Room-temperature coupling of methane with singlet oxygen†

Anhua Huang,‡a Jingsheng Wang,‡a Xingyang Wu,‡ab Hangchen Liu,‡a Jun Cai,‡a Guo Qin Xu c and Song Ling Wang ‡ab

Owing to emission of methane (CH₄) causing global warming and waste of resources, conversion of CH₄ to value-added chemicals can mitigate environmental sustainability and energy concerns. Direct room-temperature coupling of CH₄ to form ethene (CH₂CH₂) challenges chemists owing to the strong C–H bonds requiring high temperature (>700 °C) for dehydrogenation of CH₄. Oxidative coupling is a promising approach for CH₄ conversion to C₂H₆ using solar energy at room temperature. To achieve high efficiency of C₂H₆ formation, using an appropriate oxidant is a potential strategy to avoid overoxidation during the CH₄ coupling process. Singlet oxygen (¹O₂) has typically manifested a mild redox capacity with a high selectivity to attack organic substrate CH₄. Here, we report a synergistic photocatalytic-oxidative route for direct CH₄ coupling. Under solar light irradiation, a high CH₂CH₂ generation rate of 647 μmol g⁻¹ h⁻¹ is achieved at 25 °C. Our work demonstrates that the solar-oxidative route can result in new and useful C₁-based catalytic behaviors.

Taking into account the environmental pollution and global warming caused by the use of traditional fossil energy and the shortage of its reserves, increasing the use of natural gas mainly composed of methane (CH₄) is an inevitable trend, since methane has the advantage of being abundant and relatively inexpensive and clean. However, methane itself is also a greenhouse gas whose greenhouse effect is about 25 times that of carbon dioxide of the same mass. Thus, methane emissions contribute to global warming. On the other hand, the direct use of natural gas as a fuel will also cause environmental pollution and waste of resources, since methane storage and transportation are difficult and it is prone to leakage. These factors have made scientists invest a lot of energy in the research and development of simple and feasible technologies for converting methane into value-added chemical raw materials.

However, a high temperature (>700 °C) is required for thermodynamic dehydrogenation of CH₄ due to the strong C–H bonds (434 kJ mol⁻¹), leading to energy consumption and low selectivity of CH₄ conversion. Photocatalytic methane conversion is a safe, low-energy and environmentally friendly strategy for the direct conversion of methane, since the dissociation of methane at room temperature can be achieved by means of photocatalytic methods using the light energy of sunlight and a suitable photocatalyst. Photocatalytic oxidation is also a promising approach for coupling of CH₄ to form C₂H₆ using solar energy at room temperature. Nevertheless, the major challenge of CH₄ coupling via the photocatalytic route is insufficient yield of target CH₃CH₃ and large production of by-products, e.g., HCOOH, CO, and CO₂. Furthermore, noble metal co-catalysts, such as Au, Pd, and Pt, were generally used for promoting the efficiency of coupling of CH₄. Developing oxidative-coupling and noble-metal-free catalyst systems, thus,
is highly desirable for photocatalytic \(\text{CH}_4 \) coupling at room temperature.

Traditionally, chemical oxidants, including \(\text{O}_2 \), \(\text{H}_2\text{O}_2 \), and \(\text{CO}_2 \), have been proven to be important in oxidative activation of \(\text{CH}_4 \) to hydrocarbons, such as methanol.\(^6\) Actually, these oxidants potentially generate reactive oxygen species (ROS), such as the superoxide radical anion (\(\text{O}_2^- \)), hydroxyl radical (\(\cdot \text{OH} \)), sulfate radical (\(\text{SO}_4^- \)) and singlet oxygen (\(^1\text{O}_2 \)), which are crucial in activation of \(\text{CH}_4 \).\(^7\) In particular, the \(^1\text{O}_2 \)-based system typically manifested a mild redox capacity (2.2 V) with a high selectivity to attack organic substrates, compared to other free radicals such as \(\text{SO}_4^\cdot^- \) (2.5–3.1 V) and \(\cdot \text{OH} \) (2.7 V) (see Fig. 1).\(^8\)

Peroxymonosulfate (P) as an excellent alternative oxidant has been confirmed to be the main source of \(\text{HSO}_5^- \) which can produce \(^1\text{O}_2 \), \(\cdot \text{OH} \), and \(\text{SO}_4^\cdot^- \) radicals.\(^9\) In particular, P can be utilized for selective oxidation of organic substances during which \(^1\text{O}_2 \) is generated and serves as a mild oxidant with distinct reactivity towards different substrates.\(^10\) Importantly, the \(\text{HSO}_5^- \) molecule has a higher oxidizing potential (1.82 V) than \(\text{H}_2\text{O}_2 \) (1.76 V), and is thus more promising for activation of \(\text{CH}_4 \).\(^7\) Therefore, P is often applied as an electron acceptor in photocatalytic degradation of organic pollutants.\(^11\) Nevertheless, P has never been studied for selective activation of \(\text{CH}_4 \).

Herein, we develop a \(\text{TiO}_2^{-1}\text{O}_2 \) system for the photocatalytic-oxidative route for \(\text{CH}_4 \) coupling to form \(\text{C}_2\text{H}_6 \) with solar light at room temperature. Other oxidants, including \(\text{O}_2 \), \(\text{H}_2\text{O}_2 \), and \(\text{CO}_2 \), have been investigated to illustrate the important role of \(\text{HSO}_5^- \) in selectively controlling the coupling of \(\text{CH}_4 \) to form \(\text{C}_2\text{H}_6 \). Further, an \(^1\text{O}_2 \) involving radical-mediated pathway is proposed to explain the high activity of \(\text{C}_2\text{H}_6 \) formation from \(\text{CH}_4 \). This work provides an alternative new approach for effective coupling of \(\text{CH}_4 \) to form \(\text{C}_2\text{H}_6 \) at room temperature.

The XRD patterns of \(\text{TiO}_2 \) in Fig. S1a† show the typical anatase and rutile diffraction peaks. The particle morphology with the size range of 10–30 nm and crystalline structure have been clearly indicated by the TEM and HRTEM images of \(\text{TiO}_2 \), respectively (Fig. S1b and c†). Fig. 1 shows the band structure of \(\text{TiO}_2 \) and the redox potentials of \(\text{H}_2\text{O}_2/\cdot \text{OH}, \text{H}_2\text{O}/\cdot \text{OH}, \text{O}_2/\text{O}_2^- \), \(^1\text{O}_2/\text{O}_2^- \), \(\text{SO}_4^\cdot^-/\text{HSO}_5^- \), and \(\text{HSO}_5^-/\text{SO}_4^\cdot^- \). Based on these band and redox positions, the \(\text{TiO}_2 \) material is expected to present enhanced performance for radical generation and activation of \(\text{CH}_4 \).

In order to reveal the photocatalytic performance of the \(\text{TiO}_2^{-1}\text{O}_2 \) system, we first made a comparison of control experiments based on different reaction conditions, including light, catalyst, and \(\text{HSO}_5^- \) (see Fig. 2a). Under solar light irradiation, \(\text{TiO}_2 \) with \(\text{HSO}_5^- \) as oxidant gave rise to an excellent performance for selective generation of \(\text{C}_2\text{H}_6 \), with a rate of 647 \(\mu \text{mol g}^{-1} \text{h}^{-1} \), much higher than the 180 and 89 \(\mu \text{mol g}^{-1} \text{h}^{-1} \) for the two by-products \(\text{CH}_3\text{OH} \) and HCOOH, respectively, leading to a calculated \(\text{C}_2\text{H}_6 \) selectivity up to 75%. Notably, \(\text{HSO}_5^- \) can be independently activated by solar light with the corresponding reaction: \(\text{HSO}_5^- \rightarrow \text{SO}_4^\cdot^- + \cdot \text{OH} \).\(^14\) The \(\cdot \text{OH} \) radical enables activation of \(\text{CH}_4 \) to produce \(\text{CH}_3 \) species which are essential for \(\text{C}_2\text{H}_6 \) and \(\text{CH}_3\text{OH} \) generation. Under these conditions only a little \(\text{C}_2\text{H}_6 \), \(\text{CH}_3\text{OH} \), HCOOH, and CO were detected, as displayed in Fig. 2a. For \(\text{TiO}_2 \) as catalyst, the photo-generated carriers reacting with \(\text{HSO}_5^- \) generate more \(^1\text{O}_2 \) which activates \(\text{CH}_4 \) to generate \(\text{CH}_3 \) species, thus accelerating the coupling of \(\text{CH}_3 \) to form \(\text{C}_2\text{H}_6 \).

To reveal the crucial role of \(^1\text{O}_2 \) in selective conversion of \(\text{CH}_4 \) to \(\text{C}_2\text{H}_6 \) a control experiment was conducted using different oxidants for the conversion of \(\text{CH}_4 \). Fig. 2b summarizes the results of \(\text{CH}_4 \) oxidation with various oxidants (\(^1\text{O}_2 \), \(\text{H}_2\text{O}_2 \), \(\text{O}_2 \), and \(\text{CO}_2 \)) under solar light irradiation. Apart from a little bit of \(\text{CH}_3\text{OH} \), trace amounts of \(\text{C}_2\text{H}_6 \) were found for \(\text{H}_2\text{O}_2, \text{O}_2, \) and \(\text{CO}_2 \) as oxidants, as shown in Fig. 2b. In contrast, the reaction with \(^1\text{O}_2 \) as oxidant remarkably promotes the conversion of \(\text{CH}_4 \) and selective generation of \(\text{C}_2\text{H}_6 \). Therefore, we conclude that \(^1\text{O}_2 \) possesses superiority in view of the photocatalytic activity and selectivity for \(\text{C}_2\text{H}_6 \) generation. This is probably attributed to the specific band structure of \(\text{TiO}_2 \) and more positive redox potential of \(\text{HSO}_5^-/\text{SO}_4^\cdot^- \), thus favouring...
generation of \(^{1}\text{O}_2\), as shown in Fig. 1. Additionally, to further understand the ability of \(^{1}\text{O}_2\), we controlled the amount of P which is the source of \(^{1}\text{O}_2\) (Fig. S2a†). As the amount of P was increased from 0 to 0.10 mmol, more \(\text{C}_2\text{H}_6\) was selectively produced in addition to two other products \(\text{CH}_3\text{OH}\) and \(\text{HCOOH}\). Meanwhile, much more over-oxidation by-products (\(\text{HCOOH}, \text{CO}, \text{and} \text{CO}_2\)) were generated as it increased to \(\text{HCOOH}\). Meanwhile, much more over-oxidation by-products after photocatalytic reaction for 10 min. (b) Products of \(\text{CH}_4\) conversion salicylic acid in the reaction system for trapping | 440

\[440 \]

\[\text{CH}_4 \rightarrow \text{CH}_3\text{OH} + \text{HCOOH} + \text{CO}_2 \]

In Fig. 2a, the selective formation of \(\text{C}_2\text{H}_6\) was still detectable even after trapping \(^{1}\text{O}_2\) in the reactive system, which is probably attributed to the remaining \(^{1}\text{O}_2\) radicals. Apart from a certain amount of \(\text{CH}_3\text{OH}\), \(\text{C}_2\text{H}_6\) was never found in the absence of \(^{1}\text{O}_2\) active species (see Fig. 3b). This indicates that \(^{1}\text{O}_2\) also remarkably determined the selective formation of \(\text{C}_2\text{H}_6\) which is related to the formation of \(^{1}\text{O}_2\). The \(\text{e}^-\) was also essential for the selective conversion as it initiated the \(^{1}\text{O}_2\) generation through chain reactions, which was proven by the absence of \(\text{C}_2\text{H}_6\) in products after elimination of photogenerated electrons. On the other hand, \(\text{h}^+\) only partially controlled the formation of \(\text{C}_2\text{H}_6\) based on an \(\text{h}^+\) trapping experiment.

Based on the above experimental analysis, we proposed a plausible mechanism. As displayed in Scheme 1, photoinduced electrons reacted with \(\text{HSO}_5^-\) and generated \(\text{SO}_4^{2-}\) radicals (eqn (1) and (2)). \(^{1}\text{O}_2\) was formed based on the reactions described by eqn (4)–(6), \(^{1}\text{O}_2\) was formed based on the reactions described by eqn (4)–(6), which agrees well with the trace amount of \(\text{O}_2\)

Table 1. Comparison of photocatalytic conversion of \(\text{CH}_4\) to \(\text{CH}_3\text{CH}_3\) over reported noble-metal-based catalysts

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Light source</th>
<th>Temperature (°C)</th>
<th>(\text{C}_2\text{H}_6) (µmol g(^{-1}) h(^{-1}))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6.0\ \text{wt}% \text{Ag}-\text{HPW/TiO}_2)</td>
<td>Xe lamp 400 W (200 < (\lambda) < 1000 nm)</td>
<td>30</td>
<td>20.3</td>
<td>15</td>
</tr>
<tr>
<td>(1.0\ \text{wt}% \text{Pt/HGTS})</td>
<td>Xe lamp 300 W</td>
<td>60</td>
<td>0.63</td>
<td>16</td>
</tr>
<tr>
<td>(11.7\ \text{wt}% \text{Au/m-ZnO})</td>
<td>Xe lamp 300 W (solar light)</td>
<td>30</td>
<td>11.3</td>
<td>17</td>
</tr>
<tr>
<td>AuPt/ZnO (Pd, 1.0 wt%)</td>
<td>Xe lamp 300 W (solar light)</td>
<td>30</td>
<td>17.7</td>
<td>18</td>
</tr>
<tr>
<td>(0.5\ \text{wt}% \text{Pd/Ga}_2\text{O}_3)</td>
<td>Xe lamp 300 W ((\lambda) = 354 nm)</td>
<td>45</td>
<td>0.28</td>
<td>19</td>
</tr>
<tr>
<td>(\text{WO}_3, \text{H}_2\text{O}_2 (2 \text{mM}))</td>
<td>Mercury-vapor lamp (UVC-visible light)</td>
<td>55</td>
<td>3.40</td>
<td>20</td>
</tr>
<tr>
<td>(\text{HBEA})</td>
<td>Hg lamp 450 W</td>
<td>70</td>
<td>14.3</td>
<td>21</td>
</tr>
<tr>
<td>(\text{CuO}2\text{P}{6,5}/\text{PC}-50)</td>
<td>LED 40 W ((\lambda) = 365 nm)</td>
<td>40</td>
<td>68.0</td>
<td>22</td>
</tr>
<tr>
<td>(\text{Au-ZnO/TiO}_2)</td>
<td>Xenon lamp 300 W (300 < (\lambda) < 500 nm)</td>
<td>26</td>
<td>188</td>
<td>23</td>
</tr>
<tr>
<td>(\text{TiO}_2, \text{Pd})</td>
<td>Xe lamp 300 W (solar light)</td>
<td>25</td>
<td>647</td>
<td>This work</td>
</tr>
</tbody>
</table>
when 1O_2 is used as oxidant in Fig. 2b. This O_2 further generated the O_2^{--} radical according to the reactions described by eqn (7). Consequently, 1O_2 was finally produced as a result of the presence of the O_2^{--} radical (see eqns (8) and (9)). The synthesized 1O_2 was able to selectively dehydrogenize CH$_4$ and generate the ‘CH$_3$’ radical which further underwent coupling, hence producing CH$_3$CH$_3$ (eqn (10)–(13)). It is noted that an increasing amount of ‘CH$_3$’ prefers to form C$_2$H$_6$ which is competitive with the CH$_3$OH generation (‘CH$_3$ + ‘OH \rightarrow CH$_3$OH)$.^{27,28}$ Therefore, when more ‘OH or O_2^{--} was present, CH$_3$OH could be generally produced. This well indicates that the dominant product was CH$_3$OH when radicals H$_2$O$_2$ and O$_2$ were selected as oxidants in Fig. 2b. Taken together, 1O_2 favoured selective production of CH$_3$CH$_3$, in comparison with H$_2$O$_2$ or O$_2$-based systems. Apart from the products CH$_3$CH$_3$ and CH$_3$OH, over-oxidation by-products such as HCOOH, CO, and even CO$_2$ could also be formed (see eqn (14) and (15)) in the presence of the O_2^{--} radical.29

$$\text{HSO}_5^- + e^- \rightarrow \text{OH}^- + \text{SO}_4^{2-}$$
(1)

$$\text{HSO}_5^- + e^- \rightarrow \text{OH} + \text{SO}_4^{2-}$$
(2)

$$\text{HSO}_5^- \rightarrow \text{OH} + \text{SO}_4^{2-}$$
(3)

$$2\text{HSO}_5^- + 2\text{‘OH} \rightarrow 2\text{SO}_4^{2-} + 2\text{H}_2\text{O} + \text{O}_2$$
(4)

$$\text{HSO}_5^- + \text{h}^+ \rightarrow \text{H}^+ + \text{SO}_4^{2-}$$
(5)

$$\text{SO}_4^{2-} + \text{SO}_3^{2-} \rightarrow 2\text{SO}_4^{2-} + \text{O}_2$$
(6)

$$\text{O}_2 + e^- \rightarrow \text{O}_2^{--}$$
(7)

$$\text{O}_2^{--} + \text{h}^+ \rightarrow ^1\text{O}_2$$
(8)

$$\text{‘OH} + \text{O}_2^{--} \rightarrow ^1\text{O}_2 + \text{OH}^-$$
(9)

$$^1\text{O}_2 + \text{CH}_4 \rightarrow \text{CH}_3$$
(10)

$$\text{CH}_4 + \text{‘OH} \rightarrow \text{CH}_3 + \text{H}_2\text{O}$$
(11)

$$\text{‘CH}_3 + \text{‘OH} \rightarrow \text{CH}_3\text{OH}$$
(12)

$$\text{‘CH}_3 + \text{‘CH}_3 \rightarrow \text{C}_2\text{H}_6$$
(13)

Conclusions

Solar-light driven selective conversion of methane to ethane has been achieved through a photocatalytic reaction at room temperature. By introducing HSO$_5^-$ into a TiO$_2$-based photocatalytic system, enhanced yields and selectivity of CH$_3$CH$_3$ are obtained largely due to the presence of 1O_2 provided by HSO$_5^-$. Solar light stimulates the TiO$_2$ catalyst to produce charge carriers (excited electrons and holes) which further activate HSO$_5^-$ to generate 1O_2. Detection and trapping experiments of active species further prove that the photocatalytic TiO$_2$–1O_2 system involves the 1O_2 radical pathway mechanism. This report opens up a new possibility for efficient conversion of methane to ethane with solar energy at ambient temperature.

Author contributions

Anhua Huang and Jingsheng Wang prepared the samples, carried out the experiments, analysed the data and prepared the paper; Xingyang Wu and Hangchen Liu assisted with the characterization and photocatalytic tests; Jun Cai and Guo Qin Xu reviewed and edited the manuscript; Song Ling Wang supervised this work and reviewed/edited the manuscript; all authors discussed the results and commented on the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was sponsored by the Shanghai Pujiang Talent Program (No. 19PJ1405200) and the Startup Fund for Youngman Research at SJTU (SFYR at SJTU, No. WF220516003).

Notes and references

29 J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar and D. Ma, J. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species, Tang, Nat. Catal., 2018, 1, 889–896.