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Single-component white-light-emitting materials have received increasing attention due to their
excellent luminescence properties. Herein, a novel all-inorganic dual halogen emitter Cs,Cd,BrCls was
successfully synthesized, which features a three-dimensional (3D) network structure. A series of
photophysical characterizations show that Cs,Cd,BrCls exhibits broadband white-light emission at room
temperature with a correlated color temperature (CCT) of 4286 K, a color rendering index (CRI) of 84.6
and a high photoluminescence quantum yield (PLQY) of 20.49%. Temperature-dependent emission
spectra, structural distortion analysis of the CdCls(Br/Cl)s octahedron, and DFT calculation reveal that
the broadband white-light emission of Cs,Cd,BrCls originates from self-trapped excitons (STEs).
Importantly, Cs,Cd,BrCls shows splendid structural and optical stability, which makes it a potential
candidate for light-emitting diodes (LEDs). To our knowledge, it is the first example of white-light
emission in 3D Cd-based all-inorganic halide materials, which could provide new insight for the further
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design and synthesis of all-inorganic single-component white-light emitters.

Introduction

In the past few years, solid-state lighting technology (SSL) has
greatly affected our lives due to its application in light-emitting
diodes (LEDs), sensors and displays."® Achieving white-light
emission is considered a key step in the effective use of SSL.
Generally, there are three ways to achieve white-light emission:
one is via a three-component emitter with a mixture of
red, blue, and green light sources;” ™ another is via a two-
component emitter that combines yellow and blue light
sources; and the third is via single-component white-light-
emitting materials. Multi-component white-light-emitting
materials have a high quantum efficiency and excellent color
rendering properties. However, the serious re-absorption
between the multiple components and the discontinuity of
the emission spectrum in the visible range hinder their
application.>"® By contrast, single-component white-light-
emitting materials overcome the above disadvantages, and have
attracted increasing attention due to their simple preparation
process, lower cost, and good color rendering.'*"*
Single-component white-light emission has made remark-
able achievements in organic molecules, inorganic nanocrys-
tals and metal-organic frameworks.'®'” These materials
exhibit excellent optical properties, but their synthesis involves
complicated processing.'® Recently, organic-inorganic hybrid
halide-based white-light-emitting materials have received
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extensive attention due to their high color purity and adjustable
structural dimensions. For example, Kanatzidis et al. reported a
series of lead bromide perovskites including a-(DMEN)PbBr,,
(DMAPA)PbBr, and (DMABA)PbBr,. They possess a 2D layered
structure and exhibit inherent white-light emission.’® In
addition, Karundasa et al. synthesized (EDBE)[PbX,] (X = Cl,
Br, I) perovskites, which also exhibit broadband white-light
emission.?® The broadband emissions of such compounds are
ascribed to self-trapped excitons (STEs), which are caused by
strong electron-phonon coupling in the distorted structure. In
addition to Pb-based halide white-light-emitting materials,
some Cd-based organic-inorganic hybrid halide white-light
emitters have also been reported recently, including
(2cepiH)CdCl; and (Ce¢Hy;NH;),CdBr,, which possess one-
dimensional (1D) chain and two-dimensional (2D) layered
structures, respectively, and all of them exhibit white-light
emission.*"* Compared with organic-inorganic hybrid halide
white-light-emitting materials, all-inorganic halide emitters
may have more research value due to their relatively excellent
thermal stability. At present, reports on Cd-based all-inorganic
halide white-light-emitting materials are very limited. Although
Luo et al. reported the white-light emitter Rb,CdCL,I,, it pos-
sesses a 2D layered structure.”® 3D Cd-based all-inorganic
white-light halide materials have not been reported so far.

In this work, we reported a new 3D all-inorganic dual halogen
emitter Cs,Cd,BrCls, which exhibits broadband white-light emis-
sion at room temperature. The white-light emission of
Cs,Cd,BrCl; is attributed to STEs as revealed by the analysis of
octahedral structure distortion, temperature-dependent emis-
sion spectra and DFT theoretical calculations. Moreover,
Cs,Cd,BrCl; possesses good structural thermal stability and an
excellent optical performance compared with the organic-inor-
ganic hybrid materials. As far as we know, this emitter is the first
example of white-light emission in Cd-based 3D all-inorganic
halides. Our studies not only enrich the research on Cd-based
light-emitting materials but also provide insight into the design
and synthesis of all-inorganic dual-halogen white-light emitters.

Experimental section

Synthesis

Analytical grade reagents including CdBr,-4H,O (AR, 98%) and
CsCl (AR, 99%) were used directly without further purification.
The Cs,Cd,BrCl; single crystals were synthesized via a hydro-
thermal method from the reactions of a mixture of CdBr,-4H,0
(0.344 g, 1 mmol) and CsCl (0.337 g, 2 mmol) dissolved in 3 mL
deionized water. The mixture was sealed into a 23 mL Teflon
autoclave and heated at 180 °C for 3 days before cooling to
room temperature. The target product was washed with alcohol
and then dried in an oven at 40 °C. Transparent colorless rod
crystals were obtained.

Characterization

Single-crystal X-ray diffraction was measured at 293.6(8) K
using a Rigaku XtaLAB Synergy R diffractometer with graphite
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Table 1 Crystal data and structure refinement for Cs,Cd,BrCls

Formula Cs,Cd,BrCl;
Formula weight 747.80
Crystal system Hexagonal
Space group P6;/mmc

a (A) 7.4571(2)
b (A) 7.4571(2)
c (&) 12.5222(6)
V(A% 603.05(4)
zZ 2

Deated (g cm™?) 4.118
Temperature (K) 293(2)

2 (&) 0.71073

F (000) 652.0

i (mm™) 13.833
GOF on F* 1.267

Ry, WR, (I > 20(1))°
“ Ri(F) = L|1Fo| — 1Fel [/ |Fol; Ra(Fo?) = [Yow(Fo” — F2P S ow(E)T .

0.0285/0.0758

monochromatic Cu Ko (2 = 1.54184 A) radiation (Table 1).
Powder X-ray diffraction (XRD) data were obtained using a
Rigaku D/MAX-TA diffractometer with Cu-Ka radiation (1 =
1.5418 A). Thermogravimetric (TG) analyses were recorded in
a flow of N, with a heating rate of 10 °C min~ "' using a Netzsch
STA 449c analyzer. Scanning electron microscope (SEM)/energy-
dispersive (EDS) analyses were performed using a Hitachi
S-3400N/Horiba Energy EX-250 instruments. The UV-vis absorp-
tion spectra were obtained at room temperature using a
PerkinElmer Lambda-950 UV/VIS spectrophotometer. The band
structure, density of states (DOS)/partial density of states
(PDOS), and electron density difference (EDD) diagrams were
calculated through first principles. Gradient correction func-
tional (GGA) and Perdew-Burke-Ernzerhof (PBE) were used
for all calculations. The excitation spectra, emission spectra
and photoluminescence quantum yield (PLQY) were measured
using an Edinburgh FS-5 fluorescence spectrometer with a
calibrated integrating sphere system. The temperature-
dependent emission spectra and time-resolved PL decay curves
were measured using a Fluoromax-3 fluorescence spectrometer.

Result and discussions

Crystal structure, octahedral distortion, phase purity and
thermal analysis

Single-crystal X-ray diffraction (SCXRD) analysis demonstrates
that Cs,Cd,BrCl; crystallizes in the hexagonal space group of
P63/mmc (no. 194). There are one independent Cd atom, one Cl
atom, one Br/Cl co-occupation atom and two Cs atoms in the
crystallographic asymmetric unit of Cs,Cd,BrCls. The Cd atom
is coordinated with three Cl atoms and three co-occupied Br/Cl
atoms forming a CdCl;(Br/Cl); octahedron. Two CdCl;(Br/Cl);
octahedra are connected forming a Cd,Cls(Br/Cl); dimer via
sharing of the three co-occupied Br/Cl atoms (Fig. 1a). The
Cd-Cl and Cd-Br bond lengths range from 2.604 to 2.691 A
(Fig. 1a). The adjacent Cd,Cl(Br/Cl); dimers are inter-linked,
forming a 2D layer via sharing Cl atoms along the ac plane
(Fig. 1b), and this corrugated 2D layer is further linked via
sharing Cl atoms along the b axis, resulting in the 3D structure

J. Mater. Chem. C, 2022, 10, 13844-13850 | 13845
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Fig. 1

(a) Coordination of Cd,Clg(Br/Cl)s dimers and their bond lengths; (b) 2D layer structure built from adjacent Cd,Clg(Br/Cl)s dimers that are inter-

linked by sharing the Cl atoms along the ac plane; (c) crystal structure of Cs,Cd,BrCls viewed along the ab plane; and (d) crystal structure of Cs,Cd,BrCls

viewed along the bc plane.

(Fig. 1c and d). The Cs ions are regularly inserted in the 3D
anion framework along the c axis and play a role in maintaining
the charge balance (Fig. 1c and d). It is worth noting that the
Cd-ClI bond lengths are shorter than those of the co-occupied
Cd-Br/Cl bonds, which indicates the CdCl;(Br/Cl); octahedron
is distorted. The distortion degree of the CdCl;(Br/Cl); octahe-
dron can be evaluated using the following formula:***®

6
Ad = 1(d, —

n=1

where d,, represents the length of six independent Cd-Cl or Cd-
Br/Cl bonds, and d is their average bond length. The value of Ad is
calculated as 2.68 x 10~* which is comparable to the reported
lead-based halide materials of (BA),Pbl, (Ad = 3.5 x 107%),
((DMAPA)PbBr,) (Ad = 1.1 x 10°*) and (DMABA)PbBr,
(Ad = 4.3 x 107%), indicating that the CdCl;(Br/Cl); octahedron
shows structural distortion."”*® The distortion of the Cd-Cl/Br
framework facilitates the formation of STEs, resulting in broadband

emission. The powder XRD data of Cs,Cd,BrCls were measured to
verify the phase purity, and the results showed that the experi-
mental data are in accordance with the calculated XRD pattern
(Fig. 2a). In addition, EDS analysis of Cs,Cd,BrCls showed that the
elemental content matches well with the theoretical values
(Fig. S1, ESIt). Moreover, the TGA and DSC curves of Cs,Cd,BrCls
were collected at a heating rate of 10 °C min ™" in the temperature
range from RT to 850 °C (Fig. 2b). The TGA curve shows that there
is almost no heat loss until the heating temperature exceeds
500 °C, and that Cs,Cd,BrCls did not undergo any phase change
before decomposition can be seen in the DSC curve. The above
results indicate that Cs,Cd,BrCls has a high thermal stability and
is an ideal candidate for single-component white-light-emitting
materials in SSL applications.

PL properties and optical stability analysis

The photoluminescence (PL) properties of Cs,Cd,BrCls at room
temperature were fully explored. Fig. 3a shows that the
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(a) XRD pattern of Cs,Cd,BrCls obtained via a hydrothermal method, and (b) TG-DSC curves of Cs,Cd,BrCls.
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Fig. 3 PL properties of compound Cs,Cd,BrCls at room temperature: (a) images of Cs,Cd,BrCls crystals under ambient light and 254 nm UV-light
excitation, (b) UV-vis absorption spectrum (purple line) and emission spectrum (black line), (c) CIE chromaticity coordinates, and (d) lifetime decay curve.

Cs,Cd,BrCls bulk crystals are colorless and transparent under
ambient light and emit bright white light upon 254 nm UV-light
irradiation. As shown in the purple line of Fig. 3b, the absorp-
tion edge of 291 nm was observed and the corresponding
experimental band gap is 4.25 eV. Upon 285 nm excitation,
Cs,Cd,BrCls exhibits broadband emission covering the entire
visible-light range with the strongest emission peak at 557 nm
and a FWHM of 206 nm (the black line of Fig. 3b). The large
Stokes shift of 272 nm is attributed to the strong electron-
phonon coupling in the distorted CdCl;(Br/Cl); octahedron.>”
As illustrated in Fig. 3c, the CIE chromaticity coordinates of
Cs,Cd,BrCl; are (0.3827, 0.4367) and the correlated color
temperature (CCT) is 4286 K, which corresponds to white-
light emission. In addition, the CRI reaches up to 84.6, which
is higher than most commercial light-emitting diodes (with a
CRI of 80), making it a candidate for advanced color-critical
applications. Moreover, the PLQY of Cs,Cd,BrCl; was mea-
sured to be 20.49%, which is relatively high for single-
component white-light-emitting materials, whose PLQY values
are usually <10%. For example, the PLQY values of
(CsHgNHj3),CdBr,, (2meptH,),PbCl, and (EDBE),PbBr, are
1%, 1.05% and 9%, respectively.?®>° The time-resolved PL
decay curve shows that the average lifetime of Cs,Cd,BrCls is
8.98 ms, which was obtained via triple-exponential fitting
(Fig. 3d). As previously reported, the emission of many semi-
conductor materials originates from surface defects, and the
emission will be quenched as the particles aggregate.>' 3’
Therefore, the emission spectra of bulk crystals and ground
powder samples were measured to determine the emission
origin. Fig. 4a reflects that there is no difference in the emission

This journal is © The Royal Society of Chemistry 2022

spectra of bulk crystals and ground powder, suggesting that the
emission of Cs,Cd,BrCls is not caused by surface defects but is
inherent emission. Considering the large Stokes shift and wide
FWHM, we speculate that the white-light emission of Cs,Cd,BrCl;
can be ascribed to STEs.***” Generally considered, halide lumines-
cent materials exhibit poor structural and photophysical stability.
Therefore, the emission spectra of fresh crystals, bulk crystals
placed in the air for 120 d and after irradiation for 12 h with
254 nm UV light (300 W cm ™2 Xe lamp) were collected. As shown in
Fig. 4b, the emission spectra present similar profiles, and the
emission intensities of the crystals after treatment are only slightly
lower than that of the fresh crystals, indicating that Cs,Cd,BrCl;s
shows excellent structural and photophysical stability.

Mechanism study via temperature-dependent PL spectra

To explore the thermal quenching behavior and emission
mechanism of compound Cs,Cd,BrCl;, we collected the
temperature-dependent PL spectra from 287 to 77 K at identical
intervals of 30 K. As shown in Fig. 5a, it can be observed that as
the temperature decreases, the intensity of the emission peak is
gradually enhanced. The above phenomenon can be explained
as lowering the temperature helps to reduce the non-radiative
transitions, resulting in more energy being presented in the
form of light rather than thermal loss. The activation energy
(AE,) of Cs,Cd,BrCl; for thermal quenching can be expressed
clearly using the Arrhenius equation:**~*!

Iy

= AE
1+ ¢ xexp <_ﬁ)
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77 K (solid blue line) and 287 K (solid black line), with the emission spectra of FEs (red dashed line) and STEs (green dashed line) obtained via Gaussian
fitting to split the emission spectrum at 77 K; and (d) corresponding emission mechanism configuration diagram of Cs,Cd,BrCls.

where I, and Ir represent the PL intensity at the initial tem-
perature and the test temperature 7, respectively. The para-
meters ¢ and AE, represent the frequency factor and activation
energy, respectively, k is the Boltzmann constant (8.617 X
107 eV K'), and the fitting result is displayed in Fig. 5b.
The activation energy (AE,) of Cs,Cd,BrCls is fitted as
41.17 meV, which is equivalent to previously reported halide
luminescent materials.*>** In particular, the emission spectra
of Cs,Cd,BrCl;s at 287 K and 77 K are revealed in Fig. 5c. It can
be clearly seen that when the test temperature is reduced from
287 K to 77 K, in addition to the broadband emission at room
temperature, a high-energy narrowband emission at 480 nm

13848 | J Mater. Chem. C, 2022, 10, 13844-13850

appears. The corresponding CIE chromaticity coordinates
changes from (0.3827, 0.4367) for white light to (0.2807,
0.3926) for green light (Fig. S2, ESIt). Moreover, the time-
resolved decay curve of Cs,Cd,BrCls at 77 K was also measured
(Fig. S3, ESIt). Under excitation at 285 nm, with monitoring at
480 nm, the lifetime is 2.2 ns, and while monitoring at 557 nm,
the lifetime is 9.13 ms.

We attribute the narrowband emission at 480 nm to the
emission of free excitons (FEs), while the broadband emission
at 557 nm can be ascribed to the emission of self-trapped
excitons (STEs).***> The FE and STE emission can be well
represented using Gaussian fitting to split the emission

This journal is © The Royal Society of Chemistry 2022


https://doi.org/10.1039/d1tc06086d

Published on 02 February 2022. Downloaded on 2/14/2026 2:59:59 AM.

Paper

View Article Online

Journal of Materials Chemistry C

e
&
G
N

o
o
3

=3.7¢V E

o
h
W
d
q
0
i
n
1
2
s

. Energy (eV)
DOS (electrons/eV)

&
L

N
3

-10
G

H K G M L H 10

spectrum at 77 K (green and red dashed lines in Fig. 5c).
Moreover, the emission mechanism of Cs,Cd,BrCl; can be
further explained using a configuration diagram (Fig. 5d).*®*
Under UV-light excitation, the electrons in the ground state are
first excited to the FE excited state, and then they transit to the
STE excited state through the relaxation process. Finally, the
excitons return to the ground state from the STE excited state.
The STEs dominate at high temperature (287 K) because there
is sufficient energy to overcome the energy barrier from FEs to
STEs, resulting in a strong broadband emission. However,
when the temperature drops to 77 K, the thermal energy is
not sufficient to overcome the barrier between the two energy
levels, meaning that only a small proportion of the excitons can
cross the barrier to enter the STE excited state, and most of
them directly return to the ground state from the FE excited
state. Therefore, in addition to the broadband emission, a
strong high-energy narrowband emission peak also appears at
77 K, and the intensity of the narrowband emission is stronger
than that of broadband emission.

Electronic structure calculations

In order to evaluate the electronic structure and further con-
firm the PL mechanism of Cs,Cd,BrCls;, the band structure,
partial density of states and electron-density difference map
were calculated using the first principles density functional
theory method. As shown in Fig. 6a, the conduction band
minimum (CBM) and the valence band maximum (VBM) lie
at different locations (in the areas of GA and AH, respectively),
indicating that Cs,Cd,BrCls is an indirect band gap compound.
The calculated band gap is 3.7 eV, which is smaller than
experimental band gap (4.25 eV). As is well known, DFT-GGA
methods will bring down the conduction band levels and
therefore underestimate the calculated band gap.**" The total
densities of states (TDOS) and partial densities of states (PDOS)
of Cs,Cd,BrCl; are calculated and plotted in Fig. 6b. It can be
seen that the top of the valence band and the bottom of the
conduction band are mainly composed of Cl-3p, Br-4p and
Cd-5s orbitals, indicating that there are relatively strong bonds
between Cd and Cl, and between Cd and Br. Since the optical
properties of materials are mainly determined by the state near
the forbidden band, the photoluminescence of Cs,Cd,BrCl;s is
contributed by the CdCl;(Br/Cl); octahedra. The electron den-
sity difference (EDD) map (Fig. 6¢) shows that the electron
cloud of Cd atoms has significant steric activity and the

This journal is © The Royal Society of Chemistry 2022

Enerogy (ev)

Fig. 6 (a) Cs,Cd,BrCls band structure; (b) TDOS and PDOS, where the Fermi level (E¢) is normalized to 0 eV; and (c) EDD map for Cs,Cd,BrCls.
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CdCl3(Br/Cl); octahedra are distorted. The distorted structure
facilitates electron-phonon coupling to form STEs, resulting in
broadband emission.

Conclusions

In summary, the 3D all-inorganic dual halogen emitter
Cs,Cd,BrCl; was obtained through a hydrothermal method.
Cs,Cd,BrCl; exhibits broadband white-light emission at room
temperature with a CCT of 4286 K, a CRI of 84.6 and a high
PLQY of 20.49%. In addition, Cs,Cd,BrCls possesses excellent
structural and thermal stability, indicating that Cs,Cd,BrCl; is
a promising single-component white-light-emitting material.
Photophysical studies show that the broadband emission of
Cs,Cd,BrCl; is attributed to the emission of STEs that originate
from the strong electron-phonon coupling in the octahedral
distortion, which was further confirmed via DFT calculations.
Our studies will provide new insight for the further exploration
of novel all-inorganic white-light emitters.
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