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Defining inkjet printing conditions of superconducting
cuprate films through machine learning†

Albert Queraltó, * Adrià Pacheco, Nerea Jiménez, Susagna Ricart,
Xavier Obradors and Teresa Puig*

The design and optimization of new processing approaches for the development of rare earth cuprate

(REBCO) high temperature superconductors is required to increase their cost-effective fabrication and

promote market implementation. The exploration of a broad range of parameters enabled by these

methods is the ideal scenario for a new set of high-throughput experimentation (HTE) and data-driven

tools based on machine learning (ML) algorithms that are envisaged to speed up this optimization in

a low-cost and efficient manner compatible with industrialization. In this work, we developed a

data-driven methodology that allows us to analyze and optimize the inkjet printing (IJP) deposition

process of REBCO precursor solutions. A dataset containing 231 samples was used to build ML models. Linear

and tree-based (Random Forest, AdaBoost and Gradient Boosting) regression algorithms were compared,

reaching performances above 87%. Model interpretation using Shapley Additive Explanations (SHAP) revealed

the most important variables for each study. We could determine that to ensure homogeneous CSD films of

1 micron thickness without cracks after the pyrolysis, we need average drop volumes of 190–210 pl, and no. of

drops between 5000 and 6000, delivering a total volume deposited close to 1 ml.

1. Introduction

The requirements to achieve a carbon neutral energy produc-
tion demand the development of innovative technologies that
enable the cost-effective generation and distribution of electri-
city from renewable energy sources. High-temperature super-
conductors (HTS) and particularly rare-earth cuprates (REBCO),
discovered in 1986,1 have become the most important material
type for HTS applications. The relatively high transition tem-
peratures that allow HTS to operate using liquid nitrogen (77 K)
but also at liquid helium (4.2 K), coupled with the outstanding
properties exhibited in a wide range of magnetic fields and
temperatures envisage a bright future for the superconductors’
industry. They have a wide market prospective implementation
in sectors such as lightweight wind power generators for renew-
able electricity generation or its efficient transportation through
coated conductor (CC) cables, but also in ultrahigh magnetic field
applications where REBCO enable the generation of 20 T magnets
required for confining the plasma in compact fusion reactors, or

as low surface resistance coatings in high energy circular particle
accelerators.2–4

However, the ceramic nature of REBCO and its high aniso-
tropy require costly materials manufacturing processes and
smart engineering solutions for their integration into func-
tional devices. Specific architectures have been designed,
known as coated conductors (CC).5 Although several companies
are able to market CC,6–12 low-cost and robust fabrication
methods that guarantee sufficiently small cost/performance
ratios are essential and only few are available. Chemical
solution deposition (CSD) methods have demonstrated low cost
and fine capabilities in the fabrication of REBCO superconduc-
ting films. Recently, combining the cost effectiveness of
environmentally-friendly precursor solutions with liquid
assisted growth processes, newly developed transient-liquid
assisted growth (TLAG-CSD) process was deployed.13–18

It allows reaching ultrafast growth rates above 100 nm s�1, as
well as the versatility and scalability of deposition techniques
such as inkjet printing or slot-die coating.

The complexity of the REBCO fabrication process based on
the kinetically driven TLAG-CSD approach, involves multiple
steps and a large number of experimental parameters that must
be tuned simultaneously to reach a final optimized product.
Several strategies are available to achieve such ambitious goal.
The definitive screening design (DSD) is an approach that belongs
to the Design of Experiments (DoE) methodology initially
proposed by Ronald Fisher.19 It is based on selecting a small
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number of experimental parameters that contribute improving
a target property and performing few tuning experiments using
a factorial design, i.e. changing different parameters each time
instead of tuning only one.20–22 The goal is to build conference
matrices that are employed to construct models containing
mainly, two-factor interactions and quadratic effects, and select
the best ones using specific criteria such as Akaike’s information
criterion. DSD has been successfully applied to optimize the
synthesis of mesoporous carbon, titania nanoparticles, as well as
fine tune the fabrication of TFA-REBCO superconductors.23–26

On the other side of the spectrum we have the high-
throughput approaches that explore a large number of para-
meters. High-throughput experimentation (HTE) is a methodology
that is currently driving attention in fields such as catalysis,27,28

solar cells,29,30 batteries,31 electronics32 and superconductivity33,34

thanks to its capability for parallel sample fabrication and
characterization. This expedites a swift generation of material
databases containing a vast multiparameter space of composi-
tions, processing conditions and properties. Specifically, we are
using HTE for the exploration of a large variety of TLAG REBCO
superconducting film parameters that go from solution stoichio-
metry variations to tuning of growth conditions.17 The novelty of
the process together with the poor knowledge available due to its
extremely non-equilibrium growth, makes HTE the most appro-
priate approach. In addition, the blossoming of a new data-driven
paradigm thanks to the unceasing breakthroughs in artificial
intelligence (AI) are promoting the development of high-
throughput computational (HTC) tools, providing a platform to
analyze the large amount of data generated from different sources
in a timely manner that could be otherwise very time-consuming.
In this sense, machine learning is a branch of AI that is contribut-
ing to accelerate materials development by identifying key elements
in different steps of the fabrication process.35–37 Machine learning
employs algorithms that receive input data to find hidden patterns
and produce an output that is later used to drive the optimization
of different aspects of materials development in varied research
fields such as mechanical properties,35,38 photovoltaics,39,40

batteries41,42 and superconductivity.43,44

In this work, we propose our strategy for the development of
machine learning models based on the high-throughput experimen-
tation approach to optimize the CSD deposition to reach REBCO
superconducting films. Specifically, we employ experimental data
from the deposition of precursor solutions by drop-on-demand
inkjet printing and use it to study the influence of different deposi-
tion parameters on the deposited film characteristics. We implement
non-parametric tree-based machine learning algorithms which allow
to capture non-linear relationships much better than multiple linear
regression, albeit not outputting a model equation.

2. Methodology
Experimental data acquisition

Sample fabrication was done by drop-on-demand inkjet print-
ing (IJP) of REBCO precursor solutions with a 1 M final
concentration following the procedure described elsewhere.17

Briefly, the solutions were prepared by adding Y/Gd and Ba
propionate precursors synthesized in-house, as well as com-
mercial Cu(ac)2 (Merck KGaA) in the desired proportions into a
1-to-1 solvent mixture of propionic acid and butanol, as well as
different quantities of a short C chain amine are added,
boosting ink solubility and homogeneity, and also minimizing
liquid movement during IJP. Additional details about solution
preparation and amine composition cannot be disclosed due to
confidentiality. Then, solutions were loaded in a multinozzle
IJP system (Microdrop Technologies GmbH) and deposited
on single-crystal (001) SrTiO3 (STO) substrates by using 1 or 2
nozzles (Fig. 1a). Successful IJP required adjusting drop for-
mation and deposition parameters. The former consists of the
voltage and pulse length at which the piezoelectric nozzles
vibrate, enabling drop stabilization and control of its volume
(Fig. 1a). The latter defines the grid size along X and Y
directions which is comprised by the drop and line pitch
(Fig. 1b). Finally, although we did not use this data in our
models, IJP samples are heat-treated at 5 1C min�1 up to 240 1C
and at 3 1C min�1 up to 500 1C for 5 min, in order to decompose
the organic material and obtain nanocrystalline films (pyrolysis)
that later will lead to the REBCO phase formation in a subsequent
high-temperature heating step. The data of the parameters
involved in the drop formation and deposition process that were
used to build machine learning models was collected from 231
samples. Fig. 1c–f present some examples of homogeneous and
inhomogeneous IJP depositions. Images were acquired with a
Leica DM1750 M optical microscope. The experimental raw data
for all samples used in the machine learning models was based
on combinations of parameters that lead to uniform depositions,
and is provided in the form of an Excel file at https://doi.org/10.
20350/digitalCSIC/14016.

Variable definition. The dataset contains many experimental
variables that depend on the number of nozzles used during
deposition, either 1 or 2 nozzles. Feature simplification is
typically performed in machine learning approaches to build
the simplest possible models that brings a general comprehen-
sion of the underlying phenomena investigated. Thus, each one
of the drop formation variables considered in our study has
been averaged to combine the inputs for both nozzles. Below,
we describe all the variables considered from the dataset to
build the machine learning models:
� Average voltage, AV (V) is the voltage value obtained by

averaging the voltages from nozzles 1 and 2. Each voltage is
manually defined in the equipment software. Although it may
vary depending on the nozzle used given the variability in their
construction characteristics, we ensured that the nozzles used
provided equivalent voltage values for our solutions.
� Average pulse length, APL (ms) is the average value between

the pulse lengths from nozzles 1 and 2. Each pulse length is
manually defined in the equipment software. Although it may
vary depending on the nozzle used given the variability in their
construction characteristics, we ensured that the nozzles used
provided equivalent pulse lengths for our solutions.
� Amine (%) refers to the percentage of short C chain amine

used in the preparation of the solution. The same amount of
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amine was added when two different REBCO precursor solu-
tions were employed.
� Average drop volume, ADV (pl) is the average value

between the drop volume from nozzles 1 and 2. The drop
volume is obtained by adjusting the voltage and pulse length
and inspecting the drop formation with a stroboscopic camera.
It strongly depends on the solution rheology.
� Drop pitch, dx (mm) is defined as the spacing between

drops in the X direction and it defines the grid size.
� Line pitch, dy (mm) is defined as the spacing between

drops in the Y direction (lines) and it defines the grid size.
� No. of drops, NoD, one of the variables that we will model

with machine learning, is the total number of drops deposited
on a substrate that is calculated by considering the dx and dy,
as well as the substrate width (w) and length (l) by using the
following formula:

NoD ¼ w � l
dx � dy (1)

� Total volume deposited, TVD (ml), the other variable
studied with machine learning, refers to the total amount of
solution deposited on a substrate that it is calculated by
multiplying the ADV and NoD:

TVD = ADV�NoD (2)

Machine learning. Development and interpretation of machine
learning models was done in Python using the Scikit-learn and
SHAP libraries, respectively.45,46 The low dimensionality of our
dataset (231 samples and 8 variables) restricted the type of
algorithms that could be explored. Therefore, we used decision
tree-based algorithms (ensemble methods) such as Random
Forest (RF), AdaBoost (AB) and Gradient Boosting (GB) regres-
sors which are also easy to implement and optimize in small
datasets. A detailed description of the implementation and
steps involved in our machine learning workflow, as well as

additional details on the algorithms employed can be found in
the ESI† (Section S1).

Code availability. The different steps of the machine learn-
ing model building process that is described in the ESI,†
including preprocessing steps, figures, machine learning
models and interpretability were done using Python. The
code is freely available at https://doi.org/10.20350/digitalCSIC/
14016.

3. Results and discussion

The deposition of uniform precursor REBCO precursor films by
inkjet printing requires tuning and optimization of the experi-
mental parameters involved in the solution (concentration,
amine (%), viscosity, etc.), drop formation (AV, APL, and
ADV), and deposition (dx and dy). These features will have a
major influence in determining the no. of drops (NoD) and
total volume deposited (TVD) on the substrates, which will
impact on the deposition homogeneity, and liquid movement.
While this imposes some constrains in the range of experi-
mental data that could be used in our models, it ensures
reaching high-quality depositions that will lead to crack-free
and homogeneous pyrolyzed films, mandatory for subsequent
studies at a later stage to investigate the REBCO epitaxial
growth and superconducting properties. Hence, a study by
machine learning of the hidden relations between these para-
meters, leading to uniform inkjet printing (IJP) depositions,
will provide insights that contribute to understand and speed
up the optimization of the deposition process as the initial step
of the overall epitaxial REBCO film growth.

3.1. Feature correlation analysis

The construction of machine learning models is based on
determining the importance of the different features on the
target variables that we want to predict. In our case, we will
build machine learning models for the NoD and TVD. Thus, it

Fig. 1 Schematic representation of (a) the inkjet printing setup, indicating the parameters to be tuned (voltage and pulse length) to obtain the average
drop volume, and (b) the grid size showing the separation between drops, i.e., drop pitch (dx) and line pitch (dy). (c) Optical microscopy (OM) image of a
deposition with a 500 � 500 mm2 grid with an average drop volume (ADV) of 200 pl, a solution concentration of 0.75 M and 1.75% amine, (d) OM images
of an inhomogeneous deposition (top) and associated pyrolysis (bottom) with a 50 � 100 mm2 grid, an ADV of 210 pl, a solution concentration of 1 M and
1.14% amine. (e) OM images of an inhomogeneous deposition (top) and associated pyrolysis (bottom) with a 50 � 100 mm2 grid, an ADV of 180 pl, a
solution concentration of 1 M and 1.14% amine. (f) OM images of a homogeneous deposition (top) and pyrolysis (bottom) with a 50� 95 mm2 grid, an ADV
of 180 pl, a solution concentration of 1 M and 1.14% amine. The pyrolysis process was performed always with a O2 flux of 0.12 l min�1, at 5 1C min�1 up to
240 1C, and then at 3 1C min�1 up to 500 1C with a 5 min dwell.
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is necessary to previously explore all existing relationships for
all variables in order to determine their importance and select
which ones will be used in the models. This is typically done
through the use of correlation matrices that represent the
linear relationships between variables, two-by-two.

The coefficients (r) represented in the matrix range from �1
to 1, both extremes indicating a high correlation (negative or
positive), while a value close to 0 indicates no correlation.
Variables with values close to �1 or 1 are often used to discard
one of the variables since they provide equivalent information.47

Nevertheless, since our dataset consists only of 231 samples and 8
variables, we will use all of them to study the existing relations.
Detailed information about the theoretical aspects of correlation
matrices and the statistical distribution of all variables in the
dataset can be found in Sections S1 and S2 (ESI†).

Fig. 2 shows the correlation matrix for all the IJP variables
considered in the dataset that will help us understand their
relations before building machine learning models. As we
mentioned previously, the ADV is experimentally determined
by the combination of AV and APL during the operation of the
IJP equipment. The correlation coefficients of the ADV with
these variables are 0.12 and 0.29, respectively, indicating a very
weak linear relationship from an optical perspective. In addition,
the AV and APL have also a very low correlation between them
(r = 0.28) which indicates that both variables should be kept in the
modeling process. The amine displays also a considerably positive
correlation (r = 0.61), indicating that higher ADVs are expected
with more amine. However, such correlation may be also caused
by the need to use higher voltages and pulse lengths with larger
percentages of amine given the positive correlation between these
variables and amine (r = 0.2). The need to raise the voltage and
pulse length is likely caused by the increase in the viscosity of the
solutions when more amine is incorporated to the solutions.17

Hence, we will initially also maintain these variables in our
models.

The dx and dy are two variables contributing significantly to
define uniform IJP depositions, especially because the sample

set intends to define the best parameters in that homogeneous
range to obtain films that eventually lead to crack-free pyrolysis
of approximately 1 micron in thickness. Therefore, the dx
and dy are linked due to these experimental requirements,
following an inversely proportional relation with a high nega-
tive correlation between both variables (r = �0.89). We could
have chosen other combinations of dx and dy, but it would have
not provided useful information on the understanding and
optimization of the IJP process. Hence, this implies one feature
must decrease while the other increases since the requirements
to reach high quality IJP depositions depend on how much
volume is being ejected on the substrate that will eventually
lead to our targeted thickness (around 1 micron after the
pyrolysis step from the data used in our study).

The NoD is one of the target variables that we will model,
and it is calculated from dx and dy. The correlation coefficients
with the NoD and these variables are respectively �0.39 and
0.05. This would suggest that the NoD will diminish with dx,
while there seems to be no correlation with dy despite increa-
sing it should experimentally reduce the NoD given how it is
calculated (eqn (1)). This relation seems illogical since one
would expect that a larger dy leads to a lower NoD. However,
the correlation matrix is only describing the linear relations
between variables two-by-two and excludes any other interac-
tions such as multicollinearity or non-linear behaviors which
could lead to the observed correlation. Additionally, it could
also hint that, in view of our data, dx has a greater effect in
defining the NoD than dy. We can also identify additional
relationships between the NoD and drop formation variables.
The correlation coefficients are �0.11, �0.22, �0.47 and �0.62
for the AV, APL, Amine and ADV, pointing out that less drops
will be deposited for large values of these variables. These
results are expected since large ADVs are obtained by increasing
the AV and APL. Furthermore, bigger drops will demand more
space between them and a lower number to homogeneously
cover the substrate surface for the targeted thickness.

The TVD is also a variable of interest that we will model
using machine learning given its contribution to define the
final pyrolyzed film quality and thickness (Fig. 1), and it is
calculated from the NoD and the ADV (eqn (2)). Analyzing the
correlation coefficients, the TVD has a r = 0.91 with the NoD
which implies an almost linear relation between them and may
indicate a large contribution of the NoD when we build the
model. The correlation coefficient with the ADV is �0.25, which
suggests a negative linear relationship between the two variables.
Initially, this may seem counterintuitive since one would expect
that a larger ADV leads to an also larger TVD but again, this
analysis does not consider non-linear relationships. Besides that,
the other drop formation features (AV, APL, and amine) also have
negative and rather low coefficients (�0.08, �0.13 and �0.26)
which entails a weak linear relation with the TVD. This could be
expected since the AV, APL, and Amine are positively correlated
with the ADV and their coefficient with the TVD should have the
same sign. If we look at the relationships between the dx and
dy with the TVD, we see that the correlation coefficients are
respectively, �0.44, and 0.12. This implies that an increase in

Fig. 2 Correlation matrix showing the linear Pearson correlation coeffi-
cients (r) between all inkjet printing deposition variables.

Paper Journal of Materials Chemistry C

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
A

pr
il 

20
22

. D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 1
1:

20
:4

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1tc05913k


This journal is © The Royal Society of Chemistry 2022 J. Mater. Chem. C, 2022, 10, 6885–6895 |  6889

dx will contribute reducing the TVD which is in agreement with
what one would expect if the distance between drops is enlarged.
However, the positive coefficient for the dy suggests that the
opposite trend occurs when the dy increases. This would disagree
with our intuition, but one must also contemplate that dx and dy
are inversely correlated, and again that only linear interactions
between variables are being considered in the correlation matrix.
For additional details on the relationships between variables, the
reader should refer to Section S3 (ESI†). In summary, the analysis
provided serves as a guide to determine the possible interactions
between variables before building machine learning models.
As we mentioned, this is due to the presence of multicollinearity
which interferes with this bivariate analysis.48 To solve it, model
interpretation will be based on the calculation of SHAP values
which are designed to avoid it by assigning a larger relevance to
one of the highly correlated variables.46,48,49 These analyses are
very interesting for complex cases like the one studied here where
additional constraints (i.e. obtain a homogeneous film after IJP
deposition warranting a crack-free decomposition for an opti-
mized pyrolyzed films thickness in the range of 1 micron) are
imposed, since prompt intuition cannot be used.

3.2. Model for the variable NoD

The NoD deposited on a substrate by IJP has been used to
develop the first Machine Learning (ML) model to validate the
strategy followed in this study. This should go beyond the
linear correlations interpretations allowed by the correlation
matrix. We explained before that dx and dy are used to
calculated it (eqn (1)) and, therefore, the predictions from the
model should mainly depend on them. Nevertheless, we con-
sidered all features as descriptors except for the TVD that will
not be used in this model given that it is calculated from the
product between ADV and NoD. Essentially, the variables used
for this model are AV, APL, ADV, dx, dy and amine.

Four different ML algorithms were employed to predict the
NoD based on these variables. The results procured by decision
tree-based algorithms, i.e., RF, AB and GB regressors, were
compared with a linear regression model using the default
hyperparameters (Fig. 3), revealing that the precisions (R2) for
the models developed with ensemble methods are much larger
in comparison to linear regression. The train and valida-
tion precisions are respectively 0.98 and 0.87 (RF), 0.93 and
0.82 (AB), and 1.0 and 0.91 (GB), while the linear regression has
an Rtrain

2 = 0.71 and Rvalidation
2 = 0.68. This seems to imply that

the relation between variables is not linear given that ensemble
methods capture much better this type of relations. Although
all models perform quite well, the characteristics and limita-
tions of the dataset described in the ESI† (Sections S2 and S3),
as well as the need to prevent overfitting make the RF regressor
a much more reliable option due to the way the algorithm
works (see Section S1, ESI†).50

After optimizing the parameters used in the RF algorithm to
obtain the best model possible, i.e., a no. of estimators of 30,
minimum sample split of 3, and maximum depth of 10
(Section S4, ESI†), we evaluated it with the train and test sets
which returned respectively scores of 0.98 and 0.94 (R2), and

175.84 and 288.83 (root mean squared error, RMSE). This
suggests that the model can generalize quite well within the
limitations of our experimental data, where the parameters
used ensured the deposition of quite uniform films with none
or little liquid movement. Our goal was to eventually obtain
crack-free films after a subsequent pyrolysis step. Later, these
films will be used for further treatment and investigation of the
REBCO epitaxial growth and superconducting properties.

SHAP values are able to extract valuable information from
black-box, non-parametric models which do not output an
equation such as those derived from the RF algorithm.46,51

The global importance plots represent the contributions of
independent variables on the modeled target variable and are
calculated by aggregating the SHAP values for each individual
prediction (Section S1, ESI†).51 Eqn (1) shows that the NoD is
calculated experimentally only from the dx and dy. However,
the RF model and SHAP values clearly reveal that not only dx
and dy contribute to define the NoD and the model predictions,
but also the ADV (Fig. 4a). The influence of each variable on the
model, calculated from the SHAP values, reveals that dx is the
most important variable with a 54.9%, followed by dy with a
30.6% and the ADV in third place with an 11.9%. We also see
that the AV, APL and amine have very little influence in
defining the NoD with contributions between 0.3 and 1.8%.
It is worth noting, that the ADV already considers the contri-
bution of these three variables because it is experimentally
defined by them during the IJP deposition process. Therefore,
since they are negligible for the model, it is possible to remove
them in order to simplify it without affecting too much its
predictive power or even improving it (Section S4, ESI†).52

If we obtain some predictions for the NoD using both
models (one with all variables and another with the most
important) and compare them with the experimentally deter-
mined NoD in the test set (Fig. 4b), we see that the predictions
obtained match very well with the experimental values. In addition,

Fig. 3 Precision (R2) values on the training and validation datasets for the
no. of drops (NoD) models built with linear regression and ensemble
methods using the default hyperparameters.
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the difference between both models is quite insignificant as
expected since both have very similar metrics (Section S4, ESI†).

In order to demonstrate the interest in this ML approxi-
mation, we have compared the predicted values obtained for
the ML model with the most important experimental variables
(ADV, dx and dy). This allows us to define which combination
of experimental parameters would be required to obtain a
specific NoD (Table S2, ESI†). This analysis also shows that a
typical range for the NoD from 3500 to 6500 drops should
guarantee a good and uniform coverage of the solution on a
5 � 5 mm2 substrate based on the experimental data used in
our model. However, it must be noted that the ADV will also
play an important role in determining the TVD, as we will
see later, and this is known to affect the deposited film
homogeneity and the final thickness after the pyrolysis process.
Hence, this must also be considered when selecting the experi-
mental conditions.

Based on these combinations, we built a plot that shows the
contribution every independent variable has on the final output
for a specific predicted NoD (Fig. 4c). In particular, if we wanted
to deposit around 5286 � 289 drops on a substrate which
should lead to a TVD close to 1 ml, a dx of 50 mm, dy of 95 mm,
and ADV of 170 pl would be required. It can also be seen that
the dx and ADV have both a positive contribution (increase)
on the NoD, while the dy contributes to decrease it. The
relationships between a prediction and the experimental para-
meters determined by SHAP values in Fig. 4c are specific for
each combination since they depend on the average values
for each variable in the train set. Additional combinations of
experimental variables and predicted NoD can be found in
Section S4 (ESI†).

As a final analysis of experimental interest from the ML
model output, we represent the predicted values for the NoD
color-coded in a phase-like diagram of dx and dy (Fig. 5), where

the size of the circles corresponds to the ADV. The relation
between dx and dy is quite linear with a r = �0.88, very similar
to the correlation coefficient in Fig. 2. This plot demonstrates
the relationship between the most important variables in the
model and shows that despite the complex relationship
between them and the NoD, one can extract the information
on the values to be used for specific experimental conditions.
We can identify two main regions where the predicted NoD is
large, i.e., 5600 � 289 drops and above. The first one is located
at values of dx between 75 and 90 mm, dy B 50 mm, and ADV
from 170 to 200 pl, approximately. The second region can be
found at dx of B35 mm, dy around 120–130 mm, and ADV from
170 to 180 pl. Other areas with large NoD should roughly follow

Fig. 4 (a) Variable influence in the model created for the NoD. The percentage has been calculated by normalizing the average SHAP value obtained for
each variable. (b) Predicted NoD as a function of the experimental values, comparing the model with all and only the important variables (dx, dy and ADV).
(c) Prediction of the influence of model parameters on a specific no. of drops (NoD). The contribution of each feature is obtained based on their average
values in the train set (hdxi = 100.3 mm, hADVi = 203.3 pl, and hdyi = 67.6 mm). The red color indicates the features that contribute increasing the predicted
value, while blue is used for those that contribute to reduce it. The size of the arrow indicates how strong is the effect of each variable in the prediction.46

Fig. 5 Scatterplot of the line pitch (dy) as a function of the drop pitch (dx)
where the circle size corresponds to the value of the average drop volume
(ADV) and color-coded we find the predicted value for the no. of drops
(NoD). The dashed lines are a guide for the eye, while the arrow indicates
the direction of increase for the predicted NoD.

Paper Journal of Materials Chemistry C

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
A

pr
il 

20
22

. D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 1
1:

20
:4

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1tc05913k


This journal is © The Royal Society of Chemistry 2022 J. Mater. Chem. C, 2022, 10, 6885–6895 |  6891

the bottom dashed line. On the other hand, the NoD will be
4800 � 289 drops and smaller in areas close to the upper
dashed line. For instance, dx between 100 and 120 mm, dy B
50 mm, and ADV from 190 to 200 pl; or dx B 40 mm, dy B 200 mm,
and ADV of 210 pl. We can also see that, in general, small ADV lead
to large NoD values and vice versa, although the combination of
dx and dy will have a more important contribution in defining the
NoD. It is also worth noting that these results agree with
the negative sign of the correlation coefficients for dx and ADV
(r = �0.39 and �0.62), while disagree with the coefficient for dy
(r = 0.05) (Fig. 2). However, we must remember that dx and dy
are strongly correlated (r = �0.89). This again illustrates the
importance of SHAP values in model interpretation for non-
linear relationships, as well as independent variables that present
multicollinearity.

In summary, the model developed allowed us to evaluate the
importance of the experimental parameters in defining the
NoD deposited on the substrates, as well as to comprehend
the relation between them. Very precise predictions were
obtained from the acquired experimental (test) data and using
the RF-based models with R2 B 0.94–0.95 and RMSE B 267.31–
288.83. We could also discern the influence of each variable on
specific final values of the predicted NoD. We identified that
the most important experimental parameters determining the
resulting NoD are dx, dy and ADV. The general trend for these
parameters indicates that small (large) dx and large (small) dy
will keep a rather good homogeneity when using ADVs around
190–200 pl. However, increasing (decreasing) both dx and dy
will result in more (less) drops deposited on the substrates
which will then lead to the aforementioned inhomogeneous IJP
depositions.

3.3. Model for the variable TVD

The second model we have built is for the TVD. This is a very
relevant parameter to ensure that the films are homogeneous
after the pyrolysis and do not present cracks, which again will
guarantee that studies about the epitaxy of REBCO films and
their physical properties can be performed properly. Since a
critical thickness exists beyond which the strain generated
during the pyrolysis will induce film cracking in CSD
films.15,18,53 This is an essential problem that face many
applications that require CSD films of large thickness (beyond
few hundreds of nm). Hence, we developed a ML model to
study which variables are the most important in defining the
TVD. This will help in understanding the relation between
experimental parameters that contribute to keep the homoge-
neous integrity of the deposited film after the pyrolysis.
In addition, it will enable us to reach a precise control of these
parameters and enhance the reproducibility of our films.

Although the TVD is defined by the product between NoD
and ADV variables, in the initial stage, we decided to also
include the AV, APL, dx, dy and amine. For the sake of
completeness, we compared the precisions of linear regression
and ensemble methods which all gave very similar values of R2

in the range of 0.89–0.99 for the validation set, including the
linear regression model (Section S5, ESI†). This seems to imply

that the relation between variables has a strong linear compo-
nent which could come from the NoD (r = 0.91). However,
based on the discussion made in the previous section, we
selected the RF algorithm to build an enhanced version of
the model for the TVD to identify any hidden non-linear
relationships by considering the steps described in Section S1
(ESI†). The optimized parameters for the RF algorithm are a no.
of estimators of 120, a minimum sample split of 3, and
maximum depth of 10 (Section S5, ESI†). This model was
evaluated on the train and test set, returning respective scores
of 0.99 and 0.98 (R2), and 0.021 and 0.026 (RMSE) (Section S5,
ESI†). These metrics show that the model is very adequate to
predict the TVD within our experimental data, where only
values associated to uniform depositions were considered.

Feature importance for the model that predicts the TVD
(Fig. 6a) shows that the NoD has the largest weight with an
influence of 71.8%, while the ADV is second with 19.1%,
around 3.5 times lower. The remaining variables, i.e., the dx,
dy, APL, amine and AV, have very little significance in the
model with percentages between 0.8 and 3.4%. These results
agree with the parameters used to calculate the TVD (eqn (2)),
but also highlight the weight of each feature in the TVD. Since
the NoD is calculated from the dx and dy, which had influences
of 54.9 and 30.6% (Section 3.2), it can be inferred that these two
variables are also important for the TVD. As we mentioned
before, the ADV already considers the contribution of the APL,
amine and AV. These variables (dx, dy, APL, amine and AV) can
be removed to build a simpler model without losing interpret-
ability (Section S5, ESI†).

Fig. 6b shows the predictions of the TVD obtained with the
models developed considering all the variables or only the NoD
and the ADV on the test set. Equivalent results are reached for
both models and the metrics are also very similar, 0.018–0.026
for the RMSE and 0.98–0.99 for the precision (Section S5, ESI†).
Thus, it could be expected that the predicted values of the TVD
are very similar between them, also precisely matching the
experimental values from the test dataset. This simplification
of variables enabled by the ML approach used, is very interest-
ing from the experimental perspective, since it allows us to
identify the most relevant parameters to consider.

The relationship between the predicted values for the TVD and
the independent variables, i.e., the experimental parameters that
would be required to obtain them, has been extracted from the
model with the most important variables (ADV and NoD) on the
test set (Section S5, ESI†). As mentioned before, we were experi-
mentally aiming for a TVD close to 1 ml on a 5 � 5 mm2 substrate
which after a subsequent pyrolysis process would lead to films
with a final thickness of about 1000 nm. Different combinations of
experimental parameters can be used to get such result, which
depend on the specific values of each independent variable, but
the different combinations should all, in principle, ensure a
homogeneous liquid distribution and eventually a pyrolyzed film
of good quality. It must be remembered that our experimental data
only considers combinations of parameters that produce rather
uniform depositions. In addition, we can see that the TVD is
largely affected by the combination we use.
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Similarly to the NoD model, we built a plot that shows the
relationship between the independent variables (NoD and ADV)
with the TVD, we can see that to deposit a TVD of 1.06 � 0.02 ml
on a substrate we would require a NoD of 5556 drops (dx =
50 mm and dy = 90 mm) and a ADV of 190 pl. In this case, the
NoD has a positive influence increasing the value of the
predicted TVD, while ADV contributes to decrease it. As men-
tioned before, the predictions and their relation with the
experimental parameters shown in Fig. 6c depend on the
combination between experimental variables. Additional com-
binations of experimental variables and predicted TVD can be
found in Section S5 (ESI†).

Similarly to the NoD, a color-coded diagram of the TVD
is represented as a function of the ADV and NoD (Fig. 7). This
diagram summarizes all the previous results and shows the

relationship of these variables with the TVD. We can see that
large TVD values are mainly defined by the increase in NoD,
while the contribution of the ADV seems less significant.
In particular, TVD values of 1.05 � 0.02 ml and above are
located in a region of NoD between 5000 and 7000 drops, and
ADV of 180–230 pl, while values of TVD smaller than 0.90 �
0.02 ml are mostly found in the region of NoD below 5000 drops
and ADV between 200 and 230 pl. From the experimental data
used in the predictions, we can also see that large TVD are close
to the upper dashed line, while small ones can be found near
the dashed bottom line. If we consider the correlation coeffi-
cients (Fig. 2), we see that there is a high positive correlation of
0.91 between the TVD and NoD which agrees with the large
weight of this variable in the model. On the other hand, the
ADV has a negative correlation of �0.25. Although the negative
value of the correlation seems to imply that the TVD should
decrease with large values of the ADV, Fig. 7 clearly shows that
the main reason for this is the use of lower NoD. The magni-
tude of the correlation coefficient for the ADV matches the
weight of this feature in the model obtained from SHAP values
(Fig. 6a). Finally, we can also define a range of experimental
values for the ADV, between 190 and 210 pl, and NoD, between
5000 and 6000, that would lead to the previously mentioned
TVD close to 1 ml in homogeneous layers.

It is also worth noting that these results agree with the
negative sign of the correlation coefficients for dx and ADV
(r = �0.39 and �0.62), while disagree with the coefficient for dy
(r = 0.05) (Fig. 2). However, we must remember that dx and dy
are strongly correlated (r = �0.89). This again illustrates the
importance of SHAP values in model interpretation for non-
linear relationships, as well as independent variables that
present multicollinearity.

In summary, the predictions made on the experimental test
data with the RF model show R2 of 0.98–0.99 and RMSE of

Fig. 7 Scatterplot of the no. of drops (NoD) as a function of the average
drop volume (ADV) and color-coded we find the predicted value for the
total volume deposited (TVD). The dashed lines are a guide for the eye,
while the arrow indicates the direction of increase for the predicted TVD.

Fig. 6 (a) Variable influence in the model created for the TVD. The percentage has been calculated by normalizing the average SHAP value obtained for
each variable. (b) Predicted total volume deposited (TVD) as a function of the experimental values, comparing the model with all and only the important
variables (no. of drops (NoD) and average drop volume (ADV)). (c) Prediction of the influence of model parameters on a specific total volume deposited
(TVD). The contribution of each feature on the predicted TVD is obtained based on their average values in the train set (hADVi = 203.3 pl, and hNoDi =
4976.6 drops). The red color indicates the features that contribute increasing the predicted value, while blue is used for those that contribute to reduce it.
The size of the arrow indicates how strong is the effect of each variable.46
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0.021–0.026, indicating that the TVD can be predicted with high
precision. In addition, the most important parameters defining
the TVD are the NoD (dx and dy) and the ADV. In particular, the
NoD has a greater influence in achieving larger values of the
TVD than the ADV.

4. Conclusions

We have developed a machine learning strategy that is used to
analyze the results from inkjet printing deposition process of
REBCO precursor solutions to extract meaningful information
of the relationships between experimental parameters that
enable homogeneous films. From the machine learning algo-
rithms employed, the RF regressor was chosen to prevent
overfitting due to the used dataset size (231 samples), and the
noise detected in most features. Good performances (R2 4 0.87)
and small errors (RMSE B 267.31–288.83 (NoD) and 0.021–0.026
(TVD)) were achieved in the prediction of the NoD and TVD
variables, indicating the suitability of the RF algorithm for the
cases studied.

The SHAP values allowed us to extract information about the
most important variables for each model, which is vital to
understand which parameters must be tuned with higher
priority. Particularly, we could identify that the NoD is mainly
defined by dx, dy and ADV, whereas the TVD results from the
contribution of the NoD and the ADV. Therefore, we can
conclude that dx, dy and ADV define both the NoD and TVD.

The results obtained show the specific combinations we can
do with the different experimental parameters to achieve
specific values of NoD and TVD that match with our require-
ments for the quality and homogeneity of deposited films and
their final thicknesses. Additionally, they provide us informa-
tion of the relations between all parameters, enabling their
proper tuning and optimization.

Finally, we demonstrate that machine learning can be used
in the optimization of inkjet printing deposition, in particular
we used it for the case of TLAG-REBCO precursor solutions,
although the strategy and algorithms proposed here can be
extended to other CSD functional solutions but also to the next
steps of the REBCO film fabrication process by selecting the
appropriate features and machine learning algorithms.
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