging process, Li* ions migrate
back to the cathode via the electrolyte and release the energy
stored inside the battery. The performance of LIBs strongly
depends on the utilized electrode materials, which is mainly
decided by various parameters, such as, the physical and
chemical properties, microstructure and composition of the
material. Fig. 4(a) shows some important parameters (specific
capacity, coulombic efficiency, power density, capacity reten-
tion, voltage stability and conductivity, toxicity and safety
issues) that demonstrate the potential of electrode materials

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(Reproduced with permission from the American Chemical Society™!).

for use in LIBs. The voltage stability window of the cell is
examined by evaluating the molecular properties of its materi-
als via quantum chemical characterization of their highest
occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO). The relative energies of the electro-
lyte window (E;) and the electrochemical potentials of the
electrode, pA and pC, with no electrode/electrolyte reactions
are shown in Fig. 4b. The difference between the HOMO and
LUMO of a liquid electrolyte or the bottom of the conduction

© 2022 The Author(s). Published by the Royal Society of Chemistry
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band and the top of the valence band of the solid electrolyte
decides the electrochemical stability window (ESW) (Fig. 4b and c).

To achieve stability, the ESW must be larger than the open
circuit energy (Voo = (ua — uc)le) (difference in Li chemical
potential in each electrode).”’** Table 1 summarizes the
critical cell performance parameters that need to be examined
before commencing large scale commercial production.*>*®
Another significant task in the case of battery technology is to

carefully identify the failure mechanism (physical/electrical/

Energy Adv., 2022, 1, 457-510 | 461
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Parameter Measuring unit Measuring formula Information
Operating voltage Volts (V) Instrumental Energy density and safety
Current density mAg ' Instrumental For testing rate capabilities
Theoretical capacity mAhg! TC = Fxx Lithium-ion storage capability
T 36xMMxy
Gravimetric capacity mAhg™? C— I (mA) x z(h) Li" storage capability measured per unit mass
m(g)
Areal capacity mA h em > C— I (mA) x t(h) Li" storage capability measured per unit area
T A(cm?)
Volumetric capacity mA h em C— I (mA) x ¢ (h) Li" storage capability measured per unit volume
T V(em?)
Specific energy density Whg 'orWhem >orWhem™®  E=CxV How much energy can be extracted
Power density Wg 'orWem ?orWem™? P=IxV How fast the energy can be extracted
Crate h™ c J(mA g™ Rate of charging/discharging
rate — W
Coulombic efficiency N/A GE — Ceharging % 100 Reversible capacity
discharging
State of charge (SOC) NA SOC = remaining Remaining capacity of a battery
capacity/rated capacity
Depth of discharge NA DOD = 1-SOC Percentage of the total discharge battery capacity
(DOD)
Cycle life NA — Number of discharge-charge cycles handled
by a battery at a specific DOD
Calendar life NA — The expected life span of the battery under

mechanical/chemical). Thus, the failure mode, mechanism,
and effect analysis (FMMEA) methodology has been adopted
to discover the failure mechanism, as shown in Table 2. The
FMMEA methodology provides details on the cell components,
mode, and the cause of failure.*” Table 2 also summarises the
anode and cathode active materials and the current collectors,
separator for Li-ions, electrolyte salts (organics solvents), and
the terminals.

Before preparing the electrode materials, it is crucial to
select the parent material based on parameters such as cost-
effectiveness, non-toxicity, abundance, and safety. The low cost
of the raw material and the preparation conditions (NTP) will
lead to an overall cost that is within the affordable limit of the
consumer market. The non-toxic nature of electrode materials
is the primary requirement for the safe use of the device. The
electrode materials should be abundant in nature to be com-
mercialized and able to balance the supply according to the
demand from the consumer sector. The most feasible elements
from the periodic table are transition elements, and thus
extensive studies have been performed based on their compo-
sites with various phases and structures (Fig. 5). It should be
noted that parameters such as the ionic radius (helps in
stabilizing oxidation states), ionization energy (decides oxidizing
and reduction power), and electronegativity (helps in altering the
redox potential) of elements need to be considered before the
preparation of electrode materials.*® Table 3 describes the anode
and cathode electrodes, separator, etc., including their deficiencies
and remedies.

Crabtree pointed out the next breakthroughs expected at the
other end of the battery for making better anodes. The anode
stores lithium ions when the battery is charged and sends
them to the cathode as the battery releases power. Japanese

462 | Energy Adv, 2022, 1, 457-510

storage or periodic cycling conditions.

electronics giant Sony introduced carbon anodes to replace the
troublesome lithium metal anodes in the early 1990s. These
batteries were losing their performance, making necessary to
restore it. Currently, one of the major problems is the graphite
anodes developed after the lithium metal anodes, which elim-
inate lithium ions from the batteries, but they returning to the
anode during charging. This leads to the formation of tree-like
dendrite structures instead of a coating on the anode surface.

Materials scientist Nitash Balsara, University of California,
Berkeley, explained that carbon anodes can accept lithium ions
at a given rate. “If you try to send lithium (through the battery) too
fast (while charging), the lithium doesn’t go into the graphite, it
sticks on the outside. It becomes a safety hazard.” Small-size
batteries can easily grow dendrites across the electrolyte and
contact the opposite pole, as demonstrated by Goodenough.
Permeable membranes, e.g., separators, are generally used to
prevent the contact between electrodes, and thus stop short
circuits, while allowing the flow of ions from the electrolyte.
Nevertheless, this process involves a high risk of breaking the
dendrite structures, leading to pore blockage. This often ham-
pers the ion migration to the separator, thereby impacting the
lifetime of the battery.

2. Electrodes for Li-ion batteries
2.1 Cathode materials of lithium-ion batteries (LIBs)

2.1.1 Lithium cobalt oxide (LiC00O,). LiCoO, is a lithium-
ion intercalation material introduced in 1980 by Prof. John B.
Goodenough, which has a terminal voltage of over 3 V.*° The LIB
with this cathode exhibited a specific power of 250-340 W kg ™'
with an efficiency of 90%, which is much higher than that of the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The failure mode, mechanism, and effect analysis (FMMEA) for lithium-ion batteries (LIBs)*”

Potential Likelihood
Battery Potential failure failure Mechanism Potential of Severity of Ease of
component mode (s) mechanism (s) type Observed effect failure causes occurrence occurrence detection
Anode Thickening of solid Chemical Wear out  Increased charge transfer Chemical side High Low High
(active electrolyte interphase reduction resistance, reduction of  reactions between
material) layer reaction and capacity, reduction of lithium, electrode,
deposition power and solvent
Particle fracture Mechanical Over stress Reduction of capacity, Intercalation Moderate Low Low
stress reduction of power stress
Reduced electrode =~ Mechanical Wear out  Increased diffusion Dimensional Moderate Low Low
porosity degradation resistance, reduction of  changes in
capacity, reduction of electrode
power
Lithium plating and Chemical Wear out  Can cause a short circuit if Charging the Low High Low
dendrite growth on  reaction dendrites puncture the battery at low
anode surface separator temperatures or
high rates
Anode Free copper particles Chemical cor- Wear out  Increased resistance, Over-discharge of Low High Low
(current  or copper plating rosion reaction reduction of power, the battery
collector) and dissolution reduction of current
density
Cathode  Thickening of solid Chemical Wear out  Increased charge transfer Chemical side High Low High
(active electrolyte interphase reduction resistance, reduction of  reactions between
material) layer reaction and capacity, reduction of lithium, electrode,
deposition power and solvent
Particle fracture Mechanical Over stress Reduction of capacity, Intercalation Moderate Low Low
stress reduction of power stress
Reduced electrode ~ Mechanical Wear out  Increased diffusion Dimensional Moderate Low Low
porosity degradation resistance, reduction of  changes in
capacity, reduction of electrode
power
Gas generation and Thermally dri- Over stress Reduction of capacity Overcharge of the Low High Low
bloating of cell casing ven electrode battery or short
decomposition circuit
Cathode  Pitting corrosion of ~Chemical Wear out  Increased resistance, Overcharge of the Low Moderate Low
(current  aluminum corrosion reduction of power, battery
collector) reaction reduction of current
density
Separator Hole in separator Mechanical Over stress High heat generation due Dendrite for- Low High Moderate
damage to Joule heating, bloating mation, external
of cell casing, drastic crushing of cell
voltage reduction
Closing of separator Thermally- Over stress Inability to charge or High internal cell Low High High
pores induced melt- discharge the battery temperature
ing of separator
Lithium  Reduction in lithium Electrolyte Wear out  Reduction of capacity Chemical side High Low High
ions ions, thickening of  reduction and reactions between
solid electrolyte solid product lithium, electro-
inter-phase layer formation des, and solvent
Electrolyte Decrease in lithium Chemical Wear out  Increased diffusion Chemical side Low High Low
salt salt concentration reduction resistance reactions between
reaction and lithium, electro-
deposition des, and solvent
Organic Gas generation and Chemical Over stress Increased diffusion High external Low High Low
solvents  bloating of cell casing decomposition resistance, and may lead temperature, over-
of solvent to thermal runaway charging of the cell
Thickening of solid Chemical Wear out  Increased charge transfer Chemical side High Low High
electrolyte interphase reduction resistance, reduction of  reactions between
layer reaction and capacity, reduction of lithium, electro-
deposition power des, and solvent
Terminals External corrosive Chemical cor- Wear out  High heat generation due Inadvertent Low High Moderate
path between positive rosion reaction to Joule heating, bloating shorting of the
and negative leads of cell casing, drastic terminals
voltage reduction
Solder cracking Thermal fatigue Wear out  Loss of conductivity Circuit disconnect Low Moderate High
mechanical between battery and host
vibration fatigue device
Casing Internal short circuit Mechanical Over stress High heat generation due External load on Low High Moderate
between anode and  stress to Joule heating, bloating cell

cathode

of cell casing, drastic
voltage reduction

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Periodic table is available to design new electrode materials. The colored squares are excluded due to either their high cost, low availability,
toxicity, or radioactivity. This slightly restricts the elements available for the design of new materials but can be useful in guiding synthetic methods.
Despite their toxicity, some transition metals, such as V and Co, are still actively investigated.*® Reproduced with permission from the American Chemical

Society.*®

Table 3 Deficiencies in the present LIBs and their possible remedies*®

Location of deficiency

Deficiencies

Possible remedies

Carbonaceous anode
(negative electrode)

Negative electrode-
electrolyte interface
Positive electrode
(lithiated transition metal

oxide or phosphate)

Positive electrode—
electrolyte interface

Separator

Metal collectors

Low capacity density (A h 17

Low coulombic efficiency with alloy anodes caused by
solid electrolyte interphase (SEI) growth on the first cycle
and continuing with cycling

Low specific capacity (A h kg™") and charging voltage
limited

Low coulombic efficiency at higher voltage limiting
specific capacity and cycle life and causing increased
cell impedance with cycling

Penetration with conductive particles or lithium dendrites

Solid metal foils add to cost and take away from energy as
they are inert in the system, yet must be thick enough to
provide adequate electrical and thermal conductance

Replace carbon with an improved alloy anode that allows
high coulombic efficiency, good power capability, low
irreversible capacity, and low cost with little or no loss of
specific capacity or cell voltage

Improved coatings, functional binders, and/or electrolyte
additives to protect the interface during large volume
changes

Replace with new cathode material that allows high
coulombic efficiency, good power capability, low
irreversible capacity, and lower cost with little or no loss
of capacity density or cell voltage

Improve coating of cathode material, binders, and/or
electrolyte additives that can prevent impedance increase
with cycling, dissolution of transition metal ions
Improved coatings of separators that do not impede

ion flux, salt diffusion, or fluid flow, but can improve
penetration strength or combine chemically with lithium
dendrites

Perforated or expanded metal collectors are in common
use for primary lithium batteries and secondary aqueous
batteries, but have not been engineered for lithium-ion

existing lead-acid and Ni-Cd secondary batteries (at that time).
The crystal structure of layered LiCoO, is identical to the o-NaFeO,-
type structure, (space group R3m). The lithium and cobalt ions are
located in octahedral 3a and 3b sites, respectively, separated by
layers of cubic close-packed oxygen ions. The unit cell is comprised
of three slabs of edge-sharing CoOe octahedra and separated by
interstitial layers of Li.>' Mizushima et al>* presented the first
report on LiCoO, as a cathode material, which was used as
a commercial cathode in the first commercial Li-ion battery

464 | Energy Adv, 2022, 1, 457-510

(with graphite as the anode) by Sony Corporation in 1991. The
theoretical capacity of LiCoO, was 274 mA h g, while the
experimental capacity was measured to be 160 mA h g '
Lithium-ion-cobalt batteries have been made from lithium carbo-
nate and cobalt to achieve a very high capacity. These batteries are
used in cell phones, laptops, electronic cameras, and several other
devices. The battery has a cobalt oxide cathode and a graphite
carbon anode. During intercalation and/or de-intercalation, the
lithium ions move from the anode to cathode and vice versa.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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However, due to their short lifespan and limited specific power,
these batteries also exhibit certain drawbacks.

Cho et al.>® synthesized a high-performance LiCoO, cathode
via the sol-gel coating of Al,O; on the LiCoO, particle surface,
followed by heat treatment at 600 °C for 3 h. The Al,O;-coated
LiCoO, cathode showed no decrease in its original specific
capacity of 174 mA h ¢~ compared to the pristine cathode (vs.
lithium metal) together with excellent capacity retention (97%
of its initial capacity) between 4.4 and 2.75 V (after 50 cycles).
This enhancement in capacity retention has been attributed to
the improvement in the structural stability of LiCoO, during
cycling owing to the presence of Al atoms on the electrode
surface.

Li et al.”>” examined the effects of halogen doping on the
structural stability, electronic state, electrode potential, and Li
diffusion behavior of LiCoO, systems via density functional
theory (DFT) calculations. It was observed that fluorine, chlorine,
and bromine substitution of oxygen species suppresses the lattice
changes upon Li de-intercalation. In contrast, an enhancement
in structural stability, electronic conductivity, and Li mobility
was confirmed from the intercalation-deintercalation studies.
Chen et al.>® reported the synthesis of LiCoO, (LCO) cathodes
coated with a gel polymer Li-ion conductor layer, P(VDF-HFP)/
LiTFSI (PHL) via the solution-casting technique at low tempera-
ture. The coated LCO cathode (thickness = 3 pm) exhibited 88.4%
capacity retention of its original capacity (184.3 mA h g™ ') after
nearly 200 cycles in the range of 3.0-4.6 V. This is higher than that
of the uncoated cathode, which showed only 80.4% of its original
capacity (171.5 mA h g™'). This enhancement was attributed to
the compact nature of the PHL layer, which forms a highly
continuous surface coverage and penetrates the bulk of LCO.
It also prevents side reactions between the charged LCO surface
and electrolyte, leading to enhanced structural stability in LCO.
Xie et al>® reported the synthesis of an LiCoO, cathode by
modifying it with chemically inert and ionically conductive LiAlO,
interfacial layers. This conductive layer provides a path for the
diffusion of lithium and also prevents interfacial reactions, as
evidenced by Raman and impedance spectroscopy investigations.
A capacity value close to 200 mA h g~" was achieved for the
LiCoO, electrodes with commercial-level loading densities, cycled
at the cut-off potential of 4.6 V versus Li'/Li for 50 stable cycles.
This represents a 40% capacity gain with respect to the values
obtained for the commercial samples cycled at the cut-off
potential of 4.2 V versus Li*/Li.

2.1.2 Lithium manganese oxide (LiMn,0,). Lithium man-
ganese oxide (LiMn,0,) has been considered a superior cathode
material due to its low cost and high voltage of 4 V compared to
that of Li"/Li.>” One drawback of LiMn,0, is the capacity fading
due to the concentration of Mn. Disbanding of Mn leads to the
degradation of the overall active material, resulting in an
increase in the internal resistance owing to Mn>*" deposition
on the anode.’® Various strategies have been adopted to enhance
the cyclic stability by eliminating the capacity fading issue.*®
Selvamani et al.®® prepared a core-shell-type spinel LiMn,O,/
carbon composite via the mechanofusion method (dry particle
coating) with a highly uniform coating.

l. 54
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The surface-engineered core-shell-like material demon-
strated an excellent retention rate and cycling stability com-
pared to pristine LMO. This enhancement was due to the
increase in intrinsic conductivity and easy electrolyte access.
For the full cell, the core-shell material exhibited 70% capacity
retention, whereas the pristine material retained only 53%
capacity after 1000 cycles at 0.1 A g~ '. Abbas et al.°" examined
the electrochemical performance of silver-modified LiMn,0,
cathode materials and the influence of the calcination atmo-
sphere (vacuum and air). It was concluded that ~3 wt% Ag
coating is effective to minimize the drawbacks of the spinel
LiMn,0, (Mn dissolution and cycling instability). The Ag/
LMO(v) electrode showed high capacity retention and good
cyclability at the C/2 rate. Lee et al®® synthesized a novel
LiMn,0, heterostructure with epitaxially grown layered (R3m)
surface phase. No defect was observed at the interface between
the host spinel and layered surface phase, which provided an
efficient path for ionic and electronic mobilities. The hetero-
structure LiMn,0O, phase exhibited a discharge capacity of
123 mA h g~ ' and retained 85% of its initial capacity after
100 cycles (at 60 °C). Zhu et al.®® reported the synthesis of
Al,O3- and PPy-coated LiMn,0, (PPy/Al,05/LMO) via the sol-gel
method, followed by oxidative chemical polymerization. The
discharge capacity of PPy/Al,O;/LMO was reaching a value of
121.73 mA h g~ at a rate of 1C. A high retention of around
95.81% was observed even after 100 charge/discharge cycles.

2.1.3 Lithium iron phosphate (LiFePO,). LiFePO, emerged
as an alternative to the LiCoO, and LiMn,0O, cathode materials
and has attracted the attention from researchers due to its low-
cost and high capacity, which was first proposed by Padhi
et al.** However, it has the drawback of poor electronic con-
ductivity, which can be easily eliminated by adopting different
strategies such as coating. Lithium iron phosphate batteries
generally use phosphate as the cathode material. Li-Iron phos-
phate batteries exhibit the benefit of resistance properties,
which enhance their safety and thermal stability, while main-
taining other advantages at the same level, including high
durability and long cycle life. The fully charged batteries can
be stored with little change to the total lifespan of the battery
charge. Li-Phosphate batteries are often the most cost-effective
options with a long life cycle.®>®® However, the lower voltage of
Li-phosphate batteries means that they have less energy than
other types of lithium batteries, and thus exhibit a lower
temperature-based performance. These batteries are often used
in electric motorcycles and other applications due to their long
life cycles and safety. According to their battery space, electric
cars also use these batteries.

LiFePO, belongs to the olivine family of lithium ortho-
phosphates and has an orthorhombic lattice structure (space group
Pnma),***” with the lattice parameters of a = 10.33 A, b= 6.01 A, c =
4.69 A and V= 291.2 A%. Its structure consists of corner-shared FeOy
octahedra and edge-shared LiOg octahedra, running parallel to the
b-axis, which are linked by PO, tetrahedra. In this structure, the Fe
atoms occupy the octahedral (4c) sites (dark shading), the P atoms
occupy the tetrahedral (4c) sites (light shading), and the Li ions
(small circles) occupy octahedral (4a) sites.®®

Energy Adv.,, 2022, 1, 457-510 | 465
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Li et al® prepared LiFePO,/graphite composites, which
demonstrated a high reversible capacity (160 mA h g~* under
0.2C), ultrahigh rate capability (107 mA h ¢~ * under 60C), and
outstanding cycle performance (>95% reversible capacity
retention over 2000 cycles). The high volumetric energy density
of 427 W h L™" under 60C was achieved. Wang et al.”® synthe-
sized lithium iron phosphate (LFP) with Y-F co-doping. It was
observed that the electronic conductivity increased upon dop-
ing with F owing to the rearrangement of the PO,*" electron
cloud. Doping of Y reduced the space resistance of Li-ion owing
to the introduction of Li* vacancies. The XRD analysis con-
firmed that Y and F doping led to weakening of the Li-O bond
and widening of the lithium-ion diffusion tunnel. The prepared
cathode showed a discharge-specific capacity of 135.8 mAh g™*
at 10C and a discharge-specific capacity of 148.6 mA h g *
without attenuation after 700 cycles at 5C.

Hsieh et al.”" examined the effect of the carbon layer on the
cell performance of LiFePO, (LFP). The carbon content on the
surface of LFP powder was tuned via the addition of glucose.
The moderate carbon layer-coated cathode exhibited a discharge
capacity of ~161.5 mAh g ' at 0.1C and ~99.6 mA h g " at 10C.
However, at a higher content of glucose, a slow diffusion rate (Dy;)
and high equivalent series resistance (Rgs) were observed due
to the formation of inter-grain LFP aggregates. The highest
specific energy and specific power densities were observed to be
400 W h kg™" and 1200 W kg™, respectively. Motivated by the
theoretical calculation, Gao et al.”” reported the synthesis of an
Ru-doped LiFe; ,Ru,PO,/C cathode through the sol-gel method.
The sample designated as LFP-1 (x = 0.01) delivered excellent
specific capacities of 162.6 and 110.6 mA h g~ * under 0.1 and 10C
conditions, respectively. The capacity retention was 95.6% after
300 cycles at 5C. Liu et al.”® prepared Li; _yNayFePO, (X = 0, 0.01
or 0.05) composite cathode materials via the simple solvothermal
method. The Li, ¢oNay o;FEPO, cathode showed an excellent rate
capacity (86.7% after 500 cycles at 10C) and cycle stability.

2.1.4 Lithium nickel manganese cobalt (Li-NMC) oxide.
Lithium-manganese cobalt oxide (Li-NMC) batteries are made
of several materials that are common in other lithium-iron
(Li-Fe) batteries. Li-Fe batteries can have either high specific
energy or high specific power. This type of battery is most
commonly used in power tools and powertrains for vehicles.
The cathode combination ratio is usually one-third nickel,
one-third manganese, and one-third cobalt (Ni:Mn:Co =
1/3:1/3:1/3), and thus the raw material cost is lower than the
cobalt-based batteries.”*”®

Ren et al.’® prepared a lithium nickel manganese cobalt
oxide (NMC) cathode, which was designated as LiNig 33Mng 33-
C00.330, (NMC-111). This showed a superior electrochemical
performance compared to the commercial NMC-111 (¢-NMC),
with discharge capacities of 138 and 131 mA h g™" at high
current rates of 20 and 30C, respectively. Even at both room
temperature and at 50 °C, the cyclic stability was better.
Reissing et al”” investigated the combination of Zr as a
common dopant in commercial materials with effective Li,WO,
and WO; coatings in nickel-cobalt-manganese (NCM) | graphite
cells. It was concluded that the Zr*" dopant diffused to the
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surface during annealing, improving the electrochemical per-
formance compared to the samples without additional coatings.
The pristine NCM||graphite cell displayed an initial discharge
capacity of 180 mAh g™ " at 0.1C and 173 mA h g ! at 0.33C in the
cell voltage window of 2.8-4.2 V, while its end of life was reached
after approximately 343 cycles with an average Coulombic effi-
ciency (CE) of 99.8%. The WO;-coated sample showed a similar
initial discharge capacity and enhanced the life cycle up to
>700 cycles.

2.1.5 Lithium nickel cobalt aluminum (NCA) oxide.
Lithium nickel cobalt aluminum (NCA) oxide batteries, named
NCA batteries, are very important for electric powertrains and
grid storages. NCA batteries are not common in the consumer
industry, but they are a promising contender for the automotive
industry. However, although NCA is a high-energy density
battery with a good life span/stability, it is not safe enough
and very expensive. The Argonne National Laboratory (ANL)
investigated the potential of NCA batteries and their possible
material issues. Assuming the market share of electric vehicles
and the demand for lithium batteries in the US, the consistent
use of NCA batteries may skyrocket. According to the Battery
Report 2020, the US battery demand surpasses current world
production trends. However, NCA batteries must be accompanied
with safety measures in cars that monitor their performance and
behavior to keep drivers secure.”®”®

Cao et al® reported the synthesis of an LiNiggs
C0g.00Alp 030, cathode via solvothermal and co-precipitation
method. The discharge capacity of the solvothermal prepared
cathode was observed to be 154.6 mA h g~ ' at 55 °C after
100 cycles with the capacity retention of 75.93%. In contrast,
the cathode prepared via the co-precipitation method delivered
only 130.3 mA h g™ " after 100 cycles, with a capacity retention of
63.31%. Xiao et al®' reported the synthesis of an LiNig gg-
C0g.00Alp 030, cathode with the addition of trimethyl borate
(TMB) in the commercial electrolyte, which enhanced the
interfacial stability. The LiNij g3C0¢.00Alg. 030, electrode with
10% TMB-containing electrolyte could achieve a capacity reten-
tion of up to 82% after 300 cycles at 1C rate (1C =200 mAh g™ ).
Zhang et al.®’ reported the synthesis of a high-nickel-content
NCA (LiNig ggC0g.00Alp.03) cathode material with a non-spherical
morphology, which showed a good cycle performance (at both
25 °C and 45 °C), and also enhanced structural stability with
suppressed phase transition from H, to H;. The capacity
retention of the pouch-type cells with non-spherical NCA as
the cathode was greater than 91% after 1000 cycles.

2.1.6 Lithium titanate (Li-titanate). The lithium titanate
(Li-titanate) battery class can be employed in various applica-
tions. The main advantage of Li-titanate batteries is to enhance
the fast recharge time due to advanced nanotechnology.
Currently, manufacturers of electric automobiles are using Li-
titanate batteries and further investigating the use of these
types of batteries for electric buses for public transportation.
However, these batteries have a lower inherent voltage or a
lower energy density than lithium-ion batteries, which can raise
issues upon powering. Nevertheless, the density of Li-titanate
batteries is still higher than that of non-lithium-ion batteries.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 4 The comparison of electrochemical properties and price for cathode materials®®

Material LiFePO, LiMn,0, LiCoO, Li(Ni,CoyMn_)O, LiNi gC0g.15410.0502
Average voltage (V) 3.4 3.8 3.7 3.6 3.6

Specific capacity (mA h g™ ") 130-140 100-120 135-150 160-220 180-200

Cycle number 2000-5000 500-2000 500-1000 800-2000 800-2000

Safety performance Excellent Good Poor Poor Poor

Price (thousand $ ton™") 7.4-14.7 4.4-8.8 50-57 22-29 26-35

These batteries can be used for military and aerospace tech-
nologies together with energy storage for energy conversion
systems such as wind and solar to create smart grids. The
battery space suggests that these batteries can also be used in
system-critical backups for power systems.®*3* The electroche-
mical properties of important cathode materials are summar-
ized in Table 4. The structural design of these cathodes play a
major role in the efficiency of batteries. Many researchers have
significantly focused on improving the remarkable features of
these batteries. Carbon-based nanomaterials, such as graphene,
carbon nanotubes, and graphene oxide, have shown great
potential as cathode materials in energy storage devices.*>®
The limitation of traditional cathodes (layered, spinel, and
olivine) has limited the capacity mismatch with that of silicon
anodes (~1000 mA h g ). Thus, to fill this gap, Li-rich oxide
(LRO) materials have emerged as a potential alternative to
replace future cathodes due to their high theoretical capacity
(~300 mA h ¢ ") and high specific energy (~900 W h kg™ ).
For LROs, the Li/TM ratio is greater than 1 (0 < x < 1), which is
commonly referred to as Li;,, TM; 0, (e.g, Li,MnO; and
Li,Ru0;).*>* The research on LRO materials started in the
early 1960s with the development of Li,SnO; and Li,Mn0;.”">
Two remarkable developments were made by Thackeray’s
group,” who synthesized Lij 4oMnye;0, (1991), and Dahn’s
group, who synthesized Li[Ni,Li(1/3_2x3)Mn(s3_x3)]0.>* in
2001. Two types of Li-rich materials are (i) layered lithium-
rich oxides (LLROs), which exhibit a high working potential,
low cost, and desirable cyclic stability, and (ii) cation disordered
lithium-rich oxides (DLROs), which exhibit structural stability,
high specific capacity, and poor cycling stability. Three major
challenges with the precision use of LROs can be summarized as
follows: (1) they regulate the oxygen loss/oxygen vacancy, where
the excessive oxygen vacancies may shrink the cell volume,
introduce stacking faults, cation mixing, and an undesirable
new phase, which collectively decrease the electrochemical
performance.®>°” (2) To obtain the deep insights into the bulk
and surface structural evolutions during cycling, the structure
transformation in LRO for the initial and final process showed
a lower coulombic efficiency and interface breakdown.®® (3) To
understand the relationship between the structure/charge-
transfer mechanisms and electrochemical performance of
LROs, they can be analysed using some advanced techniques
(X-ray diffraction, neutron diffraction, X-ray and neutron pair
distribution function (xPDF and nPDF), EXAFS, Raman spectro-
scopy, and Mdssbauer spectroscopy). The performance of Li-
rich cathode materials can be improved by five strategies, as
follows: (i) elemental doping, (ii) controlling the morphology

© 2022 The Author(s). Published by the Royal Society of Chemistry

(iii) tuning the structure, (iv) optimisation of composition, and
(v) electrolyte additives.’® Juan et al.®® prepared sulphur doped
Li-rich cathode materials (LNMOS) via a co-precipitation
method. The XRD-analysis confirmed the presence of the sulfur
(S) dopant, which reduced the mixing degree of cations in the
LNMOS and increased the ordered arrangement of the layered
structure. The S-doped lithium-rich material released a higher
initial efficiency of 96.06% (87.63% for LNMO), a specific
capacity of 293.3 mA h g™' (243.3 mA h g ' for LNMO),
and better cycling stability and rate performance (a capacity
of 117 mA h g !, maintained at a current density of 5C).
Cui et al®® prepared the stable O,-structured Li;,Nig 13-
C0y.13Mn 5,0, (0,-LR-NCM) cathode, which demonstrated a
high coulombic efficiency (CE) >99.82% and high reversible
capacity of 278 mA h g~ . After 100 cycles, 83.3% capacity was
retained by this optimised cathode material.

2.1.7 Anode materials of lithium-ion batteries. Despite the
investigation on cathode materials, the anode also plays an
effective role in the efficient operation of LIBs.'°>'°" The
principal characteristics of the anode influence the cell perfor-
mance parameters, such as its rate capability, cycle life, energy
density, and power density.'®> Before the fabrication of
batteries, these characteristic parameters, such as conductivity,
reducing power, structural defects, chemical/mechanical/thermal
stability, and morphology, need to be examined to understand
how they alter the operational behavior of the cells. These para-
meters need to be optimised to achieve a better electrode perfor-
mance, simultaneously focusing on improving the overall cell
performance. The important anode materials have been devel-
oped from carbon-based alloys, transition metal oxides, and
silicon-based composites. The advantages and disadvantages of
important anode materials are summarized in Table 5.

Recently, Eftekhari et al."® categorized anode materials in
four classes based on the particular voltage range of their
operation. Firstly, for low-voltage materials (group IV and V
elements), the majority of the delithiation capacity can be
achieved under 1.0 V versus Li/Li*, while secondly for mid-
voltage materials (transition metal oxides and chalcogenides),
the majority of the delithiation capacity can be achieved in the
range of 1.0-2.0 V. The third type, i.e., high-voltage operating
materials, the majority of the delithiation capacity occurs over
2.0 V. The fourth category covers nanostructured and mixed
valence-based material, where their potential window varies in
the range of 0-3.0 V and includes a wide variety of materials
with nanostructured and mixed valences (Fig. 6).

2.1.8 Nanostructured Al anode. For rechargeable batteries,
lithium metal anodes (negative electrodes) can provide both
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Table 5 Advantages and disadvantages of various anode materials
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Disadvantages

Anode materials Advantages
Carbon High electronic conductivity
Nice hierarchical structure
Abundant and low-cost resources
Alloys High specific capacity (400-2300 mA h g™ ")

Good security
Transition metal oxides
Nice stability

High specific capacity (600-1000 mA h g™")

Low specific capacity

Low rate capacity

Safety issues

Low electronic conductivity
Large volume change (100%)
Low coulombic efficiency
Large potential hysteresis
Large volume change (300%)

efficiency of pure nanostructured Al and Al-alloy thin films
are summarized in Table 6."%*""°

2.1.9 Si and Si-based composite anode electrodes. Silicon
(Si) is one of the most exciting and promising alternative anode
materials to replace the most commonly used graphite anode
electrodes because it possesses the highest theoretical specific
capacity (4200 mA h g~ '). Among the metals and metal-oxide-
type anodes, Si-based batteries have ten-times higher specific
capacity than the theoretical specific capacity of graphite
anodes (372 mA h g™"). Silicon is the second most abundant
element in the Earth by mass (25.7%) but very rarely occurs in
nature as the pure free element.'’” Silicon is one of the

Silicon Highest specific capacity (3579 mA h g™")
Rich, low-cost, clean resources
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Fig. 6 Comparison chart for potential versus specific capacity of various
anode materials.

high voltage and excellent capacity, resulting in an extra-
ordinarily high energy density. Aluminum (Al) has been con-
sidered as an anode electrode of LIBs since Hamon et al.
tested a non-carbonaceous anode material, for example, Al
thin film with a thickness of 0.5 pym at room temperature, and
obtained a specific capacity above >1000 mA h g~'.*” Nano-
structured aluminum thin films (Al nanorod) showed a
consistent specific capacity, which have been deliberated for
possible application in next-generation LIBs.***° Nanostruc-
tured Al thin films can be grown via physical and chemical
synthetic methods. The specific capacity and Coulombic

principal components of most semiconductor devices such as
integrated circuits (ICs) and microchips.*>**'*¥7'2° However,
two major scientific and technical challenges have hindered
their practical applications in energy storage devices. Firstly,
due to the alloying mechanism, a large number of lithium
atoms are inserted into Si, breaking the chemical bonds
between Si atoms. The structural pulverization induced by a
large volume change (~300% at room temperature) during Li
insertion and extraction leads to the loss of electrical contact
between the active material and the current collector, resulting
in capacity fading and shortening of the battery lifetime.*"*®
Secondly, due to the volume expansion and shrinkage, a thick
solid-electrolyte interphase (SEI) layer can be formed, which is
derived from the irreversible side reactions with the organic
electrolyte.*”~*° This causes a degradation in the battery per-
formance due to the consumption of electrolyte and lithium
ions, the electrically insulating nature, and relatively long

Table 6 The specific capacity and other parameters (current, voltage, scanning rates and coulombic efficiency) of Al and Al-based anode electrodes

S. no. Materials Current (mA g~')  Voltage (V) Capacity (mA h g™") Scanning rate (mV s~') Coulombic efficiency (%) Ref.
1 Al 0.01-1.2 890 10 104

Al nanorods 458 1.35 324 20 91.5 105
2 Al nanorod 700 (0.5C) 0.01-3 1243 0.1 106
3 Al nanorod 700 0.01-3 1293 91 107
4 Fe,Als 0.01-3 485 1 30 108
5 Al-Sn Composite 0.1 mA cm 2 0.05-1.25 972.8 0.1-0.5 81 109
6 Al-Sn composite  0.1-04 mA cm > 0.05-1.25 752 0.1-0.5 83 110
7 Al-Fe;0,-rGO C/10-10C 0.005-3 717.4 99.17 111
8 Al foil 182 —0.02 to +0.55 967 92.6 112
9 Si-Al 0.05 mA cm > 0.005-2 3348 93.6 113
10 CNS/Si/Al, 05 1Ag?! 0.01-1 1560 1 84.8 114
11 Al nanorod 1C 0.01-1 977 1 115
12 Si-Al thin film 0.5C 0-1.5 2257.8 0.05 85.9 116
468 | Energy Adv, 2022, 1, 457-510 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 7 The specific capacity of Si and Si-based anodes of LIBs
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S.no.  Materials  Current (mA g~ ')  Voltage (V)  Capacity(mAhg ')  Scanning rate (mVs™')  Coulombic efficiency (%)  Ref.
1 C-Siry 0.1-3C 0.01-1 1554 — 99.7 128
2 Si-G 200-2000 0.01-1.5 1000 0.5 70 129
3 Si C/50 0.01-1 2790 0.02 99.3 130
4 Si 100 0.01-1.2 3420 — 71.8 131

lithium diffusion length through the thick SELI.>” Thus, to make
silicon a good anode candidate for LIBs, two major issues must
be settled, ie., minimizing the degradation of mechanical
integrity and maintaining the stability of the SEI. Nowadays,
the extracted Si from rice husk (RH) appears to be the most
promising anode material for LIBs."*****"*” The nano-Si has
attracted considerable attention as a promising anode material
in next-generation Li-ion batteries for electric vehicles and
portable electronics. The nanostructured Si (n-Si) and Si-based
anodes are summarized in Table 7.5

However, the major problem in utilizing Si and Si-based
anodes is their poor conductivity and very large volume change
(about 310% for Li,Si) during the lithium alloying/dealloying
(or lithiation/delithiation) process, which cause mechanical
failure of the active material. Thus, it results in pulverization
and poor cycle performance of the electrode."*® The specific
capacity, coulombic efficiency, and scanning rates are summar-
ized in Table 8."3>7'%°

2.1.10 Nanostructured carbon/graphene anode. Dispersing
Si in a carbon matrix has been well-developed in which
the carbonaceous materials can buffer the volume change
and improve the electrical conductivity of Si active materials.
Different types of carbon materials, including amorphous
carbon (a-C), graphite, carbon nanotubes (CNTs), carbon nano-
fibers,'°>'®" have been investigated to improve the cycling
stability of Si active materials. The specific capacity, Coulombic
efficiency, and scanning rates of C-based anode electrodes are
summarized in Table 9.'872%¢

2.1.11 Nanostructured tin anode. Due to the high theore-
tical capacity (994 mA h g ") of tin (Sn), it is a spectacular
material for the fabrication of anode electrodes. Sn-based
anode electrodes of LIBs, such as SnO,, SnS,, and SnSe,, have
been investigated.>®” Several intermetallics of different compo-
sitions, including Li,,Sns, Li,Sn,, LizSn, LisSn, LiSn, and
Li,Sns, are present in the equilibrium phase diagram of
Li-Sn. These intermetallics can be produced via the electro-
chemical lithiation of a tin electrode immersed in an Li-ion
containing an electrolyte such as LiCl0,.>*®

The pulverization and disintegration of the active materials
from the current collector increase by Li intercalation/deintercala-
tion, leading to the formation of an unstable solid-electrolyte
interphase (SEI) and severe capacity fading. Besides, one of the
major obstacles of Sn-based anodes is the poor electrical con-
ductivity of SnO, nanostructures, which hinders the reaction with
Li during the discharge. Several methods, such as, nano-scaled
structure, doping, and core-shell structures, have been reported
to overcome these limitations.?*® Table 10 highlights the tin-based
anode electrodes for charging and discharging parameters.*'>'>

© 2022 The Author(s). Published by the Royal Society of Chemistry

2.1.12 Methods for enhancing the electrode performance.
With the advancement of electrode materials, it has been
concluded that the surface, interface and internal chemistry
of electrode materials play an essential role in the electroche-
mical performance of batteries. Various strategies have been
investigated by researchers to improve the specific capacity and
energy density of the batteries by tuning the cathode and anode
materials. This also aims to reduce the gap between the
theoretical and practical specific capacity of the electrode
material. Surface modification, doping, and controlled mor-
phology variation are the most important strategies considered
for the effective alteration of the electrode efficiency.

2.1.13 Surface modification. Surface modification or coat-
ing is an effective approach to minimize the possibility of side
reactions and improve the stability of electrode materials. The
modified electrode surface prevents direct contact with the
electrolyte, which eliminates the possibility of electrode degra-
dation by reducing the phase transition tendency.>'® This can
be achieved in two ways, as follows: (a) in situ and (b) ex situ. It
is very important to mention here that that it is necessary to
first optimize the suitable conditions for surface modification
via coating. Generally, to achieve the optimum electrode per-
formance, some key points need to be considered during
modification. Firstly, the coating should be uniform and thin
as possible to minimize the overall weight of the electrode.
Secondly, the materials for surface modification must be stable
and have high electronic/ionic conductivity. Finally, the modi-
fied material must be mechanically stable to constrain any
degradation (e.g., cation dissolution in the electrolyte) during
cell operation (volume change may occur).”*”*'®

LiNiy 5C09,Mn( 30, (NCM523) is an interesting cathode
due to its high discharge capacity and good cyclic stability.
However, its safety issue and poor thermal stability are recog-
nized as major drawbacks. Recently, Chen et al.>'® examined
the performance of NCM523 by modifying the surface of the
electrode with Li;PO, to eliminate the performance degrada-
tion. Fig. 7(a) shows the modification approach and role of
coating in ion migration. The XRD analysis suggests that
the coating did not affect the structure of bare NCM523. The
FE-SEM and EDS analysis confirmed the formation of a core-
shell structure and encapsulation of the bare cathode. The
impedance analysis after 200 cycles showed the lower charge
transfer resistance value for the coated NCM523 (156.5 Q)
compared to that of the bare NCM523 (340.1 Q). Compared to
the pristine cathode (Dy;" = 7.29 x 10~ *® em?® s~ %), the diffusion
coefficient was enhanced after the coating (D' = 1.43 x
107" ecm” s7'). The discharge capacity, rate capability, and cou-
lombic efficiency improved for the coated electrode (NCM523).

Energy Adv.,, 2022, 1, 457-510 | 469
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Table 8 The battery parameters (specific capacity, coulombic efficiency, and scanning rates) of Si and Si-based nanocomposite alloys for anodes

S. no. Materials

Current (mA g~ ') Voltage (V) Capacity (mA h g¢”') Scanning rate (mV s~ ') Coulombic efficiency (%) Ref.

1 a-C/Si 100 A em™ (C/2) 0.02-1.2 2500
2 Si/C 15-60C 0-1.5 3107
3 a-Si/Sio,/Cr/C 100 0-1.5 810
4 a-SiG 100-140 0.01-1.5 2858
5 a-Si thin film 0.025C 0-1.5 3134
6 3D-Si/C nanowire 04Ag" 0.1-2 2300
7 Buddle-Si nanorod 410 0-2 2411
8 C-Si 200 0-1.5 1280
9 Si/Si0,/C 100 0.01-1.5 786
10 Si 0.4 mA cm™? 0-1 3900
11 Si/C 100 0-1.5 781
12 Si-C matrix 0.2C 0.01-3 2950
13 Si NW C/20 0.01-2 3193
14 Hollow porous -SiO, 100 0-3 919
15 Si NW-C C/10 0.01-2 2000
16 Li-Si alloy 50 0.01-1.5 1000
17 Mesoporous SiO, 100 0.01-1 3000
18 Mesoporous Si 0.1Ag" 0.05-1.5 750
19 P-Si NP 0.1-1.5C 0-3 2113
20 Si spheres C/20 0.01-2 3105
21 Nano-Si 2A g71 0.01-1 1024
22 Si/PANI 2A g71 0.01-1.5 766
23 Si/CNT 100 0.02-1.2 2050
24 Mesoporous Si 200 0.01-3 1038
25 Si-0-C 100 0.01-2 753
26 Si/PANI 100 0.01-1.5 840
27 Si pomegranate C/20 0.01-1 2350
28 Si/S-C 100 0.01-1.5 1947
29 Si NWs C/10 0.01-1 2000
30 Si N/SiOxNy 0.2C 0.01-2 2131
31  Si-NizsSn, C/50 0.07-2 240
32 Si/Ge DLNT 0.2C 0.01-2 1746
33  Si/po-C/C 02Ag " 0.01-1.5 900
34 Si/PCNF 0.1 A g71 0.01-1.5 2071
35 Si NP-PANI 1.0 A g71 0.01-1 1600
36 Si NW-C 0.05C 0.01-2 3701
37  TiSi, nanonets/Si 0.6 Ag ' (0.2C) 0.15-2 2700
38  Si-CNT 0.8Ag™ " (C/5) 0.01-1 1200
39 Si/rGO-P 50 0-3 1261
40 Si-M C 100 0.01-2 1220
41 Si-Mn/rGO 100 0.01-3.25 600
42 Si/Cu-Al-Fe 120 0-1.5 836
43 SC-Si/G 1.0 A g7l 0.005-1 1611
44 Sio, C/2 0-3 1266
45 Si-SWNT-Cu 0.1C 0.005-3 2221
46 Si-CNT C/5 0.01-1 494
47  Tobacco Mosaic Virus (TMV)-Si 1C 0-1.5 3343
48 Si Np-rGO 0.5 A g71 0.005-1.5 956
49 PS@C 100 0.05-2 1980
50 rGO-porous Si 100 0.01-1.5 815
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82 180
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The coating of the Li;PO, layer acted as a carpet for Li-ion
movement (Fig. 7a).

The Niy gC0¢ 1M1, 1O, (NCM811) cathode is another promis-
ing electrode for batteries due to its high capacity. However, its
poor thermal stability and tendency to react with moisture pose
some challenges that need to be resolved. Becker et al.>*°
examined the electrochemical performance of NCM811 with a
coating of Li,WO, via the sol-gel method. Li,WO, was chosen
due to its high Li* conductivity, non-toxic nature, and desirable
thermal stability.?*" The increased thermal stability of the
coated electrode was analyzed using XRD patterns. A compar-
ison of the capacity retention for the coated and uncoated
NCM811 is shown in Fig. 7(b), corresponding to different cyclic

470 | Energy Adv, 2022,1, 457-510

conditions (temperature and voltage). The state of health (SOH)
of the cell is the ratio of discharge capacity of the actual cycle to
the discharge capacity of the fifth cycle at 0.5C. For a SOH of
about 80%, the coated electrode-based cell demonstrated an
improved performance.

The NCM523 (LiNi, 5C04,Mng 30,) cathode is used for bat-
tery fabrication due to its low toxicity, cost-effectiveness, good
safety, and high capacity.?*> However, this type of electrode
exhibits one drawback, it restricts the cyclic stability due to
corrosion issues with the electrolyte. To eliminate the above-
mentioned issue, Wang et al.>*® recently examined an Li,O-
B,0;-LiBr-coated (~10 nm) electrode to improve the electro-
chemical performance of NCM523. The discharge capacity of

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 9 Anode electrodes based on carbon nanocomposite and battery parameters

S. no. Materials

Current (mA g~') Voltage (V) Capacity (mA h g~') Scanning rate (mV s™') Coulombic efficiency (%) Ref.

1 CNT 0.5C 0-3 446 95 182
2 Co30,/CoO/graphene 21.12 0.005-3 1153.81 0.1 76 183
3 Graphene nanosheet 0.2 mA cm 2 0.01-3.5 672 — — 184
4 Fe,O;@MWCNTs 100 0-3 515 0.1 95 185
5 Fe,Os/graphene 50 0.001-3 1069 0.1 77.2 186
6 Fe,0;/Fe;C-graphene 0.17C 0.01-3 1118 0.5 187
7 Fe,O;-graphene 0.1C 0.05-3 1074.9 0.1 65 188
8 Co30,4/graphene 50 0.01-3 935 1 98 189
9 Graphene NR/SnO, 100 0.01-2.5 1130 0.5 98.3 190
10 G-CNT-Fe 100 0-3 1024 0.05 99 191
11 G/C-Si 300 0.02-1.2 902 57.3 192
12 G-CoS, 100 0.01-3 800 0.05 98 193
13 G-M-SnO, 100 0.005-3 1354 0.1 98 194
14 GO/G/CNT 0.5C 0.01-3 1172.5 0.1 58 195
15 MnO/RGO 0.16 A g71 0.01-3 855 0.1 69.7 196
16 CNT-Si C/10 0.01-1 1711 — 98 197
17 C-Graphite 0.1-3C 0-2.5 358 — 81 198
18 C/si 500 0.02-1.5 1018 — 98 199
19 Nitrogen-doped-graphene 100 0.01-3 2132 0.1 99.2 200
20 nC-pSiMPs C/4 0.01-1 1500 — 78 201
21 p-CNTs@CFO 0.1Ag™" 0.01-3 1077 — 202
22 Porous-G-C 100 0-3 722 0.5 98 203
23 N-C spheres 50 0.005-3 816 0.2 — 204
24 rGO/BN 100 0-3 278 0.1 100 205
25 Li,S-G 0.1C 0-3.5 791 0.1 — 206

Table 10 Charging and discharging parameters of tin-based anode electrodes

S. no. Materials Current (mA g~ ')  Voltage (V) Capacity (mA h g™') Scanning rate (mV s') Coulombic efficiency (%) Ref.
1 SnO,/N-G 0.5 A g71 0.005-3 1352 0.1 97 210
2 Sn/CugSn; thin film 100 pA cm 2 0-1.5 1127 0.5 92 211
3 Sn0,/Co30,/rGO 100 0.01-3 1038 0.1 66.8 212
4 SnO,/graphene 100 0.01-3 2213 0.1 66.74 213
5 C/Sn 200 0-3 1300 0.2 100 214
6 Sno,,C 0.5C 0.01-2 908 0.5 98 215

the Li,O-B,0;-LiBr-coated coated electrode increased from
181.8 to 189.7 mA h g ', and the coulombic efficiency was
enhanced from 94.5% to 97.7%. Fig. 7(c) shows a comparison
of the data for the rate capability of the bare and coated
NCM523 electrode, where the discharge capacity was observed
to be higher for the coated electrodes at all C-rates. Superior
cyclic stability was also detected for the coated electrode, which
is attributed to the elimination of side reactions and corrosion
issues with the electrolyte. The capacity retention was observed
to be 87.7% for the coated electrode, which was 29.8% higher
than the uncoated electrode up to 100 cycles.

Gan et al.>** reported the preparation of an NCM811 cathode
via modification with a coating of WO;. The modified layer
thickness was around 10 to 15 nm, which was also confirmed
via XRD and XPS analysis. The oxygen peak in the XPS survey of
the modified electrode was detected, which was weaker than
that of the uncoated NCMS811 electrode, suggesting the
presence of more reactive oxygen on uncoated NCM811. The
presence of more reactive oxygen may provoke side reactions
between the electrode and electrolyte. The negligible change in
electrochemical performance was investigated in the voltage
range of 2.8-4.3 V. Although no improvement was observed
in the capacity, the rate capability and reversible capacity

© 2022 The Author(s). Published by the Royal Society of Chemistry

drastically improved. The capacity retention was 87.7% for
the coated electrode, which was 29.8% higher than that of
uncoated electrode for up to 100 cycles.

Therefore, it can be concluded that the coating or surface-
modification of electrodes is a promising approach to tune the
electrode surface chemistry. The notable features lead to
(i) enhanced thermal stability, (ii) improved rate capability
and capacity retention, (iii) prevention of side reactions and
electrode corrosion due to the electrolyte, and (iv) suppressed
capacity fading during long cycle run. Some of the important
materials for electrode modification are suggested to be, for
example, carbon (C), TiO,, ZnO, CuO, ZrO,, CeO,, Al,0;, and
MgO. Ionic conducting materials such as PEDOT, LLTO
(Lig.125La0.625Ti03), LizPO,, LisVO,, and LiAlO, are also auspi-
cious materials for the enhancement of electronic conductivity
on the electrode surface. Some important modifications of
(coating) materials and their comparative performances (capacity,
voltage, capacity retention, and coulombic efficiency) are sum-
marized in Table 11,2187220,223242

2.1.14 Role of dopant materials. Doping is an effective
strategy or process to enhance the electrode performance by
tailoring its crystal lattice at the atomic scale. Doping can tune
the charge distribution, defect density, bandgap, and cation

Energy Adv., 2022,1, 457-510 | 471
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Reproduced with permission from Elsevier

order. Another important strategy is to enhance its electro-
chemical performance, which involves the substitution of
cations (Ti, Cu, Ni, Cr, Mn, Mg, Fe, etc.), anions (F), and doping
of mixed elements.”*® This is an alternative to surface coating
or electrode modification to enhance the electronic conductiv-
ity. The dopant may alter the structure and affect the structural
stability and charge compensation. Doping is the key para-
meter to increase the conductivity (electronic/ionic), capacity/
energy density, and delithiation potential. The doping process
occurs inside the material at the atomic level for the movement
of charge carriers, where the dopant concentration cannot the
affect grain boundaries.

Recently, Zheng et al>** prepared the Li;,Mng54Nig 13-
C00.130, (LMNCO) cathode with gadolinium-doped ceria
(GDC) via doping using a wet-chemical deposition approach.
The XRD pattern suggested that the structure of LMNCO was
not changed by the GDC dopant concentration. The increased
interlayer spacing of LMNCO indicated the successful doping of
Ce™®/Ce** or Gd™ without changing the structural properties.
The investigated electrochemical performance was found to be

472 | Energy Adv., 2022, 1, 457-510

superior for the LMNCO-GDC3 electrode with discharge capa-
cities of 267.5 mA h ¢! and 255.2 mA h g™ for the pristine
electrode with the charging rate of 0.1C at different intervals.
Therefore, it was concluded that the GDC-based modified
electrode reduced the charge transfer resistance and promoted
Li" migration. After 100 cycles, the capacity retention of
LMNCo-GDC3 was 92.9%, which was higher than that of the
pristine electrode (75.3% at 0.5C). Fig. 8(a) shows the capacity
fading mechanism in the pristine LMNCO. The electrolyte
reacts with the electrode and side reactions occur. HF is
released from the decomposition of the LiPF4 salt and reacts
with the electrode, which leads to the formation of LiF, result-
ing in the reduction of Li ions. In contrast, the direct contact
between the electrode and electrolyte was restricted in the
modified electrode of LMNCO with GDC (Fig. 8b). Overall, this
minimized the electrode dissolution tendency and loss of the
active material.

Another environment-friendly material, LiNigsMn; 50,
(LNMO), has attracted attention from the energy storage com-
munity due to its spinal structure, high operating voltage (4.7 V

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 11 The comparative performance of modified/coated materials used to enhance the battery performance
Voltage
Coating Host (\%] Capacity (mA h g™") Capacity retention Efficiency (%) Ref.
Li;PO, LiNiy 5C0o.,Mng 30, 2.7-4.3  186.36 (184.36 for pristine) 83% after 200 cycles 86.06% (83.26% 219
(68.5 for pristine) for pristine)
Li,WO, NCM 811 2.5-4.3 192 (188 for pristine) 80% after 765 cycles 220
(LiNig gC0p 1My 10,) (pristine after 465 cycles)
Li,O-B,03-LiBr NCM523 2.5-4.5 116.9 at 5C 87.7% after 100 cycles 97.7% 223
(LiNig 5C00 2Mny 30,) (68.7 for pristine) (29.8% for pristine)
LiVPO4F hybrid  LiNij gC0y1Mn, 10, 2.8-4.3  214.9 (208.1 for pristine) 95.93 (91.68 for pristine)  90.7 (85.5 for pristine) 224
LLTO NCA 2.0-4.4 135 at C/20 99% capacity after 10 cycles — 218
(LiNig gC0.154l5,0502) (125 for pristine) (85% for pristine)
Al, 04 LiNig gC0p 1Mng 0, 2.8-4.3  199.2 (201.7 for pristine) 99.61, after 100th cycle 88.02 (after 1st) 225
Zr0O, (NCMS811) 198.7 (201.7 for pristine) 99.66, after 100th cycle 88.04 (after 1st)
LBO (Li,O- 204.3 (201.7 for pristine) 99.78% after 100th cycle 88.83 (after 1st cycle)
B,0;-LiBr)
Li,O-B,0;-LiBr Li;xMn,0, 3-4.2 122.5 (12.5 for pristine) 93% after 20 cycles — 226
(15.14% for pristine)
ZrO, LiMn,0, 3.0-4.3  118.8 (124.4 for pristine) 90.1% after 400 cycles 96.7 227
(at 55 °C)
CeO, Li; ,Nig,Mng 160, 2.0-4.8 270 at 0.1C (235 for pristine) 78.5% after 200 cycles 80.54 228
Li,O-B,05-LiBr LiNig gC0g.15Alg. 0502 3.0-4.3 181 (175 for pristine) 94.2% after 100 cycles 91 229
Ta and LiNig 6C00,Mn,,0,0,  1.88-3.88 115 at 34 mA g~ * 91% after 30 cycles 95.9 (87.4 for pristine) 230
(52.7 for pristine) (75% for pristine)
w 93.3 (52.7 for pristine) 82% after 30 cycles 92.6 (87.4 for pristine)
(75% for pristine)
Carbon NCMS811 3.0-4.3  188.6 (192.8 for pristine) 87.8% after 80 cycles — 231
(LiNig gC0p 1M1 102) (74.3% for pristine)
Li5AlO, NCMS811 2.8-4.3  147.61 (127.86 for pristine) 89.15% after 100 cycles — 232
(LiNig gC0p 1M 1 0,) (75.06% for pristine)
LizPO, LiNiy gC0y.1Mng ;0, 3.0-4.3  192.4 (186.0 for pristine) 86.7% after 250 cycles 86.4 (83.9 for pristine) 233
(85.2% for pristine)
Li,CuO, LiNig 33C00.33Mn 330,  2.4-4.2 192 (182 for pristine) 69% after 100 cycles 99 after 30 cycle 234
(30% for pristine) (93 for uncoated)
Co;0, and LiNig gC0g.1Mng 1O, 2.7-4.5 203.9 at 0.1C 91.4% after 100 cycles 89.1 after 1st cycle 235
LiMn,0, layer (202.9 for pristine) (73.5% for pristine) (87.8 after pristine)
Ti;C,(OH), LiNiy 6C0o2Mn,,0,0,  3.0-4.3  124.5 86.4% at 0.5C after — 236
200 cycles
(71.2% for pristine)
Nickel catalyzed LiFe,_,Ni, PO, 2.8-4.0 181.9 at 0.1C 95.6% at 1C after > 99 after 200 cycles 237
graphitized carbon (143.3 for pristine) 500 cycles
Li-Nb-O shell Li; »Nip.13C00.13Mng 5,0, 2.0-4.6  219.5 (212.3 for pristine) 96.44% capacity 92.59% 238
retention after
100 cycles (83.09%
for pristine)
N-Doped LiNig ¢C0g ,Mn,,0,0,  3.0-4.5  199.4 at 0.2C 82.7% after 100 cycle — 239
carbon-coated (202.4 for pristine) (61.1% for pristine)
Nano-WO; LiNij 5C092Mny 30,0,  3.0-4.5 V 138 (at 25 °C) and 170.9 80.80% after 200 cycles 87.39 after 1st cycle 240
(at 50 °C) (107.8 at 25 °C, (83.19 for pristine)
and 143.9 at 50 °C
for pristine)
LiBO, LiNiy 6C0¢oMn, ,0,0,  2.8-4.3 123 after cycling at 0.5C 84.3% during 150 cycles 93.7 (90.6 for pristine) 241
after 150 cycles at 0.5C
(94 for pristine) (68.3% for pristine)
LFP LiNij §,C0¢.12MNg 060,  3.0-4.2  165.3 after 500 cycles at 91.65% after 500 cycles — 242

1C (130.7 for pristine)

(70.65% for pristine)

versus Li) and rate capability. LNMO has a theoretical specific
energy of ~650 W h kg~ ' and observed to be superior in
comparison to other cathodes.>*”**®* The cation ordering in
LNMO can be tuned by the annealing parameters, which
disorder the spinel. To prepare disordered spinels, Bhuvanes-
wari et al®>*® prepared Sc-doped LNMO (LNMSO) via the
solution combustion method. Its XRD pattern confirmed the
formation of a disordered spinel structure with the Fd3m space
group. The IR spectra also supported this, evidencing the
absence of an ordered spinel structure (P4332). The first
discharge capacity for LNMSO was 131 mA h g ' with a

© 2022 The Author(s). Published by the Royal Society of Chemistry

coulombic efficiency of 88%, while the undoped LNMO demon-
strated the first discharge capacity of 123 mA h g~ ' with a
coulombic efficiency of 81% at 0.1C. Even after 1000 cycles,
LMNSO exhibited the capacity of 102 mA h g~ " (capacity
retention = 98%), which was higher than that of LMNO
(79 mA h g ' with the capacity retention of 90% at 5C).
Fig. 8(c) shows the rate capability in the range of 0.1C to 12C.
The LMNSO electrode demonstrated a superior performance to
the bare LMNO at all current rates. Even at a high C-rate, the
capacity retention for LMNSO was observed to be 61%, which
was higher than that of LMNO (45%). This enhancement in

Energy Adv.,, 2022, 1, 457-510 | 473
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Fig. 8 Schematic illustrations of (a) pristine LMNCO interfacial side reactions with liquid electrolyte after repeated cycling®** and (b) GDC coating layer
acts as a protection layer to suppress the unwanted interfacial side reactions after repeated cycling.?*® (c) Rate capability for LNMO and LNMSO cathode

for 0.1-12C. (d) Cycling performances for LNCM, LNCM-N, LNCM-M at C-

specific capacity and rate capability was attributed to the
creation of disorder in Ni/Mn by Sc-doping, which facilitated
faster Li diffusion. Higher Dy;" (107 '°-10""* cm® s~ ") values were
obtained for LNMSO compared to LNMO (10 '°-10"° em? s7),
suggesting the fast cation diffusion regarding Sc concentration.
The atomic substitution of foreign elements is an effective
strategy to improve the thermal stability and the rate capability
of the NCM cathode. Li et al>*® examined the effect of AI**
doping in the Ni-rich LiNiggCog1Mng goAlg 010, cathode via
a continuous co-precipitation method. The samples were
designated as LNCM-N (LiNi, gC0y1Mng oAlp.0;0,), LNCM-M
(LiNig gC0p 1Mng goAlg 6;0,), and NCM811 (LiNijgCop1Mng10,).
XRD evidenced the shift to the 003 reflection, which was the
highest. This suggests that the incorporation of AP*" was the
highest for LNCM-N. The FE-SEM image indicated the uniform
distribution of AI**. Compared to the Ni** on Li slabs of LNCM-M
and LNCM, the XPS analysis indicated that the presence of a lower
Ni** content on the Li slabs for LNCM-N. The lower Ni** content
was favorable for the faster cation (Li") intercalation/deintercala-
tion, which showed the highest capacity in the electrochemical
analysis. LNCM-N demonstrated a higher discharge capacity
(at 1C) of about 126 mA h g~ * (capacity retention = 78.92%) after
200 cycles compared to LNCM-M (90 mA h g~ *; capacity retention =
59.69%) and LNCM (83 mA h g™ '; capacity retention = 48.62%).
Fig. 8(d) shows the performance of the three cells for 1000 cycles
at 10C. It shows the highest discharge capacity for LNCM-N

474 | Energy Adv, 2022, 1, 457-510

rate of 10C.24¢ Reproduced with permissions from Elsevier.244-246

(with the efficiency of >98% and capacity retention = 70%)
compared to LNCM-M and PNCM. The diffusion coefficients of
LNCM, LNCM-M, and LNCM-N were investigated to be 3.62 x
107" em?s™, 6.51 x 107 em?s™*, and 9.77 x 107 ecm? s 7,
respectively. The high value of the Li‘-diffusion coefficient and
low impedance (evidenced by the XPS) led to better cyclic
stability and enhanced capacity.

Cation substitution is an attractive strategy to tune electro-
des, which reduces the cation mixing to promote the structural
integrity and increase the Coulombic efficiency of the electrode.
This approach was used by Huang et al.,>*° who investigated
the effect of partial Mn substitution with Mg by preparing
LiNig 6C0¢ ,Mng , ,Mg,0, via the hydroxide co-precipitation
method. Mg reduced the cation mixing, preventing the struc-
tural collapse of the Li layer, ie., stable pillar effect. The
electrochemical performance was evaluated between 2.8-4.3 V
at RT. The initial discharge capacity at 0.1C was 180.94 mA h g *
for the pristine electrode and 186.23 mA h g~ for x = 0.01. The
capacity retention for the Mg-doped electrode was 91.04% for
x = 0.03, which is higher than that of the pristine electrode
(81.34%) for 100 cycles. This was attributed to the decreased cation
mixing, which reduced the barrier for Li migration and enhanced
the structural stability owing to strong Mg-O bonding. The effect of
doping elements and metallic species on the specific capacity,
capacity retention, Coulombic efficiency, and scanning rates is
summarized in Table 12,23%244-246,249-261

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 12 Summary of different bulk substitutions and corresponding performances
Voltage
Dopant Host (\%] Capacity (mA h g™") Capacity retention Efficiency (%) Ref.
Gadolinium- Li; ,Mng 54Niy13C00.130, 2.0-4.8 267.5 at 0.1C 92.9% after 100 cycles 83.3 (73.7 for pristine) 244
doped ceria (255.2 for pristine) at 0.5C (75.3% for pristine)
(GDCQ)
Sc LiNiy sMn; 504 3.5-4.9 131 (123 for undoped) 94% after 300 cycles at 1C 88 after 1st cycle 245
(81 for un-doped)
AP LiNig §C0o.1Mng , O, 2.7-4.3 126 at 1C (83 for undoped) 78.92% at 1C rate after 98% 246
200 cycles, 70.0% at 10C
rate after 1000 cycles.
Mg LiNiy ¢C0y.,Mng ,0, 2.8-4.3 186.23 at 0.1C 91.04% after 100 cycles 89.16 for first cycle 249
(180.94 for pristine) (81.34%) for pristine) (87.03 for pristine)
Mn LiNi_g5C00.10Alo.05_x 3.0-4.3 171.4 (156.5 for pristine) — 88.6 (79.4 for pristine) 250
Ti 179.6 (156.5 for pristine) — 81.7(79.4 for pristine)
F Li; 15Nig 275RUg 5750, 2.2-4.3 103 (94 for pristine) 42.2% (43.0% for undoped) — 251
Ti LiNi, sC0g 1Mng 10, 2.8-4.3  165.02 (147.41 for undoped) 77.01% after 150th at 1C 82.5 after 1st cycle 252
(79.3 for pristine)
Nb>* LiV;04 nanorods 1.8-4.0 401 at 0.1C 99.7% after 500 cycles >90 253
N LiNiy ¢C0g.12Mng 55 3.0-4.5 156.6 at 5C 82.7% at 1C after — 239
(129.2 for undoped) 100th cycles (61.1% for
undoped)
1D Nb LiNi;/3C04,3Mn, 50, 2.7-4.3 118.7 at 5C 83.3% capacity retention 92.3 at 0.1C 254
(109.6 for undoped) after 200 cycles at 5C
A LiMnPO, 2.2-5.0 126 at 0.2C 74.4 after 50 cycles 94% 255
w LiNig.99C0g.0sMng 050, 2.7-4.4 235 89% of after 500 cycles — 256
(60% for pristine)
Nb Li; »(Nig.13C00.15- 2.0-4.8 287.5 (234.2 for pristine) 98.50% after 300 cycles — 257
Mny 54)1_xNb,O, (86.68% for pristine)
Zr0O, LiNig.9,C0¢.030, 2.8-4.3 207.2 at 0.2C (201.3 for pristine) 82.90% after 100 cycle 84.74 after 1st cycle 258
(59.01% for pristine)
Mg NCMS811 3.0-4.5 226.5 at 0.1C (208 for pristine) ~ 81% over 350 cycles at 0.5C — 259
(LiNip §C0¢.1Mny 10,) (67% for pristine)
Mn LiFePO, 3-44 45.7 at 0.05C after 1st cycle 84% after 100 cycles 94% after 100 cycles 260
(43.8 for pristine) at 0.5C at 0.5C
W Li, Ti50,,/brookite 1.0-3.0 ~205at0.1 A g’1 at 96% after 1000 cycles ~100% 261
—20 °C (~53 for pristine LTO) at1Ag '

2.1.15 Morphology and mesostructure design. The mor-
phological aspects of electrode materials play an effective role
in deciding the electrochemical performance of the device.
Different morphologies such as nanoparticles, nanoflowers,
nanorods, nanowires, nanospheres, and nanotubes can be
selected for electrodes to enhance the recyclability of batteries.
Nanoparticles are beneficial for the electrochemical perfor-
mance due to their large surface area. Nanorods and nanowires
are the most suitable nanostructures to reduce the traps of
electrons or ions in the electrode. The high surface area of
nanoparticles facilitates the complete use of the active sites in
the material, which provides smooth ion dynamics by decreas-
ing the diffusion length (L) for active charged ions and elec-
trons. Therefore, the particle size can be tuned to enhance the
cyclic stability and energy density. The Li*-ion diffusion coeffi-
cient shows an inverse relation with the diffusion path length

12
~4nD
size, D is the diffusion coefficient, and t is the characteristic
time.?®* The synthetic method determines the morphology and
the structure. Some of the important synthetic methods of
nanoparticles include sol-gel, solid-state precipitation, hydro-
thermal, and solvothermal. The important parameters that are key
to achieving a desirable morphology include the growth tempera-
ture, stirring time, sintering time, pressure, pH, and calcination

and characteristic time (t) <r ), where L is the particle

© 2022 The Author(s). Published by the Royal Society of Chemistry

temperature. Another important approach is the formation of core-
shell microstructures, where the core and shell are tailored to
achieve a balanced and optimum performance electrode. For the
formation of good core-shell microstructures, the structural mis-
match between the core and the shell must be eliminated or
reduced to obtain the desired stability during the cell operation.
The capacity and capacity retention of microstructure-based elec-
trodes (nanoplate, rectangular prism, nanorods, hexagonal nanor-
ods, nanowires, triaxial nanowires, nanotubes, and chain-like
nanowires) are summarized in Table 13.2%727°

2.1.16 Synthesis methods for cathode materials. Many syn-
thetic methods have been developed for the preparation of
cathode materials. The reaction time, precursors, growth tem-
perature, and pressure are important parameters that must be
controlled to obtain the desired materials. The synthesis method
affects the particle shape, size, distribution, phase, and active
material stability. The synthesis methods used include the sol-gel,
solid-state precipitation, hydrothermal, microwave sintering,
template-free hydrothermal, co-precipitation, and spray-drying
methods. Gong et al*”* prepared the LiNiygC0,,0, cathode
material via the sol-gel method (Method-A) and solid-state
reaction (Method-B). The XRD analysis confirmed the for-
mation of a pure phase, regardless of the synthesis method.
The electrochemical performance of the prepared electrode was
examined between 3.0-4.3 V with the first discharge capacity of

Energy Adv,, 2022, 1, 457-510 | 475
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Table 13 Summary of different bulk substitutions and corresponding performance

Morphology Material Voltage (V) Capacity (mA h g”') Capacity retention Ref.
Nanoplate, rectangular prism nanorod LiFePO, 2.4-4.2 163.8 at 0.2C — 263
Nanoplate, hexagonal prism nanorod 144.4 at 0.2C —

Nanowire LiFePO,/C 2.5-4.1 155 at 1C rate 98% after 100 cycles at 20C rate 264
Nanowire LiFePO, 2-4.2 110 at a current 86% after 1000 cycles at a current rate of 10C. 265

rate of 30C

Triaxial nanowire LiFePO, 2-4.5 130 at 0.1 A g™’ — 266
Nanowire LiCoO, 3.0-4.3 126 at 1 mA g " 80% after 100 cycles 267
Nanotube LiCoO, 3-4.3 185 at 10 mA g~ * 89% after 100 cycles 268
Nanotube LiNi 5C0g .0, 205 at 10 mA g*1 71% after 100 cycles

Nanotube LiMn,0, 138 at 10 mA g~ * 69% after 100 cycles

Chain like nanowire LiCoO, 3.0-4.2 103 at 10C 90% after 50 cycles 269
Aligned slanted nanowires LiCoO, 3.0-4.2 97.3 at 0.1C 89% after 150 cycles, 73% after 400 cycles 270

187 mA h g ' and 185 mA h g™, via Method-A and Method-B,
respectively. After 100 cycles at 0.2C, the cathode electrode
prepared via Method-B (158 mA h g~ " with a capacity retention
of 85.4%) showed a better performance than Method-A
(143 mA h g " with a capacity retention of 77.3%). The cathode
electrode prepared via Method-B showed a better electroche-
mical performance with low and high charge-discharge rates
(ie., 0.2C and 1C). Although the microstructural properties for both
synthesis methods were observed to be similar, their morphologies
were different, where Method-A resulted in the formation of
irregularly faceted pebbles, whereas that with Method-B was irre-
gularly spherical. The porous structure of the Method-B cathode
allowed faster Li" intercalation and de-intercalation.

Jiang et al””? prepared an LiNig oC0p,0sMng 625Mg0.0250; €elec-
trode via the sol-gel method and investigated the effect of
calcination temperature and time on its electrochemical perfor-
mance. The XRD analysis evidenced a decrease in cation mixing
with respect to an increase in temperature (650 °C to 800 °C). The
microscopic images showed the growth of nanoparticles with an
increase in temperature, which increased the size of the nano-
particles from the nanometer to micrometer range. The specific
capacity of the electrode was 128.4, 201.0, and 180.5 mA h g *
after the first cycle and 121.4, 199.6, and 170.0 mA h g™ after the
10th cycle regarding the calcination temperature of 650 °C, 700 °C,
and 750 °C, respectively. The specific capacity decreased at high
temperatures due to the large particle size (as evidenced from
SEM), which reduces the diffusion distance. The SEM analysis
confirmed that the morphology changed with agglomeration at
the calcination time of 18 h, together with a good hexagonal
structure. The specific capacity changed to 144.0, 187.6, and
132.1 mA h g ' after the fifth cycle and 106.3, 172.3, and
105.1 mA h g~ " at 1C with the calcination time of 6 h, 12 h, 18 h,
respectively. The reduction in specific capacity at a high calcina-
tion time is attributed to the agglomeration tendency of particles,
as evidenced by SEM. Table 14 summarizes the different methods,
materials prepared, and performance parameters.**>”* 28

3. Electrolytes for Li-ion batteries

Since the first breakthrough in LIBs by John Goodenough and
their commercialization by the Sony Corp. in 1991, these

476 | Energy Adv, 2022,1, 457-510

batteries have attracted global attention owing to their high
energy density. Prof. J. B. Goodenough said that ‘“the cost,
safety, energy density, rates of charge/discharge and cycle life are
critical for battery-driven cars to be more widely adopted”. During
battery operation, the simultaneous movement of ions and
electrons occurs. Ions flow through the electrolyte, while elec-
trons are generated at the anode (negative electrode) and flow
towards the cathode (positive electrode) via an external circuit.
The electrode accommodates charge storage in the stacking
layers, while the electrolyte acts as a carpet for the ions. The
capacity of the battery depends on the rate of Li" migration to
and from via the spacer between electrodes. Despite the effec-
tive role of the electrode in the stability and safety of batteries,
the electrolyte is also a key component and must be chosen
carefully because of its dual role. A separator is placed between
electrodes, which prevents short-circuit and provides a medium
for ion migration.”****" The electrolyte, together with the
separator, must fulfill essential requirement. Table 15 provides
a glimpse into the important electrolyte parameters for devel-
oping safe and efficient LIB separators.>*>

The existing batteries are based on a liquid electrolyte;
however, it threatens the safety of batteries due to the possibi-
lity of cell explosion as a result of side reactions. The leakage of
the electrolyte may degrade the electrodes, causing capacity
fading due to the loss of the active materials. This leads to the
loss of sufficient ion storage sites in the electrode, low capacity,
and energy density, resulting in a degradation of the battery
performance. During the rapid charging-discharging process,
the dendrites can grow at the anode and pass through the
liquid electrolyte easily, which short-circuit the battery and
explosion may also occur.

Unwanted chemical reactions between the liquid electrolyte
and electrode lead to the release of gases inside, and pressure
build-up occurs when the battery fails to accommodate the
volume changes. The other main requirements for advanced
batteries are the lower cost and weight. The current LIBs use
both an electrolyte and separator, which affect their cost and
weight. Therefore, these are some serious issues in the current
battery systems that need to be resolved. They can be fixed by
replacing the liquid electrolyte with solid electrolytes. Solid-state
electrolytes (SSEs) are the main components in ASSLBs.***?** The
recent progress in inorganic SSE systems mainly including oxide

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 14 Summary of different bulk substitutions and the corresponding performances

View Article Online

Review

Voltage
Method Precursors (\%] Capacity (mA h g™") Capacity retention (%) Ref.
Sol-gel LiNiy 3C00 0, 3.0-4.3 143 after 100 cycles at 0.2C 77.3 271
Solid-state 158 after 100 cycles at 0.2C 85.4
Sol-gel (calcination temp = 650 °C)  LiNig ¢C0y,5- 2.8-4.3  128.4 after 1st cycle 121.4 after 10 cycles 272
Sol-gel (calcination temp = 700 °C) Mny 025Mg0.02502 201.0 after 1st cycle 199.6 after 10 cycles
Sol-gel (calcination temp = 750 °C) 180.5 after 1st cycle 170.0 after 10 cycles
Sol-gel (calcination time = 6 h) LiNig C0g.0sMNg 25~ 2.8-4.3  144.0 (at 1C) 106.3 after 50 cycles
Sol-gel (calcination temp = 12 h)  Mg(.0250, 187.6 (at 1C) 172.3 after 50 cycles
Sol-gel (calcination temp = 18 h) 132.1 (at 1C) 105.1 after 50 cycles
Sol-gel LiNiy 33Mng 33C0g 330, 3.0-4.6 157 — 273
Thermal destruction (NMC111) 147 —
Solid-phase 172 at 1C/0.5C 95.2 after 10 cycles
Hydrothermal Li,FeTiO, 1.5-4.8  153.8 at C/10 — 274
Template-free hydrothermal Li,FeSiO, hollow sphere 1.5-4.8 152 at 0.05C 110 after 100 cycles 275
at 0.1C
Hydrothermal LiMn,0, 3.2-4.35 121 at a current density of 1/10C 111 mAh g ' at1/2C 276
after 40th cycle
Urea-based hydrothermal LiNiy 5C0, Mngy 3 O, 3.0-4.3  158.6 after 1st cycle at 20 mA h g’1 92.6 after 50 cycles 277
3.0-4.6 200 after 1st cycle at 200 mA h g~ * 79.4 after 50 cycles
Hydrothermal LiFePO, 2.0-4.5 167 at 0.1C after 1st cycle 98 after 30 cycles 278
Microwave synthesis LiFePO,Graphene 2.7-4.2  166.3 at 0.1C after 1st cycle 99.5 after 10th cycle 279
Microwave-assisted hydrothermal  LiFePO, 2.5-4.2  152.1 at 0.1C after 1st cycle ~95 after 40th cycle 280
Microwave synthesis LiFePO,/C 2.5-4.0 150 at 0.1C) — 281
Microwave synthesis LiMn, 5Ni, 5 O, Spinel 3.5-4.8 130 at the 25th cycle 100 between 10th 282
and 50th cycle
Microwave-assisted solvothermal Li,MnSiO, 2.0-4.5 250 at C/10 — 283
Spray drying LiNiy sMn; 504 3.0-4.8 134 mAh g’1 95 at 3.5C 284
Modified co-precipitation Al-Doped 3.0-4.3  159.7 mA h g7" at 0.5C for 1st cycle 86.56 after 100 cycles 285
LiNig.5C0.,Mng 30,
Co-precipitation LiNiy sMn; 50, (half-cell) 3.5-4.95 141 mA h g ' at 1C after 200 cycles 94 over 200 cycles at 1IC 286
LiNiy sMn, 50, (full cell) 141 mA h g™ ' at 1C after 200 cycles  92.4 over 200 cycles at 1C
LiNiy sMn; 504 (full cell 133.2 mA h g’1 at 1C 93.3 over 100 cycles at 1C
at 55 °C after 200 cycles
Solvothermal LiNig ggC0g.09Alp.0302 3.0-4.3  210.7 mA h g7 " at 0.1 after 1st cycle 75.93 after 100 cycles 80
at 55 °C (0.1C)
Co-precipitation 203.2 mA h g~ " at 0.1 after 1st cycle 63.31 after 100 cycles
at 55 °C (0.1C)
Antisolvent precipitation LiBO, coated 2.5-4.6 200 mA h g~'at 0.1C 78.5 after 100th cycle 287
LiNig 5C09.,Mng 30,
Template method LiNig sMn; 50,4 3.5-5.0 ~129mAhg'ati1C 96.6 after 100 cycles 288
at 1C
Chloride co-precipitation LiNi gC0 1Mng 10, 2.7-43 184 mAh g 'at0.1C 169 mA h g™ ! after 289

Table 15 General requirements for separators used in lithium-ion batteries

30 cycles.

Parameter

Requirement

Chemical and electrochemical stability

Wettability
Mechanical property
Thickness

Pore size

Porosity

Permeability (Gurley)
Dimensional stability
Thermal stability
Shutdown

Stable for an extended period
Wet out quickly and completely
>1000 kg ecm™" (98.06 MPa)
20-25 pm

<1 pum

40-60%

<0.025 s um™—

1

No curl up and lay flat
< 5% shrinkage after 60 min at 90 °C
Effectively shut down the battery at elevated temperatures

SSEs, sulfide SSEs, and halide SSEs has been reported by many
researchers.”>% The ionic conductivity of the typical inorganic
solid-state electrolyte is required ~107% S cm™" at room tempera-
ture, which is very close to the ionic conductivity level of liquid
electrolytes.””® The poor performance was observed due to high

© 2022 The Author(s). Published by the Royal Society of Chemistry

interfacial impedance caused by the instability between the
sulfide solid electrolyte and oxide cathode during the charge-
discharge process. To overcome the interfacial impedance, the
LiNbO;-coated NCM811 cathode was reported to exhibit signifi-
cantly improved electrochemical performances at 35 °C and 60 °C
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in contrast to the bare cathode. Especially at 60 °C, the LiNbO;-
coated NCMS811 cathode displayed a discharge capacity of
203 mA h ¢ " at 0.1C and a rate performance of 136.8 mA h g~ *
at 5C, which are much higher than that for the reported oxide
electrodes in ASSLIBs using sulfide solid electrolyte.**

The fundamental benefits of solid electrolytes are as follows:
(i) better thermal and mechanical stability, (ii) better cell packa-
ging with high pressure, (iii) no possibility of side reactions due to
solid nature, (iv) better interfacial contact and prevention of
dendrite growth, (v) low cost due to dual role (electrolyte and
separator), and (vi) higher safety and broad temperature range of
operation.>***°! For an ideal electrolyte, high ionic and negligible
electronic conductivity are favorable.**® Ionic conductivity is
linked to the number of free cations and electrolyte viscosity.***
Thus, a high number of free charge carriers and low viscosity of
the electrolyte are specific requirements. Furthermore, the voltage
stability, thermal stability, and mechanical stability determine the
overall safety of the battery operation. Fig. 9 shows the character-
istic parameters of the electrolyte (crystallinity, packaging, ion
transport number, interfacial contacts, broad temperature range,
voltage stability window, conductivity, salt dissociations, inert
towards electrodes, and glass transition temperature) that influ-
ence the ion dynamics, capacity, and energy density of the battery.
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For the synthesis of new polymer electrolytes, the involved
salts play a crucial role. The parameters of the salt are the main
deciding factors for the performance of electrodes, and thus it
should be carefully selected. The ion dynamics are linked with
the anion size, anion mobility, molecular weight, ion conduc-
tivity, donor number, thermal stability, toxicity, dissociation
constant, and lattice energy of the salt.*** Fig. 10 shows the
possible structures of some of the dominant lithium salts in the
R&D sector, and their key properties, that is, ionic conductivity,
molecular weight, ion mobility, dissociation constant, and donor
numbers are compared. Table 16 summarises the lithium salts
according to their anion size and main characteristics (ionic
conductivity, molecular weight, ion mobility, dissociation
constant, and donor numbers), which affects the electrolyte
conductivity.?°®

4. Major challenges associated with
battery safety
The electrolyte used in commercial LIBs is an organic electro-

Iyte, which threatens the safety of the battery during charging-
discharging. Because of the poor safety of batteries with organic
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Salt
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stability
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®
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prevent dendrite growth formation

Cation and Ion transport number
must be close to unity

Fig. 9 Characteristic properties of crystallinity, packaging, ion transport numbers, interfacial contacts, broad temperature range, voltage stability
window, conductivity, salt dissociations, inert towards electrodes, and glass transition temperature for electrolytes of LIBs.
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electrolytes, a high performance cannot be achieved (long cycle
life and high-power density), where safety is one of the prime
requirements for battery manufacturers. Due to major safety
concerns, many challenges have been considered in the energy
storage sector. Two important reasons that threaten the safety
of LIBs are thermal runaway and dendrite growth, which both
can cause battery explosion due to fire and short-circuit.>*”
Therefore, liquid electrolytes should be replaced with solid
electrolytes for the safe operation of batteries, particularly for
portable electronic devices and electric vehicles. Many acces-
sories and precautions have been considered as a priority in the
production of batteries to prevent heat generation and short-
circuiting. Nevertheless, a feasible and optimized solution can
enhance their safety by eliminating the inherent issues faced by
the electrode, electrolyte, and interfacial layers.

4.1. Thermal runaway issues

Thermal runaway (TR) indicates uncontrolled reactions inside
the battery. Thermal runaway is initiated when the heat gener-
ated inside the battery cannot be compensated by heat loss to

© 2022 The Author(s). Published by the Royal Society of Chemistry

the environment. Because of the heat generated during opera-
tion, the battery catches fire and may explode, which can be
avoided by replacing the liquid electrolyte with solid electro-
Iytes. In brief, TR disturbs the physical and chemical properties
of the materials used in batteries. Various fire incidents asso-
ciated with LIBs have been reported in portable electronic
products and electric vehicles worldwide. When they were
analyzed in detail, four common reasons were observed, as
follows: (i) overheating and overcharging, (ii) short-circuit due
to self-ignition or mechanical damage, (iii) failure of the battery
due to handling management, and (iv) pressure build-up due to
the release of gas after degradation of the electrolyte.’?®3%°
Fig. 11 shows the main causes of LIB damage or battery
explosions due to reasons such as deformation, separator
tearing, dendrite growth, and increase in temperature.**°

Fig. 12(a) shows the role of temperature and its effect on the
battery operation for safety concerns. With an increase in the
temperature of the battery due to overcharging, overheating, or
external impact during its operation, the active material of the
electrolyte starts decomposing. This activity occurs in various
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Table 16 Structure and properties of commonly used lithium salts for studies on polymer electrolytes®°®

Lithium
salt Anion Main characteristics
. Qe e Broad electrochemical stability window
LiClO, oo e Low solubility in commonly used carbonate-type solvents
LiBF o e Broad electrochemical stability window
5% PO e Low solubility in commonly used carbonate-type solvents
fe e High ionic conductivity, favors SEI formation, passivates Al substrate at the cathode side
LiPF, F'-OFF e Decomposes in the presence of moisture and reacts with electrolytes at elevated temperatures, resulting in the
F formation of HF
Q000 e Higher ionic conductivity compared to LiTFSI and high electrochemical stability
LiFSI FSSE e Unable to form passivation layers on Al current collectors (in the presence of LiCl) But purified LiCl free salt
passivates Al collectors
. re 2P%° . e High solubility and high ionic conductivity and high electrochemical stability
LiBETI TETNTE™? o Unable to form passivation layers on Al current collectors
LiBOB °>:°.g,‘o © e High electrochemical stability and long-term stability
1BO o070 o e Form highly resistive SEI-films (low conductivity in comparison to LiPFs and LiTFSI)
LiDFOB Fgo~r° e High electrochemical stability and cycling behavior, Able to form a passivation layer on Al current collectors
! F o™ o Lower solubility in carbonate type solvents compared to LiTFSI and LiPFg, but higher than LiBOB
. %P AL e High solubility and high ionic conductivity and high electrochemical stability
LITFSI FC”"N™"CFs o Unable to form a passivation layer on Al current collectors (Al-degradation and corrosion)
+ Air
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al: B: BN . N:i &
o 3 - © = .
S g £E5 83 g% 8 o High Explosion
— X \j 3 £ - ;
e - emperature
g . . G

Mechanical Electric

Flame
Electrolyte vapor
Other flammable gases
Thermal
runaway

Dendrite
growth

Separator
tearing

Piercing
separator

High
temperature

Collapse of
_separator_

Internal short circuit--
common cause of
thermal runaway

Internal short circuit

Fig. 11 Schematic illustration of LIB fire accidents.

side reactions of complex reaction mechanisms, which damage
the battery. The cathode, anode, and electrolyte reactions lead
to the decomposition of the SEI layer and electrolyte breakdown
occurs with the release of harmful species (LiPFg — LiF + PF;).
The release of oxygen, heat, and dendrite formation lead to
thermal runaway.*'!

Although internal short-circuiting is one of reasons for TR,
sometimes TR may occur without short-circuiting. The safety of
the battery depends not only on the individual electrodes and

480 | Energy Adv., 2022,1, 457-510

electrolyte, but also on the overall properties of the cell com-
ponents. The chemical cross-talk between the cathode and
anode may lead to the TR mechanism. Recently, Liu et al.*'?
studied in detail large pouch cell batteries, where a polyethy-
lene terephthalate (PET)-based ceramic separator was used to
prevent short-circuiting of the battery. It was observed from
DSC, heat generation, and the MS oxygen gas (m/z = 32)
characterization versus temperature plot that the phase transi-
tion is linked to the generation of heat and release of oxygen.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(a) Schematic of thermal runaway stages of lithium-ion batteries: chemical crosstalk between the charged cathode and anode. (b) Charged

cathode alone exhibits a strong oxygen release peak, while the mixture of cathode/anode releases virtually no oxygen but has sharp heat generation
enhancement at the same temperature range. (c) Illustration of proposed chemical crosstalk process between the cathode and anode. (d) Three stages
for the thermal runaway process. Stage 1. The onset of overheating. The batteries change from a normal to an abnormal state and the internal
temperature starts to increase. Stage 2: Heat accumulation and gas release process. The internal temperature quickly rises and the battery undergoes
exothermal reactions. Stage 3: Combustion and explosion. The flammable electrolyte combusts, leading to fires and explosions.>°® Reproduced with

permission from AAAS Science.3%°
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This released oxygen (at 276 °C) can diffuse through the
separator and react with the reactive anode.

Fig. 12(b) shows the absence of any oxygen peak, which
indicates that the anode consumed it, as also evidenced by the
weight loss comparison. The cathode showed a larger (2.8%)
weight loss than the cathode/anode mixture (0.7%). The
exothermic reactions were larger for the cathode/anode mixture
(770 J g ") than the individual cathode (108 J g '). This
chemical cross-talk between the cathode and anode is shown
in Fig. 12(c). The individual cathode releases oxygen, which
leads to the initial generation of heat. During the device
operation (charging-discharging), the heat is generated rapidly,
and oxygen reaction leads to TR. The authors also confirmed
that the TR could not be stopped by purging with liquid
nitrogen. The liquid nitrogen failed to stop the TR because of
oxygen was supplied from inside the cathode of the battery.
Therefore, a solution to overcome this issue seems to be improv-
ing the battery thermal management system. The safety of the
device needs to be the priority together with its performance.

Fig. 12(d) shows the battery explosion due to a thermal
runaway during operation.>*® In stage-1, the main reasons for
initial heat generation are battery crash, dendrite growth,
overcharging, and internal short-circuiting. In stage-2, the
battery temperature increases due to the accumulation of heat,
which results in the decomposition of SEI; hence it releases
gases from electrode-electrolyte reactions where the separator
starts melting. The melting of the separator leads to the short-
circuiting of the battery, causing the breakdown of the active
materials. In stage-3, the liquid electrolyte is present in the
battery, resulting in the explosion of the battery or permanent
shutdown. Simultaneously, the battery releases some gases due to
internal pressure, which is a favorable condition for explosions.
The electrolyte is a component that separates the electrodes,
which prevents their interaction and plays an effective role in
preventing the short-circuiting of the battery. The most feasible
alternative electrolyte that has potential to eliminate the threat of
thermal runaway is the solid electrolyte. The solid nature of
electrolytes will automatically enhance the safety and prevent side
reactions and there is no tendency to leak electrolytes.*"?

4.2 Dendrite growth: challenges and remedies

Together with the TR threat, the dendrite growth affects the
safety of the battery, which diminishes the cyclic stability and
restricts the operation or lifetime of the battery. Dendrites are
generally rigid tree-like structures with needle-like projections
(called whiskers) that grow at the anode. The growth of dendrite
structures at the anode penetrates through the separator and
reaches the cathode during the cell operation. Therefore, the
specific capacity deteriorates and causes short-circuiting of the
battery, and finally damages the device and shortens its life
span. When increasing the miniaturization and compactness of
devices, the growth of dendrite structures is one of the sig-
nificant threats that need to be eliminated for developing high
energy density and long life in the battery.

Recently, Zhao et al.>'* proposed the concept of ions redis-
tribution to suppress the dendrite growth. The separator is an

482 | Energy Adv., 2022,1, 457-510
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insulating layer through which Li-ions migrate/penetrate.
These Li-ions accumulate on the anode surface through the
pores of the separator. In the absence of distributed ions, the
anode surface was faced with the separator skeleton. The Li-ion
redistributor method is regulated to avoid the accumulation of
ions on the anode electrode, where dendrite growth formation
occurs (Fig. 13iA and B). A commercially available separator,
named polypropylene (PP), was coated on Al-doped LLZTO
(Al-doped Lig ysLazZr; 75Tag 25012), which regulated the ion
diffusion owing to the presence of inherent 3D conduction
channels. The coated electrode enhanced the mechanical
strength and suppressed the formation of dendrites even with
liquid electrolytes (Fig. 13ii). Considering the safety issue of
batteries, Zhao et al.**> proposed a flexible anion-immobilized
ceramic-polymer composite electrolyte, that is, polyethylene
oxide (PEO) and lithium bis(trifluoromethylsulfonyl)imide
(LiTFSI), for the application of Al-doped LLZTO. Fig. 13(ii(A)
and (B)) demonstrates a potential electrolyte that quenched the
formation of dendrite structures, which is attributed to the
rigid nature of uniform ion distribution (due to the effective
immobilization of anions). The demonstrated electrolyte was
stable up to 5.5 V and used to fabricate batteries, achieving a
specific capacity of 150 mA h g~'. The internal health of the
battery can provide a hint about the battery explosion, which
can be prevented. D’innocenzo et al.*'® developed a smart
battery by changing the separator with a bifunctional separator
(polymer-metal (Cu)-polymer triple layer configuration). This
separator physically isolated the electrodes and reduced the
voltage (Fig. 13iii-a and b). However, this type of separator did
not stop the growth of dendrites, where the growth of dendrites
increase with the time of cell operation, finally reaching the
cathode.

To suppress the growth of dendrites on the Li-metal anode,
generally the coating of a polymer and ceramic on the anode is
performed, where the representative investigations are pre-
sented in Fig. 14(a) and (b). This strategy enabled the control
of dendrite growth, but the low ionic conductivity of the
polymer and poor interfacial contact remain a considerable
drawback to the overall cell performance.*'” Thus, it becomes
essential to prepare a suitable layer that provides faster ion
diffusion and restricts the growth of dendrites. Xu et al.*'®
prepared an artificial protective layer (APL) based on PVDF-HFP
and LiF on the Li metal anode to suppress the growth of
dendrites. Fig. 14(c) shows the uniform Li deposition on the
soft polymer matrix. A full cell was fabricated using LFP as the
cathode, APL-modified Li as the anode, and carbonate electro-
Iyte of 1.0 M lithium hexafluorophosphate (LiPF¢)-ethylene
carbonate/diethyl carbonate (v/v = 1:1). Initially, both cells
(modified and unmodified Li anode) showed a capacity of
150.6 mA h g~ with a Coulombic efficiency of >99%. After
50 cycles, the APL-modified cell demonstrated good cyclic
stability up to 250 cycles with 80% capacity retention (Fig. 14d
and e). In brief, the modified Li anode-based cells exhibited a
2.5-times longer cycle life than the unmodified anode. This approach
may be very useful for the liquid electrolyte and a solid electrolyte,
which can be adopted for the future design of Li-ion batteries.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(i) Schematic illustration of the electrochemical deposition behaviors of the Li metal anodes using (A) routine PP separator and (B) composite

separator with the LLZTO layer as an ion redistributor for uniform Li-ion distribution. (ii) Schematic of the electrochemical deposition behavior of the Li
metal anode with (A) PLL solid electrolyte with immobilized anions and (B) routine liquid electrolyte with mobile anions.®*® (iii) In situ observation of
dendrite growth on lithium electrode. (a) Lithium anode and separator-wrapped lithium counter electrode with copper conductive layer facing the
lithium anode housed in a glass cell for in situ optical microscopy observation. During charging of the cell, non-uniform deposition of lithium on
the lithium electrode leads to mossy dendrite formation and growth on the surface. (b) Voltage profile of the device. The lithium dendrites contact the
conductive copper layer on the separator within about 6—-8 min, giving rise to a 3 V drop in VCu-Li, given that the potential difference between copper

and lithium is dissipated on contact.*'® Reproduced with permission from Nature Publishing Group.

Besides the above-discussed strategies, some other strategies to
moderate electrolytes include additive electrolyte, nanostructured
electrolyte, solid electrolyte, and membrane modification.'”" How-
ever, although these strategies effectively suppress dendrite growth,
there are some negative effects that restrict their use on a large
scale. Thus, the best strategy may be the optimization of these
factors to develop efficient and long life span batteries. Table 17
shows a comparison of the proposed methods to suppress Li
dendrite growth. It seems that the use of solid electrolytes has
the potential to suppress the dendrite issue, whereas the limit of
ionic conductivity is one of the major drawbacks. Accordingly, the
scientific community has focused on enhancing the ionic conduc-
tivity of solid electrolytes and developing commercial liquid elec-
trolytes. In the next section, we explore the possible use of solid
electrolytes for Li-ion batteries and how this has opened new doors
for developing high-power density and long life span innovative
batteries, ie., all-solid-state Li-ion batteries (ASSLIBS).

4.3 Electrode/electrolyte interface (EEI) engineering

LIBs have various components that play a crucial role in deciding
their performance. One of these crucial LIB components is

© 2022 The Author(s). Published by the Royal Society of Chemistry
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recognized to be the electrode/electrolyte interface (EEI). The
EEI is formed due to the decomposition of electrolytes and the
electrode-electrolyte interactions, where (i) the interface gener-
ated on the negative electrode is the “solid electrolyte inter-
phase”” (SEI) and (ii) the interface generated on the positive
electrode is the “cathode electrolyte interphase” (CEI). Generally,
the effect of the cathode interface is smaller compared to that of
the SEI. Two important challenges linked with the EEI are
interfacial contact and chemical compatibility. In the EEI region,
various phenomena occur such as charge transfer reactions,
electrolyte decomposition, and electrode (cathode and anode)
degradation. Thus, it becomes important to modify or tune the
EEI for achieving optimum battery performances (high energy
density, long cycle life, etc.). The EEI can be altered by varying the
synthesis methods and engineering of the material. The quality
of the EEI gives an idea about the safety and operation of the
battery. An optimum EEI can be formed via three approaches, as
follows: (i) minimizing the phase in the fabrication of the
battery, (ii) enhancing the contact area by reducing the particle
size and mixing the electrode and electrolyte, and (iii) addition
of a buffer layer to enhance the chemical compatibility.**°
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Table 17 Comparison of proposed methods to suppress Li dendrite growth319

Advantage

Disadvantage

Electrolyte additive

Super-concentrated
Electrolyte

Nanostructured electrolyte
Solid-state electrolyte

Structured anode
Membrane

(a) Facile operation
(b) Forming a thin and highly conductive SEI
High Coulombic efficiency and cycling stability

High ionic conductivity

(a) without electrolyte leak

(b) Suppressing dendrite growth
Suppressing Li dendrite growth

(a) Stopping dendrites to the cathode

(a) Poor mechanical strength to suppress dendrite growth
(b) Poor long-term stability during cycling

(a) High price

(b) Limited rate performance

Complicated fabricating process

Low ionic conductivity

Low Coulombic efficiency
Less effect on the dendrite

Modification (b) Detecting the dendrite growth

The solid electrolyte interface (SEI) is an insulating film that
covers the electrode surface to hinder the side reactions. Some
key characteristics of the SEI film are, as follows: (1) high ionic
conductance for ease of Li migration via the SEI, (2) stable
morphology and chemical structure, (3) robust binding proper-
ties with active substances, (4) superior mechanical performance
buffering volume expansion, and (5) superior electrochemical
and thermal stability.**' Fig. 15 displays the strategy to tune the
interface in Li-ion battery by altering its structure.

484 | Energy Adv, 2022, 1, 457-510

Nucleation and growth

Various fabrication techniques can be used to modify the
surface of electrodes by creating a high-quality artificial buffer
layer on the surface of SSE or/and electrode materials. The
techniques classified based on this approach are (i) top-down
approaches, including magnetron sputtering, spark plasma
sintering, electron-beam evaporation, and pulsed laser deposi-
tion and (ii) bottom-up approaches, including sol-gel-derived
synthesis, atomic layer deposition, chemical vapor deposition,
and electrochemical-assisted synthesis.

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ya00043a

Open Access Article. Published on 20 June 2022. Downloaded on 1/17/2026 9:59:37 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Energy Advances

View Article Online

Review

LHCE Co-
-dilute solvent
; Metal
Others Fdn.l' oxide
forming
Additive Ion/electron
conduction
Surface
coating
Organic Others
liquid x
electrolyte Nano-
Surface and . Scakc
Thin film
interface e
; deposition-
modification of ALD
LIBs electrode materals PEALD
e Cater
SEI coating
Atom
doping

Fig. 15 Schematic diagram of surface-interface modification strategies and classification in organic liquid electrolytes for LIBs and map of this review

(Fig. 2 from ref. 321).

Fig. 16(i) displays a typical schematic illustration of the SSB
components and the interfacial challenges. Fig. 16(ii) shows the
three types of interfaces (interphases), as follows: (i) intrinsi-
cally stable interface, where the solid-state electrolyte (SSE) is
nonreactive with the Li metal and a distinct two-dimensional
interface is formed (Fig. 16(ii)a) and (ii) solid-electrolyte interphase
(SEI), with poor electron conductivity and desirable Li-ion con-
ductivity (Fig. 16(ii)b). A perfectly stable interphase due to a self-
limiting reaction between the SEI and Li effectively blocks electron
transport. (iii) Mixed-conducting interphase, where the electronic
conductivity is higher than the SSE (Fig. 16(ii)c).***

Fig. 16(ii)d shows the potential drop from the SSE potential
to Li metal at the interfaces for the first two types of SSEs,
whereas the partial potential region of the third type of inter-
phase drops below the potential of Li deposition. This drop
indicates the growth of Li dendrites in the third type of
interphase. The growth of dendrites is also attributed to the
overpotentials during Li plating and the high electronic con-
ductivity of SSEs. The high conductivity reduces the potential in
the electron-conductive interphase (III' curve). By introducing
artificial buffer layers (ABLs), nonreactive/reactive interface
with an Li-stable interphase can be created.**® The formation
of an interface via this approach (between solid electrolyte and
electrodes) provides enhanced chemical/electrochemical stabi-
lities. By adding a compound with a special structure in the
electrolyte, the properties of SEI can be tuned. Hogstrom et al.
reported an increase in the irreversible capacity with the addi-
tion of an organic film-forming additive, propargyl methanesul-
fonate (PMS), and LiPFs in EC/DEC electrolyte. This was
attributed to the better thickness of the SEI film.***

© 2022 The Author(s). Published by the Royal Society of Chemistry

Zheng et al.**® used tris(pentafluorophenyl)borane (TPFPB), a
boron-based anion receptor, to decrease the side products on the
cathode surface. The high coordination ability and high oxygen
solubility of TPFPB restricted the electrolyte decomposition and
enhanced the stability of the electrode-electrolyte interface. The
surface chemistry of the electrode determines the SEI, which can
be monitored by coating the electrode surface to form a stable
structure.>2° Initially, mostly metal oxides (Al,Os;, TiO,, and
Co30,) are used as a coating material, which play two key roles,
as follows: (i) preventing electrode decomposition by reacting
with the acid species present in the electrolyte and (ii) preventing
direct contact between the two electrodes.>””>%°

The metal oxide coating affects the conductivity, and thus an
alternative strategy is to use a lithium-ion conductive-material such
as LizP0,** and Liy;Byos,POs (LBPO).**' Another strategy is to
deposit a thin film via physical vapor deposition (PVD), chemical
vapor deposition (CVD), molecular beam epitaxy (MBE), spin coat-
ing, and atomic layer deposition (ALD).****** Coating carbon on
the electrode surface has also been shown to be efficient due to
three actions, as follows: (i) enhancing the electrochemical perfor-
mance, (ii) hindering the agglomeration of the electrode material
for optimum use of the sites in the active material, and (iii) acting
as a buffer layer to relieve the stress due to volume changes.?****>

5. Overview of all-solid-state Li-ion
batteries (ASSLIBs)

The optimization of the architecture is one of the key points
for all-solid-state Li-ion batteries (ASSLIBs). ASSLIBs have an

Energy Adv.,, 2022, 1, 457-510 | 485
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inherent property for safety owing to the absence of flammable
electrolytes. Further, the energy density and cycle stability are
superior to the commercial LIBs.>*® Heavy packaging makes
batteries safer for commercial applications; however, it
decreases their energy density. Fig. 17(i) and (ii)(a,b) show the
key differences between the commercial LIBs and ASSLIBs in
terms of their architecture. In ASSLIBs, a separator is not

486 | Energy Adv, 2022, 1, 457-510

required, thus automatically opening the door for device mini-
aturization and weight/price reduction. The use of solid elec-
trolytes eliminates all the barriers faced by commercial
batteries such as dendrite growth (cause short-circuit), poor
thermal stability, and poor safety. Another attractive feature of
ASSLIBs is that they can be used as an anode with solid
electrolytes. In commercial batteries, the liquid electrolyte

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(i) Architectural comparison of commercial LIB and all-solid-state LIB. (i) Comparison of conventional lithium-ion battery and all-solid-state

lithium battery at the cell, stack, and pack levels with potentials for increased energy density. (iii) Schematic illustration of the stack configuration in
rechargeable batteries: (a) SEs, (b) MEs, and (c) BEs. The direction and intensity of the red arrow represent the discharging current.®*” Reproduced with

permission from Wiley-VCH.*’

interconnects all battery cell components with a parallel con-
nection inside the cell stack (Fig. 17(ii)(c)). However, in all-
solid-state batteries (ASSBs), the electrolyte is confined inside
the galvanic cells and they enable bipolar stacking with single
cells connected in series by a lithium-ion isolating layer.**” The
bipolar stacking decreases the number of current collectors and
increases the voltage of the battery cell (Fig. 17(ii)(d)). Also, the
absence of a flammable electrolyte solvent in ASSBs eliminates the
need for any type of cooling elements, as shown in Fig. 17(i).

The commercial advancement of fabricated LIBs depends on
the optimization of their performance parameters. The electro-
chemical performance of the battery is indicated in terms of
internal resistance, specific capacity, efficiency, capacity retention,
and open-circuit voltage. Additionally, the measurement conditions
(environment temperature and state of charge/discharge) need to
be considered during electrochemical testing. Depending on the
energy density demand, the capacity, material loading, thickness,
and electrolyte uptake can be tuned. Table 18A summarizes the
various performance parameters (top: Ionic conductivity, mechan-
ical strength, interfacial functionality, safety, advantages and dis-
advantage and bottom: liquid, gel, SSP, and ceramic electrolytes)

© 2022 The Author(s). Published by the Royal Society of Chemistry

and information that can be extracted from any LIB, that is,
measuring unit and formula and information (Table 18B).

Using the existing materials, cell optimization (single elec-
trodes, SEs and monopolar electrodes, MEs) can enhance the
specific energy from 80 W h kg™" to 200 W h kg~ *.*** The cell
configuration allows the encapsulation of a greater amount of
active materials, which significantly enhances the capacity and
reduces the cost and size. Nowadays, bipolar electrodes (BEs)
are also gaining attention, as shown in Fig. 17(iii)(c). Here, the
cathode and anode slurries are separately coated on both sides
of the substrate. This substrate allows the smooth migration of
electrons with a lower ohmic resistance and homogeneous
current distribution. The BEs demonstrated a superior specific
energy, specific power, capacity, and voltage in contrast to SEs
and MEs.?**? Overall, it can be concluded that ASSLIBs are safer
and reliable compared to all commercial LIBs.

Three possible configurations are discussed, as follows:
(i) all three components (cathode, anode, and electrolyte) in
solid form, (ii) liquid/polymer-based cathode together with
solid electrolyte and anode, and (iii) cell with cathode and the
separator only (here anode formation occurs after the first

Energy Adv., 2022, 1, 457-510 | 487
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(A) (top) Ranking of properties of Li-battery electrolytes (1 = best and 4 = worst
of different (—:*lectrolytes.339 (B) Essential parameters for testing the performance of a lithium-ion cell#>340
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bottom) Comparison of the advantages and disadvantages

Electrolyte Ionic conductivity Mechanical strength Price Interfacial functionality Safety
Liquid 1 4 (needs separator) 3 1 4
Gel 2 3 2 2 3
Polymer 4 2 1 3 2
Ceramic 3 1 4 4 1
Classification Advantages Disadvantages
Liquid High ionic conductivity Poor thermal stability
Low interfacial impedance Severe LiPS shuttling
Gel High ionic conductivity Poor thermal stability
Low interfacial impedance Low mechanical strength
Suppressing LiPS shuttling
Solid-state polymer Low interfacial impedance Low ionic conductivity
Suppressing LiPS shuttling Low mechanical strength
Good thermal stability
Ceramic High ionic conductivity High interfacial impedance
Excellent thermal stability Poor processability
Preventing LiPS shuttling
Suppressing Li dendrite growth
Polymer/ceramic composite Low interfacial impedance Low ionic conductivity
Good thermal stability
Suppressing LiPS shuttling
Suppressing Li dendrite growth
Parameters Measuring unit Measuring formula Information
Operating voltage Volts (V) Instrumental Energy density and safety
Current density mA gt Instrumental For testing rate capabilities
Theoretical capacity mAhg' TC — Fxx Lithium ion storage capability
T 36xMMxy
Gravimetric capacity mAhg™ c I(mA) x t(h) Li" storage capability measured per unit mass
m(g)
Areal capacity mA h cm 2 c I(mA) x t(h) Li" storage capability measured per unit area
T A(cm?)
Volumetric capacity mA h cm 2 c I(mA) x t(h) Li" storage capability measured per unit volume
T V(emd)
Specific energy Whg'orwhem™? E=CxV How much energy can be extracted
orWhem™
Power density Weg 'orwWem? P=1IxV How fast the energy can be extracted
orWem
Crate h! J(mA g1 Rate of charging/discharging
Crate = C(mAhg™)

Coulombic efficiency —

%E:MMOO

Reversible capacity

discharging

State of health —

r

Int 1 ist: —
nternal resistance SOH —

€

charge). The lithium-polymer differentiates itself from conven-
tional battery systems in terms of the type of electrolytes used.
In the original design back in the 1970s, a dry solid polymer
electrolyte was used. This electrolyte resembles a plastic-like
film, which does not conduct electricity but allows ion exchange
(electrically charged atoms or groups of atoms). The polymer
electrolyte replaces the traditional porous separator soaked in
the electrolyte. Therefore, different types of electrolytes have been
used. The solid electrolyte will provide only advantages, such as
smaller size and higher energy density.**>****** To achieve the

488 | Energy Adv., 2022,1, 457-510

SOH = % « 100%

R, —

Q,—rated capacity and Q,—current maximum
available capacity of the battery
If SOH < 80%, battery need to be replaced
R o R—internal resistance under the current state;

x 100% . . .

R.—internal resistance of the battery when it

reaches the end of life; and R,—internal resistance
of the new battery.

n

characteristic parameter of polymer electrolytes, a different strat-
egy was carried out by using a different polymer. Fig. 18 sum-
marizes different architectures of polymer electrolytes that hold
potential to replace the existing liquid electrolyte for developing
an efficient and safe battery.

Ceramic-polymer electrolytes are prepared by adding nano-
particles to the polymer salt matrix. The addition of nano-
particles enhances the conductivity and thermal and mechanical
properties owing to the Lewis-acid-based interaction of the surface
groups of the nanofiller with the polymer and salt. The oxygen in

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 18 Different types of solid polymer-based electrolytes and their corresponding performances.

the surface groups (-OH) of the nanofiller also provides additional
conducting sites for cation (Li*) migration.>***” Another impor-
tant and unique architecture block is the copolymer electrolyte,
which is comprised of covalently bound polymers. It improves the
electrical properties and stability compared to the individual
polymer.**®**° polycarbonate (PC)-based solid polymer electro-
lytes are another category of electrolytes that have attracted
significant attention. Given that amorphous content is desirable
for fast ion conduction in polymer electrolytes, PC-based electro-
lytes have a high amorphous content, good chain flexibility, and a
high dielectric constant. Overall, they can enhance the cation
transport number and broad voltage stability window.>**!

The ionic conductivity, voltage stability window, and ion
transference number are three crucial parameters to enhance
the overall cell performance. The ion transport is favored by the
presence of amorphous content and segmental motion of the
polymer chain. To promote faster ion migration, the crystal-
linity needs to be minimized (for faster segmental motion). The
polymer must have a low glass transition temperature to achieve
conductivity comparable to liquid electrolytes (10™* S em ™).
Ionic conductivity is directly linked to several free-charge
carriers participating in the conduction. Thus, the salt disso-
ciation in polymer electrolytes needs to be improved by the
addition of nanoparticles (NPs). The surface interactions
among the polymer, salt, and NPs alter the environment of
the ions and ionic conductivity. For polymer electrolytes, both
cations and anions are mobile, where the mobility of cations is

© 2022 The Author(s). Published by the Royal Society of Chemistry

lower (than anions) due to their migration via the coordinating
sites of the polymer matrix. The ratio of migrating Li" to all the
migrating ions including anions in the electrolyte is defined as
the Li-ion transference number (LITN). For the optimum per-
formance of the cell, the LITN must be high, which in the ideal
case is 1. A high cation transference number also eliminates the
issue of concentration polarization. By restricting the migration
of anions via the addition of nanofillers, the cation migration
can be improved.>®> High ionic conductivity is crucial to
achieve high charge/discharge rates. Another important para-
meter is the voltage stability window of the electrolytes, which
limits the charge and discharge characteristics of the electrode
materials in a particular voltage range. For this voltage window,
the polymer electrolytes must be stable to achieve the optimum
performance. The polymer electrolyte must be thermally stable
and should not show any signs of shape/volume change,
shrinkage, or melting.

Cross-linking is an effective strategy to prepare novel poly-
mer structures, offering an enhancement in the mechanical,
electrical, and voltage stability properties. The physical and
topological properties are further improved by using a new
architecture based on star polymers, where this is attributed to
the presence of outer spheres of arms, which enhance the ion
mobility and conductivity. The presence of various branching
points interrupts the polymer re-crystallization tendency and
enhances the ion migration owing to their high flexibility. High
surface area fiber-based polymer membranes are also being

Energy Adv, 2022, 1, 457-510 | 489
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investigated, which are better than linear polymers. They
provide faster ion migration, a broad voltage window, and good
interfacial contact.>***** A new approach is using bio-based
polymers such as soy-protein (SP). The ammonium group on SP
interacts with the polymer chains and disrupts the crystallization
tendency, which enhances the ion dynamics.*>>?°° Table 19
compares the properties of different types of electrolytes.

The binder also plays an important role in the cell perfor-
mance and its stability. Generally, polyvinylidene fluoride
(PVDF) is used as an insulating binder. The cell performance
can be amplified by replacing it with a conducting material
such as lithium polyacrylate (PAALi) as a binder, which is solid
up to 200 °C. Recently, He et al."®® fabricated ASSLIBs using
LNMO as the cathode, RuO, as the anode, and an ionic conduc-
tive thermosetting material (PAALi) as the binder. Fig. 19(a)
shows the full-cell ASSLIB with the structure of LNMO/LAGP/
RuO,. The NASICON-structured Li; 5AlysGe;s (PO4); (LAGP)
was used as a solid-state electrolyte. The ionic conductivity of
the ASSLIB was determined to be 1.03 x 10~* S cm ™. Fig. 19(b)
shows the discharge capacity and efficiency for PAALi-based
cells. The discharge capacity of the ASSLIB was 87.5 mAh g™ " at
0.2C (at 23.8 °C) for 120 cycles and 146 mA h g~" at 0.5C and
50 °C for 43 cycles. The enhancement in the specific capacity is
attributed to the decrease in resistance for Li-ion transportation
with PAALI as a binder.

Another attractive candidate as a solid-state electrolyte is
NASICON-structure Li; 3Aly 3Ti; -(PO,); (LATP). LATP has high
ionic conductivity (1 mS cm™") and better stability in water and
air, which is attributed to the P-O bonding in its structure,****'°
The only drawback restricting its use is interfacial issues, which
result in poor contact, side reactions, and formation of den-
drites.*'»*"> The formation of a mixed ionic/electronic con-
ducting interphase (MCI) was observed because the reduction
of Ti** to Ti** led to the formation of dendrites. Interface
engineering can eliminate these problems. Here, an interfacial
layer with low electronic conductivity and high ionic conduc-
tivity was introduced to minimize the interfacial resistance and
prevent side reactions.

PEO and polyacrylonitrile (PAN) were used by Liang et a
which led to an improvement in mechanical stability and better
performance. PEO enhanced the Li-ion migration and reduced
the interfacial resistance; however, at high temperatures
(80-100 °C) it cannot suppress the growth of dendrites. To
overcome the above-mentioned issue, Jin et al.*'* prepared a
composite polymer electrolyte with LATP. Fig. 20(a) shows the
interface evolution mechanism without modifying the interface
microstructure. The growth of the dendrite structure occurred
due to the formation of an MCIL

With the introduction of an LATP layer, no MCI formation
occurs, which is attributed to the elimination of side reactions,
facilitating the fast migration of Li*. The suppression of den-
drites is because of the high shear modulus (81-115 GPa). The
ionic conductivity of LATP-CPE was 4.6 x 10" * S ecm ™' at 20 °C
and 4 x 107° S cm™ " at 80 °C. This enhancement originated
from the suppression of the crystalline phase and improvement
in salt dissociation after the addition of LATP. The voltage

l. ’413
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Fig. 19 (a) Schematic illustration of the full lithium-ion solid-state battery u
RuO,/CNT/PAALI as the anode, where both sides were sputtered with gold a
RuO, at room temperature at 0.2C using PAALI as a binder.*°® Reproduced

window was close to 4.6 V. A solid-state battery (LFP/LATP/CPE/
Li) was fabricated and its electrochemical performance was
examined. The initial specific discharge capacity of the cell was
113.1 mA h g ', which reached 139.5 mA h g~ ' after the 4th
cycle. The specific capacity was reduced to 91.3 mA h g~ ! after
45 cycles, with a capacity retention of 80.7% and a Coulombic
efficiency of >96% (Fig. 20b). PEO has been used as an
electrolyte in batteries. However, the semi-crystalline nature
of PEO hinders the desirable ionic conductivity. Thus, various
strategies have been adopted to suppress the crystalline content
of PEO. Some of the best-performance electrolytes are polymer
blends, cross-linked polymers, co-polymers, block copolymers,
networked solid polymer electrolyte (N-SPE), and polymers. The
N-SPE is an attractive electrolyte due to the formation of a 3D
radial network. It provides easy access to cation migration,
which is associated with the segmental motion of polymer
chains.

Recently, Hsu et a prepared a network of solid polymer
electrolyte (N-SPE), which is a cage-like polyhedral oligomeric
silsesquioxane (POSS), serving as the hub of a network of
poly(ethylene oxide-co-polypropylene oxide) (P(EO-co-PO)) with
lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). N-SPE
demonstrated the highest conductivity of ~1.1 x 10™* S em™"
at room temperature (25 °C) with an activation energy of 0.037 eV,
which had a lower activation energy than PEO (0.5 eV). The lower

l 357

© 2022 The Author(s). Published by the Royal Society of Chemistry

sing LNMO/CNT/PAALI as the cathode, LAGP as the solid electrolyte, and
s current collectors. (b) Discharge capacity and efficiency of LNMO/LAGP/
with permission from The Royal Society of Chemistry, UK.4%®

activation energy and high ionic conductivity of 3D POSS are
attributed to its perfect polymer networking. The voltage stability
window for the electrolyte was 5.4 V with a cation transport
number of 0.62. Table 19 demonstrates the comparison of
the electrode, electrolyte, and cell performance parameters for
ASSLIBs.

A solid-state battery was assembled with the configuration of
Li|N-SPE|LiFePO,, as shown in Fig. 20(c). The N-SPE electrolyte
was used as a sandwiched structure between two electrodes.
It demonstrated a specific capacity of 160 mA h g~ ' at the rate
of 0.1C. Fig. 20(d) shows the cycling performance of the cell at
0.1C and 0.2C, where ~100% coulombic efficiency with good
capacity retention (95% at 0.1C and 92% at 0.2C) was observed.
After 100 cycles with a high current rate (0.3C), the cell showed
a capacity retention of 75% and Coulombic efficiency of 100%.
The enhanced performance of the ASSLIB is attributed to the
greater Li" migration and good contact formation. Compared to
the individual polymers, the blending of polymers is an effec-
tive strategy to suppress the crystallinity of PEO, facilitating
higher electrical and mechanical properties. Recently, Bai
et al.>®® prepared a polymer-ceramic hybrid electrolyte via the
blending of PEO/PVDF and nanofiller LigsLazZr; 4Tag 012
(LLZTO).

Fig. 21(a) shows the detailed preparation process of solid
composite electrolyte-based PEO/PVDF/LLZTO/LIiTFSI systems.

Energy Adv,, 2022, 1, 457-510 | 493
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solid-state LFP/LATP/CPE/Li cell at 0.05C, 80 °C.*** (c) Schematic of the roll-to-roll assembly of an Li|N-SPE|LiFePO, battery using a free-standing

N-SPE film. (d) Variations in the capacity and Coulombic efficiency in the

charge—discharge cycling at 0.1 and 0.2C-rates. The charge—discharge

operated between 2.5 and 4.0 V, and the C rates were defined based on the theoretical capacity of LiFePO,4 (170 mA h g~%). Reproduced with permission

from Elsevier.*'*

The high tensile strength (5.21 MPa) and large strain (1888%)
of the electrolyte film were achieved due to the reduction in
crystallinity of the hybrid structure. The highest ionic conduc-
tivity was 3.23 x 107*Scm ™" at 25 °Cand 8.58 x 10" *Scm ™' at
45 °C with an activation energy of 0.32 eV. The enhancement
in conductivity, reduction in crystallinity, and improved salt
dissociation were attributed to the formation of additional
conducting pathways with LLZTO due to the increased dielec-
tric constant of PEO. Therefore, ASSLIBs were fabricated using
LiFePO, as a cathode, Li metal as an anode, and the hybrid
electrolyte.

Fig. 21(b) shows the cyclic performance of the fabricated
LiFePO,/Li cell at 0.4C (45 °C). The cell demonstrated a high
discharge capacity of 160.1 mA h g ' and 99.1% capacity
retention after 200 cycles. The smooth charge-discharge curves
and low migration of discharge plateau with C-rate variation
indicate better interfacial stability (Fig. 21c). This confirmed
the better electrochemical performance, where the ASSLIB
operated for 1000 h without short-circuit. Thus, it can be
concluded from the above-detailed discussion on the different
components of LIBs that the solid-state battery is the ultimate
goal, which has the potential to eliminate the existing problems
of liquid electrolytes. Fig. 22 provides a glimpse into the

494 | Energy Adv, 2022, 1, 457-510

advantages and challenges of solid-state LIBs compared to
liquid LIBs.

6. Improving performance of Si-based
anode for LIBs

Significant efforts have been made to improve the perfor-
mances of Si-based anode for LIBs. To overcome the volume
expansion during the intercalation of electrochemical reactions,
the inorganic/organic/Si nanocomposite anode of LIBs should be
accommodated with the optimized microstructures. The hybrid
nanostructured materials exhibit a genuine prospect to signifi-
cantly impact the electrochemical performance of Si anodes.
Therefore, the intercalation/deintercalation rates can be enhanced
using Si-NP-based nanocomposites. The significance of nano-
sized Si (n-Si) for the battery performance was demonstrated by
the LIB innovative researchers.®'**

7. Limitations

The traditional LIBs are manufactured using liquid electrolytes,
which cause toxic emissions and flammable accidents, which

© 2022 The Author(s). Published by the Royal Society of Chemistry
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can be overcome by using solid electrolytes. In this case, LIBs
can be manufactured without the use of a separator free with
the implementation of solid-state electrolytes (SSE). ASSLIBs
are manufactured as separator-free batteries, which automati-
cally open the door for device miniaturization. Therefore, the
weight/price can be controlled with the replacement of SSEs.
The standard lifespan of LIBs is about three years (500 to
1000 cycles), where after this prescribed period, they usually
do not show power backup and stability and seem to be
worthless. The use of SSEs removes all the barriers faced by
the commercial manufacturing of lithium ion-based batteries
such as dendrite growth (cause short-circuit), pitiable thermal
stability and safety concerns for portability and use.

The safety, cycle lifetime, and power density of LIBs cannot
be easily controlled and tackled within the wide range of
operational temperature conditions. Thus, a protection circuit
must be included to maintain the voltage and current within
safe limits together with the temperature sealing layers. The
aging effect of LIBs is also a serious concern when these
batteries are not in use and stored in a cool place. It signifi-
cantly reduces the charge over time. There are transportation
restrictions for the shipment of larger quantities, which may be

© 2022 The Author(s). Published by the Royal Society of Chemistry

troubling for regulatory controls. These restrictions do not
apply to personal carry-on batteries. Also, their manufacturing
cost is about 40% higher than the nickel-cadmium batteries,
even though the materials, metals, and chemicals are changing
continuously.

8. Challenges

Over the past few decades, the progress in the development
of materials for energy storage/conversion devices, especially
Li-ion batteries (LIBs) has been satisfactory. However, although
LIBs have been commercialized successfully with the use of
liquid electrolytes, the scientific community has focused on
alternative electrolytes to fulfill the dream of all-solid-state
batteries (ASSBs). All three components of LIBs (cathode,
anode, and electrolyte) need to be developed or innovated
simultaneously to optimize the electrochemical performance
of the cell. Accordingly, there are still several challenges related
to LIBs that need to be resolved. A few of the major challenges
are described, as follows: (i) disposing of damaged LIBs from
mobile electronics, (ii) developing the large-scale production of

Energy Adv., 2022, 1, 457-510 | 495
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Fig. 22 Advantages and challenges in solid-state batteries (LIBs). [https://www.futurebridge.com/blog/solid-state-batteries/].

LIBs containing advanced electrodes and electrolytes for HEVs,
(iii) fulfilling the required power density, and cyclability and
(iv) recycling of automotive LIBs. Compared to lead-acid bat-
teries, the recycling/disposal of LIBs are one of the most
complicated issues, which have not been established to date,
and thus further research is necessary for the recycling of the
electrodes. The market for LIBs is driven by increasing the
demand for mobile electronics, computers, and portable
devices. The remarkable growth of mobile and robotic electro-
nic systems has demonstrated that we need to improve the
engineering and manufacturing process of Si-based nano-
composite electrodes. In response to the current demands of
modern society and emerging ecological concerns, low-cost and
environmentally friendly energy storage systems are required.
Hence, the rapid R & D in energy storage systems should be
aware of the market requirement. The performance of LIBs
depends directly on the properties of their electrode materials
and microstructure/compositions. Innovative materials chemistry
demonstrates the advancement in energy storage mechanisms for
LIBs. Some new strategies must be developed for stabilizing the
cathode and anode to achieve the optimum performance in terms
of durability. The contact between the current collector and active
material needs to be examined for enhancing the charge transport
via full use of the active material. The solid electrolyte interface
needs to be improved to enhance the rate capability of the full cell.
Therefore, no single modification strategy is suitable to achieve
the optimum performance and the combination of various

496 | Energy Adv, 2022, 1, 457-510

strategies will be more efficient in tuning the properties of
materials. Cobalt is an important raw material for batteries,
considering that the search for alternative green electrodes for
the next generation of ASSBs is a top priority.

The electrolyte is another crucial component of ASSLIBs.
Solid polymer electrolytes have the potential to become a future
electrolyte. Although significant efforts have been devoted by
researchers to achieve better ionic conductivity, there is still a
need to improve the ionic conductivity before commercializa-
tion. Different strategies have been adopted to design single-
ion conductors, as follows, (i) addition of nanoparticles,
(ii) optimizing polymer chain movement, (iii) and designing
new polymer backbones. The role of additives is to enhance the
salt dissociation and provide additional conducting sites for
cation migration. The surface groups of nanoparticles mini-
mize the overall conducting path length for cations. However,
in the development of solid polymer electrolytes (SPE), the ion
transport mechanism needs to be investigated deeply. It can be
understood from this review that the key approach is to adopt
SPE, that is the fabrication of flexible energy storage devices to
broaden the application range and durability. In this case, the
key properties of SPEs such as thermal/chemical/electrochemical/
mechanical stability need to be examined. Furthermore, to main-
tain the energy density of ASSBs, these stability parameters play an
important role. Further investigation needs to be focused on the
performance of flexible batteries under different conditions such
as bending, stretching, and reshaping. Nanostructured materials

© 2022 The Author(s). Published by the Royal Society of Chemistry


https://www.futurebridge.com/blog/solid-state-batteries/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ya00043a

Open Access Article. Published on 20 June 2022. Downloaded on 1/17/2026 9:59:37 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Energy Advances

have attracted the great interest in recent years because of their
unique mechanical, electrical, optical properties and have the
maximum surface area. To create a roadmap for nanomaterial-
based electrodes for energy storage systems, the synthesis and
manipulation of nanostructured materials need to be optimized
for high-power density and long cycle ability.

The compatibility between electrodes and electrolyte needs
to be enhanced for the fabrication of efficient ASSBs. Given that
the internal resistance needs to be minimized for faster ion
conduction from one electrode to another electrode, the inter-
facial stability between the components needs to be examined
in detail together with electrochemical analysis. To meet the
requirement of practical applications of LIBs, the optimization
of the electrodes and the electrolyte is very important for the
performance and durability. The aging effect of batteries and
self-discharge are also a topic of research but hardly studied in
the literature. To moderate the aging effect, some advanced
characterization techniques should be used for the optimization
of electrode materials such as neutron diffraction, small-angle
X-ray scattering, and in situ tools for understanding of material
behavior. Usually, all energy devices are operated at room
temperature. Therefore, the current R&D of energy storage
systems should be focused on low/high temperatures operation
to achieve an efficient energy density and the memory effect.
For the commercialization of LIBs globally, the universal test-
ing parameters should be established for the comparison of
data from various research groups/industries. Thus, the perfor-
mance environment of ASSBs needs to consider the optimum
feasibility worldwide. For the commercialization of LIBs, the
cell architecture plays an important role in the performance
and durability. The scientific community has devoted their
efforts to the development of smart energy devices, which are
superior to traditional devices. Thus, artificial intelligence (AI)
and deep learning may be adopted for developing smart devices,
which can optimize their performance themselves, strengthening
the application of smart devices.

9. Future outlook

The recent development of novel negative electrodes (anodes)
for lithium-ion batteries (LIBs) has focused on silicon-based
nanostructured composites or hybrid materials. Silicon is one
of the highest specific capacity anode materials, which can
replace the standard C-based electrodes (carbon has a specific
capacity of 372 mA h g~ "). Although the pure form of Si is not
available in the Earth’s crust or the environment, nanostruc-
tured Si can be obtained via synthetic methods or the biogenic
synthesis. Nanostructured Si can be synthesized economically
from biomass waste (biogenic silicon), which has the highest
theoretical specific capacity (4200 mA h g~ ). For the setup of a
materials database (cathode, anode, and electrolyte) for proper
identification, research and development have been carried out
to reduce the cost and processing time, resulting in efficient
device development. To achieve a core-level understanding of
the ion transport in the electrode/electrolyte, simulation tools

© 2022 The Author(s). Published by the Royal Society of Chemistry
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can be used for the predetermination/demonstration before the
experiment. To overcome the traditional instrument failure,
advanced characterization techniques (cryo-electron micro-
scopy) should be used to gain insights into materials and the
interfaces in batteries. The utility and performance of ASSLIBs
can be enhanced especially for HEVs and next-generation
portable electronics due to the unique characteristics of mate-
rials and applications. Therefore, research needs to be carried
out toward the development of solid electrolytes that exhibit
high conductivity even at sub-zero temperatures. The progress
and performance of ASSLIBs depend on their components and
compatibility. To resolve the existing environmental and safety
concerns, efficient ASSBs are future devices that have potential
to promote growth in various sectors (from automobiles to the
digital market).
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