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The fabrication of thermoelectric (TE) devices requires both p- and
n-type legs with comparable performances. Pbg¢Sng 4Te, which
belongs to the class of topological crystalline insulator (TCI), has
the potential to be a high-performing TE material due to its tunable
electronic structure. Herein, we use first-principles electronic
structure calculations for the very first time to study the electronic
structure of halide-doped (X = I, Br and Cl) Pbg ¢Sng 4Te. We show
through Boltzmann transport property calculations that the break-
ing of crystal mirror symmetry is not a necessary criterion for the
enhancement of TE properties. A maximum attainable ZT of ~1.42
to ~1.51 at 800 K by tuning the chemical potential makes these
materials worth studying further.

1. Introduction

The global energy crisis and environmental pollution have
driven the need to search for alternative sources of energy
generation. Thermoelectric (TE) materials, with their ability to
scavenge waste heat, are increasingly attracting attention in
various applications.'™ Various materials, such as oxides, half
Heuslers, chalcogenides of Bi, Sn, Pb, Ge and silicides, are
receiving immense importance.>™*” Pbg¢Sn, 4 Te, which is
derived from PbTe and SnTe, is a well-known topological
crystalline insulator (TCI).'® However, its performance as a TE
material is extremely poor compared to that of PbTe- and SnTe-
based materials.’®* Due to the extremely small band gap of
Pby ¢Sn, 4Te, high bipolar conductivity is observed leading to
poor performance at high temperatures.”>** Substitutional
doping of Pb, ¢Sn, 4Te has been carried out to improve its TE
performance.>>*® Breaking of the crystal mirror symmetry has
been previously implemented to open the band gap of
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Pb, ¢Sn, 4Te.?*2° While doping Na and K has led to a maximum
ZT of about 1 by opening the band gap, Mg was able to open the
band gap as well as increase the number of degenerate valleys
leading to a ZT of 2.>*7*° Recently, Zn was reported to introduce
resonance levels, hyperconvergence and multiple electronic
valleys in Pb,¢Sn, 4Te, improving its ZT to 1.57 at 840 K.*®
Due to advancements in high-performance computing, compu-
tational methods can be easily relied on to discover new TE
materials with high performance.””° For practical applica-
tions, it is essential to have both p- and n-type materials with
comparable performances.”®*® While the electronic structure
modifications of TCI materials by cation doping have been
studied using first-principles density functional theory (DFT)
calculations, the effect of anion doping, and halide doping in
Pby ¢Sny 4Te in particular, has not been theoretically explored.
Generally, it is very difficult to predict whether the doping can
break the crystal mirror symmetry or not during synthesis.
Hence, it is essential to find out if it is possible to improve
TE performance without breaking the symmetry. Herein, we
studied the effect of doping halides, namely I, Br and Cl, on the
electronic structure of Pby¢Sno 4Te using first-principles DFT
calculations. The transport property calculations using the
Boltzmann equation predict a maximum ZT of ~1.51 at
800 K for I-doped Pb,Sng4Te. The performances of Br- and
Cl-doped TCI were also predicted to improve as the chemical
potential moves towards positive values. This work predicts
that Br-doped Pb, ¢Sn, 4Te is the best n-type TE material among
the three.

2. Computational details

In this study, Pb, ¢Sny 4Te was modelled using a fully relaxed
most stable symmetric 2 x 2 x 1 supercell of Pb;oSngTe;6.%¢ I,
Br and Cl were doped by substituting the Te atom at the center
of the supercell, thus retaining the crystal mirror symmetry
even after doping. We carried out DFT calculations using the
Quantum ESPRESSO package using fully relativistic ultrasoft
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Perdew, Burke and Erzenhoff (PBE) pseudopotentials.>'** The
wavefunctions were represented by a plane-wave basis set,
which was truncated with an energy cutoff of 50 Ry and charge
density cutoff of 400 Ry. Brillouin zone integrations were
sampled using 10 x 10 x 20 k mesh for calculations of the
total energy of the system. The electronic structures were
determined along I'-X-M-I'-Z-R-A-Z high symmetry lines in
the Brillouin zone.

3. Results and discussion

The efficiency of the TE material is largely dependent on the
dimensionless quantity figure of merit ZT, which is directly
proportional to the power factor and inversely proportional to
the thermal conductivity.>® Electrical conductivity and, in turn,
the electronic thermal conductivity and the Seebeck co-efficient
largely depend on the electronic structure of the material, while
the lattice thermal conductivity can be independently tuned by
using appropriate synthetic techniques.'®?*° While PbTe has
a band gap of 0.3 eV and SnTe has a band gap of 0.18 eV,
Pb, ¢Sn, 4Te has an almost zero band gap.>**> Previously, we
have determined the most stable symmetric configuration of
Pb, ¢Sn, 4Te out of 8008 possible configurations using the site
occupancy disorder technique, which we further used in this
work.?¢

The of PbyoSngTe;q,
Pb;oSneTe;sl, PbyoSneTe;sBr and Pb,,SneTe;5Cl reveal a princi-
pal band gap at Z point where the light hole valence and
conduction band reside (Fig. 1). The heavy hole valence and
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conduction bands on the other hand reside at M + ¢ in the
M — T direction.’**> We observe such a shift in the position
from L and X points, where the light and heavy hole bands
reside, respectively, in the parent PbTe and SnTe materials,
which is due to the folding of bands during the construction of
the supercell.>”*® In the case of Pby,SneTe;q, we see a zero-band
gap at Z point due to the penetration of the conduction band
(CB) into the light hole valence band (VB), which peaks on
either side of it with a hole-like character.>® The bottom of the
light carrier CB lies below the Fermi level and has an electron-
like character. We see an energy offset of 0.13 eV between the
valence sub-bands at Z’ and M + § in the M — [ direction. This
energy offset value is smaller than that of SnTe (0.3 eV) due to
the higher content of PbTe, which has a lower energy offset
values.** The conduction sub-band energy offset on the other
hand is estimated to be 0.61 eV, excluding their participation in
the transport properties.

Despite retaining the crystal mirror symmetry in doped
samples, we observe that the band gap increases from 0 eV to
0.08 eV, 0.06 eV and 0.03 eV in I, Br and Cl-doped configura-
tions, respectively, at Z point and around 0.1 eV, as we move
slightly away from the Z point due to the loss of symmetry
about the Z point along with Z — R and Z — I direction. This
indicates that the breaking of crystal mirror symmetry is not an
essential criterion for the increase in the band gap of TCI. We
need to note here that the underestimation of the band gap is
due to the existence of discontinuities with respect to the
number of electrons in the derivative of energies in the DFT-
based calculations.*® The energy offset between the light and
heavy hole valence sub-bands increases to 0.15 €V, 0.18 eV and
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Fig. 1 Electronic structure of (a) PbioSngTess, (b) PbigSneTessl, () PbioSneTessBr and (d) PbioSngTe sCl. Energy is shifted with respect to the Fermi level,

which is set to zero.
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0.19 eV for I, Br and Cl doped Pb, ¢Sn, 4Te, respectively between
Z' and M + ¢ in M — T direction. Similarly, the CB energy
offsets increase to 0.627 eV, 0.629 eV and 0.638 eV in
Pb,,SneTe; 51, Pb;oSneTe,sBr and Pb,,SneTe,5Cl. This is contra-
dictory to the case of Zn doping in Pb, ¢Sn, 4Te where, in spite
of Zn being a p-type dopant, it led to a the convergence of
conduction sub-bands with an energy offset value of 0.51 eV.>

Interestingly, in Pb;oSn¢Tess, a heavy hole sub-band also
exists at R + ¢’ in the R — A direction, one of which lies 0.36 eV
below the VB maximum and the other 0.52 eV above the CB
minimum. In the doped samples, this energy gap decreases in
the order Cl (0.314 eV) > Br (0.311 eV) > I(0.296 eV) in the VB
region and Cl (0.28 eV) < Br (0.29 eV) < I(0.41 eV) in the CB
region. This reversal of behavior about the Z point is due to the
higher loss of degeneracy in the case of Cl and Br compared to
I-doped configurations, which drag degenerate orbitals apart.
In the VB area, this leads to an asymmetry in the bands just
below the VB maximum, wherein the bands are dragged lower
in Z — I direction in comparison to the Z — R direction.
Further, in the CB region, we see the appearance of newer
valleys on either side of the Z point. This phenomenon results
in the increase of the Seebeck co-efficient due to an increase in
the electron transport channels. This feature was previously
reported in p-type materials such as Zn-doped Pb, ¢Sn, 4Te and
Cd, Ge and Pb multi-doped SnTe but this is the first report on
the occurrence of such feature in n-type materials.>**°

Partial density of states (pDOS) sheds further light on this as we
observe the behavior of various orbitals contributing to the VB and
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CB on either side of the Fermi level (Fig. 2). In undoped Pby ¢S, 4Te,
while Te ‘p’ orbitals form the VB, the CB is formed by the ‘p’ orbitals
of Sn and Pb. While Sn ‘p’ orbitals with a j value of 1.5 lies closer to
the band edge, Pb ‘p’ orbitals with a j value of 1.5 lies slightly away
from the band edge. In the halide-doped Pb,¢Sn,4Te, while the
contributions of Te ‘p’ orbitals and Pb ‘p’ orbitals with a j value of
1.5 remain more or less the same and ‘p’ orbitals of Sn and ‘p’
orbitals of Pb with a j value of 0.5 show different nature. We see that
‘p’ states of both Sn and Pb with a j value of 0.5 contribute closer to
the CB edge with ‘p’ states of Pb forming the CB maxima in the
undoped sample while ‘p’ states of Sn taking over the role in the
doped samples. The ‘p’ states of I contribute immensely to the VB
area and thus leading to a higher extent of convergence of valence
sub-bands compared to conduction sub-bands, as observed in the
electronic structure. The negligible loss of symmetry and degeneracy
of the bands in Pb,,SneTe;sI in comparison to the other two doped
systems is apparent from the nature of the contribution of Sn ‘p’
states. We can observe that the contribution of Sn ‘p’ orbitals is
completely different in Pb,,SngTe;sBr and Pb,,SneTe;sCl near the
Fermi energy. The hump-like plateau in pDOS near the Fermi level
is due to the introduction of multiple valleys observed in the band
structure due to the hybridization of ‘s’ orbitals of Br/Cl with ‘p’
orbitals of Sn. The ‘p’ states of Br/Cl contribute deep within the VB
and hence the extent of convergence of valence sub-bands is lower
compared to that in CB.

We studied the transport properties within the rigid band
approximation using Boltztrap code with constant scattering
time approximation the details of which are given in previous
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Fig. 2 pDOS of (a) PbioSngTesq, (b) PbioSngTessl, (c) PbioSngTesBr and (d) PbigSneTe sCl Energy is shifted with respect to the Fermi level, which is set to

zero.
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(a) DOS; (b) thermal conductivity (inset: electrical conductivity); (c) Seebeck co-efficient; and (d) power factor (inset: ZT) of PbigSneTessl,

Pb1oSngTe sBr and PbigSneTesCl as a function of chemical potential at 300 K (dashed lines) and 800 K (solid lines). Electrical conductivity, thermal
conductivity and power factor are reported by scaling them with 7. ZT is estimated by considering a lattice thermal conductivity value of 0.4 W m~ K at

800 K.

reports.*>*> While we observe that the DOS and electrical

conductivity of the samples did not vary much with the tem-
perature, the electronic thermal conductivity (x) increased with
the increase in the temperature from 300 K to 800 K (Fig. 3).
While the values of k were comparable for all three doped
samples in the negative chemical potential ‘i’ region, which
corresponded to hole doping, in the positive potential region
we observed higher values for the I-doped sample with Cl
having the least x values among the three, both, at 300 K and
800 K.*? Further, the Seebeck values also changed the sign from
positive to negative as the doping changed from the electron to
hole. At zero ‘i’, the Seebeck values were negative, indicating
the material to be n-type. We see that for a large potential
window in the positive region, the power factor (¢S*) remains
high enough. While the I-doped samples show higher power
factor values among the three, both at 300 K and 800 K, the ZT
values show a different trend. We observe that in the positive
potential region, the ZT is higher for Br/Cl-doped samples due
to the smaller thermal conductivity values in comparison to
I-doped configurations. The generation of multiple electronic
valleys in CB is responsible for the enhanced performance of
these samples as the n-type material. It is interesting to note
that by tuning the chemical potential in the negative region, we
can attain a ZT of ~1.51, ~1.46 and ~1.42 at 800 K for
Pb;oSneTe;sI, PbioSneTe;sBr and Pb;,SngTe;sCl assuming a
lattice thermal conductivity of 0.4 W m™' K at 800 K.
Pb;oSneTe;sBr configuration shows highest ZT at ‘w’ of zero,

18 | Energy Adv., 2022,1,15-20

which is strongly supported by the electronic structure mod-
ifications and indicates that it is a better n-type material. The
added dopants are known to scatter the short-range phonons
decreasing the lattice thermal conductivity.>>** By employing
the nanostructuring approach during the synthesis, a further
decrease in the lattice thermal conductivity and increase in the
ZT could be attained.*>™® A maximum ZT of 1.05 attained at
620 K by doping I in Te lattice in Pb, ¢Sn, sTe experimentally in
the previous report supports the dual nature of the dopant by
chemical tuning.**

4. Conclusions

We carried out a detailed electronic structure study of halide
doping in Pb,eSny4Te using the first-principle DFT calcula-
tions. We observed that despite not breaking the crystal mirror
symmetry the I, Br, and Cl doped configurations show
increased direct band gap and valence and conduction sub-
band convergence. The introduction of multiple electronic
valleys in the conduction band by aliovalent anion doping leads
to enhanced TE properties. The transport property calculations
predict a maximum ZT of ~1.42 to ~1.51 attainable at 800 K by
tuning the chemical potential. Thus, this work harnesses the
power of computational techniques in finding ways for the
conversion of a TCI into a TE.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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