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Effective models for TADF: the role of the medium
polarizability†

D. K. Andrea Phan Huu, Sangeeth Saseendran and Anna Painelli *

A novel approch to estimate intersystem and reverse intersystem crossing rates (ISC and RISC rates,

respectively) is proposed. We build on an effective model Hamiltonian recently parametrized ab initio

and validated experimentally for a prototypical dye for thermally activated delayed fluorescence (TADF).

The model describes the relevant physics in terms of a few diabatic states coupled to an effective

vibrational coordinate and an effective conformational mode. A complete, numerically exact, non-

adiabatic solution of the problem opens the way to the calculation of ISC and RISC rates fully

accounting for the anharmonic and non-adiabatic nuclear dynamics. The model is further extended to

address the role of the environmental polarizability, as described by the medium refractive index. The

marginal variability of the refractive index in organic media results in marginal effects on the rates in

different media. However, large variations of the rates are predicted when moving from the gas phase to

an organic medium, suggesting that a meaningful analysis of experimental data must rely on

computational analysis properly accounting for the dielectric properties of the surrounding medium.

1 Introduction

Thermally-activated delayed fluorescence (TADF) is a delicate
process driven by a complex interplay of several interactions.1–3

Electronic excited states with different nature, singlets and
triplets, on one side, and charge transfer (CT) and local excited
(LE) states, on the other side, are involved in a process that is
also affected by vibrational and conformational motion.4–8 Tiny
spin–orbit coupling (SOC) interactions must be understood in
this complex scenario and a wealth of experimental and theo-
retical work is devoted to unveiling the relevant physics.9–19

From a theoretical perspective, the detailed understanding of
TADF, as needed to actually simulate the time-dependent
phenomena, is highly non-trivial. Indeed the non-adiabatic
coupling between electronic and vibrational/conformational
degrees of freedom must be accounted for in a system
characterized by large anharmonicity.9 Moreover, a careful
analysis of the different timescales of the competing phenomena
(internal relaxation, conformational motion, non-radiative and
radiative relaxations, inter-system crossing (ISC) and reverse
inter-system crossing (RISC)) must be carefully analyzed and
accounted for.

The comparison between theory ad experiment is further
hindered by the subtleties introduced in the system by

environmental effects. TADF as relevant to real devices in
fact occurs in matrices, typically amorphous (glassy) matrices
composed of small molecules. The dielectric properties of the
matrix, its polarity and polarizability affect in different ways LE
and CT states, leading to qualitatively different TADF properties
in different media and making the comparison with theoretical
gas-phase results unreliable.15,16,20–26 The rigidity and viscosity
of the medium also play a role, affecting in turn the molecular
conformation and flexibility.25 Different theoretical approaches
have been exploited to account for environmental effects in
TADF processes.15,16,23–26 They can be classified in two broad
families. Continuum models (typically conductor-like screening
model (COSMO) and polarizable continuum model (PCM))
describe the environment as a continuum dielectric medium,
then loosing all information about the atomistic nature of the
matrix, its rigidity and viscosity, but leading to a simple and
economic picture for dielectric effects.27–29 In atomistic models,
a detailed and dynamical model for the environment is defined,
typically in terms of molecular mechanics or molecular
dynamics models, that, at a larger computational cost than
continuum models, allows for a more realistic description of
environmental effects.30,31 However, both families of approaches
fail to properly account for the effect due to the medium
polarizability.32–34 Indeed, in both approaches the molecular
Hamiltonian is defined as responding to the potential due to
the charges on the surrounding medium, in the hypothesis that
these charges are equilibrated to the specific molecular state.
This adiabatic treatment of environmental effects of course
works well for environmental charges related to slow degrees
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of freedom (vibrational, conformational and orientational
motions in the matrix), but it is untenable for the fast degrees
of freedom associated with the matrix polarizability. The electronic
degrees of freedom of the matrix molecules (typically in the UV
region) are characterized by faster timescales than the relevant
degrees of freedom of the TADF dyes (typically in the visible) and
should rather be treated in the antiadiabatic approximation.32

Here a model, recently parametrized ab initio and validated
experimentally for a prototypical TADF dye (Fig. 1), 9,9-dimethyl-
9,10-dihydroacridin-4,6-triphenyl-1,3,5-triazine (DMAC–TRZ),35

is used to propose a novel approach to RISC, ISC, and radiative
decay rates, fully accounting for non-adiabatic and anharmonic
effects. Gas phase results will be presented first. Then we will
address the effect of the matrix polarizability, showing how it
affects the behavior of the system. Results will be compared with
experimental data collected in a non-polar environment.22

The discussion of medium polarity effects will be deferred to a
subsequent publication.

2 Setting up the model: TADF in the
gas phase
2.1 The model

DMAC–TRZ is a typical TADF dye, made up by an electron
acceptor (A, TRZ) and an electron donating (D, DMAC) group
joined by a poorly conjugating bridge.36 The dye has been
extensively investigated experimentally and we recently proposed
a minimal model to describe its low-energy physics.22,35,36 The
model, parametrized against extensive time-dependent density
functional theory (TD-DFT) calculations, was validated against
spectroscopic data. It accounts for four diabatic states: two
singlet states, corresponding to a neutral |Ni state, that may

be represented as DA, and a zwitterionic state |Zi, D+A�. While
these two states are enough to address optical spectra of DA
dyes, TADF also requires triplet states: we will account for the
zwitterionic triplet |Ti and a local excited triplet |Li. The energy
of the diabatic zwitterionic states is set to 2z (the N state sets
the energy zero) and 2k is the energy of the local triplet state.
The mixing matrix elements of the two singlet (triplet) states is t.
Finally, we neglect the Z–T and N–L SOC (El-Sayed rule), and set
the N–T and Z–L couplings to VSOC and WSOC, respectively.37 The
relevant electronic Hamiltonian reads (N, Z, T, L basis):

Ĥel ¼

0 �tðdÞ Vsoc 0

�tðdÞ 2zðQÞ 0 Wsoc

Vsoc 0 2zðQÞ �bðdÞ

0 Wsoc �bðdÞ 2k

0
BBBBBB@

1
CCCCCCA

(1)

A schematic picture of the diabatic energy levels and their
mixing matrix elements is reported in the left panel of Fig. 1.
The diagonalization of the electronic model leads to the four
adiabatic states in the right panel of Fig. 1. These states are
named following the standard quantum chemistry notation, S0

is the lowest singlet (the ground state), S1 the lowest excited
singlet. Triplet states are named T1, T2, etc. The arrows mark
the radiative and non-radiative relaxation paths of interest.

In eqn (1) we have introduced the dependence of some
terms on a conformational and a vibrational coordinate
(d and Q, respectively). The conformational motion describes
the torsion around the DA bond. The equilibrium ground state
geometry is characterized by an orthogonal configuration of the
DMAC and TRZ planes. The torsional coordinate d measures
the deviations of the torsional angle from the orthogonal
position. The d-dependence of the mixing matrix elements is
simulated as t(d) = t0|sin d| and b(d) = b0|sin d|. An anharmonic
(quartic) restoring potential is introduced to mimic the ground
and excited state potential energy surfaces, calculated via
TD-DFT. Finally, the effective molecular vibration Q accounts
for the stabilization of the zwitterionic diabatic states upon

geometry relaxation, so that zðQÞ ¼ z0 �
ffiffiffiffiffiffiffiffiffiffiffiffi
�hovev
p

Q=2 where ev is
the relaxation energy and ov the vibrational frequency.38 The
complete Hamiltonian reads:

Ĥmol ¼ Ĥel þ
�hoc

4
d̂2 þ P̂c

2
� �

þ ad̂4 þ �hov

4
Q̂2 þ P̂v

2
� �

(2)

where oc/v are the frequencies associated with the conformational/

vibrational coordinates, P̂c=v the momenta associated with the

dimensionless conformational and vibrational coordinate d̂ and

Q̂, respectively.
Details of the model parametrization can be found in ref. 35,

shortly, TD-DFT (Tamm Dancoff approximation, M062x
functional, 6-31G(d) basis) was exploited to calculate the
d-dependence of the first few excited states in the singlet and
triplet manifold. The first eight parameters in Table 1 were
fixed to best reproduce the resulting PES, as well as the
d-dependence of the SOC matrix elements (ZORA). The vibra-
tional relaxation energy ev, measuring the energy gained upon

Fig. 1 Top: Chemical structure of DMAC–TRZ. Left panel: A schematic
view of the four diabatic states and of the relevant mixing matrix elements.
Right panel: The four electronic adiabatic states, the arrows mark the
relaxation processes of interest.
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geometry rearrangement when going from the neutral to the
zwitterionic state, was estimated summing up the relaxation
energies associated with the ionization of the separated D and
A fragments. The effective vibrational frequency ov was fixed to
best reproduce the shape of absorption and emission spectra.
As discussed in ref. 35, VSOC and WSOC were fixed as to best
simulate the d dependence of the calculated S1–T1 and S0–T1

SOC. We explicitly checked (see ESI,† Fig. S1) that the best fit of
calculated couplings is obtained when VSOC and WSOC have the
same sign (of course multiplying both terms by �1 does not
change the results, but the relative sign of the two terms has
important implications, as discussed below).

Finally, important information is obtained from the evolution
of the energy of the ground and the lowest excited states on an
electric field applied along the D–A direction: on one side the
distinctively different F-dependence of the energies of the states
allows to unambiguously assign them as local or CT states.
Moreover, the slope of the quasi-linear dependence of the energy
of the CT states on the field, offers a reliable estimate of the
dipole moment associated with the zwitterionic state as m0 =
22.7 D. This quantity enters into the definition of the dipole
moment operator, m̂, needed to calculate radiative rates and
to account for the interaction of the dye with the dieletric
environment. The electric dipole is an electronic operator,
diagonal over the vibrational and conformational states. Neglecting
all matrix elements of the dipole moment operator on the
electronic basis, but m0, the dipole moment operator reads:

m̂ ¼ m0 Zj i Zh j þ Tj i Th jð Þ (3)

In ref. 35 we discussed the solution of the Hamiltonian in
eqn (2) treating the vibrational coordinate in a non-adiabatic
approach, while the conformational coordinate is treated in the
adiabatic approximation as a classical coordinate. In other
terms, we neglected the kinetic energy associated with the d
coordinate and solved the coupled electronic-vibrational
Hamiltonian for fixed d values. This approximation is perfectly
adequate to address optical spectra, since relevant electronic
energies are orders of magnitude larger than conformational
energies. However, the tiny singlet–triplet gap of TADF dyes
makes the adiabatic treatment of the conformational degree of
freedom untenable to address RISC and ISC processes.

Here we set up a full non-adiabatic calculation, writing the
Hamiltonian in eqn (2) on the basis obtained as the direct
product of the four electronic diabatic states times the eigenstates
of the harmonic oscillator associated with the vibrational coordi-
nate times the eigenstates of the harmonic part of the potential
associated with the conformational motion. Of course, the infinite
harmonic oscillator basis must be truncated to a large enough
number of states as to get convergence on the quantities of interest.
For vibrational states, the relevant number of states is reasonably
small (typically 10–20), but the very small frequency associated with

the conformational mode requires using a very large number of
states, 500–1000, leading to a large overall dimension. Moreover,
we need a polynomial expansion of sind, and, in line with the
quartic expansion of the potential, we truncate the expansion to the
third order (see ESI† for technical details).

2.2 RISC and ISC rates

Having a model for DMAC–TRZ and a complete non-adiabatic
solution of the relevant Hamiltonian, we now face the problem
of calculating relaxation rates. The most elegant way would rely
on open quantum systems approaches, coupling the molecular
system to a thermal bath, to simulate the energy degradation
of the system due to the interaction with the environment.
The Redfield model, would nicely do the job, allowing to estimate
all relaxation energies in a single shot, as discussed in ref. 39.
However, the presence of a vibrational and a conformational
coordinate, with distinctively different frequencies would require
the introduction of two different coupling channels between the
molecule and the bath, one for each coordinate. Accordingly, two
different spectral densities should be introduced: the relative
strength of the couplings and the specific form of the two spectral
densities would affect calculated rates in an uncontrolled way.
We therefore proceed in a step by step approach: here we discuss
how we estimate RISC and ISC rates and in the next section we
will address radiative rates.

RISC and ISC processes are driven by tiny SOC interactions
that can be treated perturbatively. The unperturbed states are
therefore obtained from the non-adiabatic diagonalization of
the molecular Hamiltonian in eqn (2) but setting VSOC and
WSOC to zero. In these conditions, the singlet and triplet
subspaces are decoupled and the two problems can be treated
separately. Red and black lines in Fig. 2 show the energy levels
relevant to the vibronic states in the T1 and S1 manifolds,
respectively. Since internal conversion is a very fast process
(with typical relaxation times B100 fs) we assume that RISC
occurs from the thermally equilibrated T1 states, the relevant
distribution being shown in the right panel of Fig. 2. Then we
use the Fermi golden rule (FGR) to calculate the rate of
transition between states i and j in the two subspaces:

vij ¼
2p
�h

i ĤSOC

�� ��j� 	�� ��2Sij (4)

where ĤSOC is the SOC part of the Hamiltonian in eqn (2). A
finite width must be associated with each state, and Sij mea-
sures the overlap between the two states. Each state is assigned
a Gaussian lineshape, whose width s is related to the inverse
relaxation time tr as follows:

s ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

tr
(5)

ISC rates are calculated along the same lines, but starting
with vibronic eigenstates in the S1 manifold, whose

Table 1 Model parameters (eV) from ref. 35

z t0 k b0 Vsoc Wsoc oc a ov ev

1.72 0.75 1.96 0.85 3.84 � 10�4 1.74 � 10�4 2.40 � 10�4 1.43 � 10�7 0.18 0.17
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thermal distribution is shown as a black dashed line in the
left panel.

Fig. 3 shows RISC and ISC rates calculated as a function of
temperature for three different values of the lifetime of the
vibronic eigenstates: 50 fs, 100 fs and 200 fs, spanning the
relevant range. Calculated rates increase a little with decreasing
relaxation time (increasing the width of the energy interval
assigned to each vibronic state), but the observed variation
is modest. We therefore stick on results obtained for the
intermediate 100 fs relaxation time. As expected, the RISC rate
decreases fast upon decreasing temperature, while ISC rate
moderately increases. The singlet triplet gap, DEST, defined as

the energy difference between the lowest vibronic state in each
subspace, amounts to 0.0513 eV.

The microscopic reversibility condition relates the RISC and
ISC rates: the dashed line in Fig. 2 shows the RISC rate
evaluated from the ISC rate upon imposing the microscopic
reversibility condition:

kRISC ¼ exp � DEST

kBT


 �
kISC (6)

where kB is the Boltzmann constant. Our results marginally
deviate from the reversibility condition, suggesting that, while
the proposed model is very simple, as it only accounts for a
single low-frequency mode, the spacing between vibronic level
is small enough to accommodate for thermodynamic behavior.

We can play around with model parameters to understand the
effect of specific interactions. Fig. 4 shows the temperature
dependence of the RISC and ISC rates calculated with the standard
model (black symbols) and imposing hardened vibrational or
conformational frequencies (blue and black symbols, respectively).
The effect on ISC rates is modest, but a hardened frequency of the
conformational mode favors RISC, in good qualitative agreement
with recent experimental results.40

More interesting and intriguing is the dependence of RISC
and ISC rates on the energy of the |Li state, as defined by the
parameter k. Results in Fig. 5 show a fairly complex and non-
monotonic behavior, suggesting that optimizing the rates
requires a fine tuning of the position of the local excited state,
in a way that may strongly depend on the details of the
molecular system at hand. As discussed in ESI† (Fig. S2) this
behavior, and more precisely the valley observed in either RISC
and ISC rates at k B 2.35 eV originates from the competing
contribution from the two SOC channels driven by VSOC, mixing
N and T states and WSOC, mixing Z and L states.

2.3 Radiative rates

Fluorescence is an allowed radiative process, occurring from
the relaxed excited singlet, S1 towards vibronic states in the S0

Fig. 2 A schematic view of the non-adiabatic calculation of ISC (left
panel) and RISC (right panel). In both panels, red and black lines show
the energy of the vibronic eigenstates of T1 and S1, respectively. In the left
panel we show the Gaussian shape (not to scale) assigned to a specific
vibronic state in the S1 manifold and the arrows indicate the transition to
specific vibronic eigenstates in the T1 manifold. The global ISC rate is
calculated summing on all S1 eigenstates, accounting for their thermal
population (black dashed line in the left panel). RISC rates (right panel) are
calculated in a similar way, but summing on all T1 eigenstates, accounting
for their thermal population (red dashed line in the right panel).

Fig. 3 Temperature dependence of calculated RISC and ISC rates. Blue,
black and red symbols refer to results obtained imposing a relaxation time
for vibronic eigenstates tr = 50 fs, 100 fs and 200 fs, respectively. Black
open symbols show RISC rates calculated from ISC rates, upon imposing
the reversibility condition.

Fig. 4 Temperature dependence of RISC and ISC rates calculated with
model parameters in Table 1 (black curve), and multiplying by a factor of
2 either the vibrational frequency ov (blue curve) or the a parameter
(red curve).
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manifold. The probability of the fluorescence process from
state i to state f is calculated again using the FGR, as follows:41

kfi ¼
ofi

3mfi
2

3pe0�hc3
(7)

where ofi and mfi are the transition frequency and dipole
moment, respectively.

The above equation can be exploited in two different
approaches to the fluorescence rate. In the first approach, the
complete non-adiabatic diagonalization of the Hamiltonian in
eqn (2) identifies i and f into vibronic states (accounting for
both vibrational and conformational motions) of the S1 and S0

manifold, respectively. The overall fluorescence rate from state
i is then obtained summing over all decay rates towards the f
states in the vibronic manifold of S0. Finally, the overall
fluorescence rate kfluo is obtained accounting for the thermal
distribution of the i states in the equilibrated S1 manifold.
This approach is fairly expensive, since the full non-adiabatic
Hamiltonian must be diagonalized and, to get convergence, it
requires including B10 vibrational states andB600 conformational
states. Of course calculations may be limited to the two electronic
states in the singlet subspace, but the total basis is fairly large,
with B1 � 104 states. In an easier approach, the conforma-
tional mode is dealt with in the adiabatic approximation:
neglecting the kinetic energy of the conformational motion,
the vibronic Hamiltonian accounting for the coupled electronic
and vibrational motions is diagonalized for fixed values of the
conformational coordinate d. The calculation implies the
diagonalization of the vibronic Hamiltonian on a basis with
dimension B20 on a grid of d values. For each d, only the
lowest eigenstate of the S1 vibronic manifold, the fluorescent
state, is populated (the vibrational energy is very large versus
thermal energy). For each d value, eqn (7) is summed over the f
vibronic states in the S0 manifold to obtain the d-dependent
fluorescence rate, that is finally averaged over the thermal
distribution on the d-dependent energy of the fluorescent state.
We explicitly verified that the two approaches to the kfluo

estimate give exactly the same result.

The temperature-dependence of the calculated fluorescence
rates is reported in the bottom panel of Fig. 6: the calculated
rate, of the order of 1� 106 s�1, is fairly small, as expected for S1

state with a dominant CT character. Its decrease with decreasing
temperature can be rationalized since the S1 equilibrium geometry
has d = 0, where the transition dipole moment and hence the
radiative rates vanish. Finite radiative rates are expected at
finite d:15,42 as temperature increases, states with finite d are
progressively populated, leading to a progressive increase of the
fluorescence rate.

3 Environmental effects: the role of
medium refractive index

TADF phenomena involve molecular excitations in the visible
portion of the electromagnetic spectrum. The dielectric
response of a generic matrix can therefore be partitioned
in two contributions with distinctively different dynamics. The
electronic degrees of freedom of the matrix are characterized by
timescale in in UV region, faster than the molecular degrees
of freedom of interest. On the opposite, the vibrational and
orientational motions of the matrix are much slower. These slow
motions, on the other hand, only contribute to the dielectric
response of the medium in polar matrices. Here we will only
address the effect of the fast dielectric response, an will defer to a
subsequent publication a detailed analysis of the dielectric
response in polar matrices.

The Onsager model offers the simplest description of the
interaction between a molecular species and an embedding
dielectric medium.43 Specifically, the solute–solvent interaction
is treated in the dipolar approximation, so that the molecule
feels an environmental field, F, usually called the reaction
field.44–46 If we only account for the electronic (fast) component

Fig. 5 Dependence of the RISC and ISC rates on the energy difference
between the |Li and |Ti states.

Fig. 6 Temperature dependence of calculated ISC, RISC and fluorescence
rates. Black symbols refer to gas phase results (eopt = 1), blue, and red
symbols refer to results for matrices with eopt = 2.6 and 3.0, respectively.
RISC and ISC rates are obtained setting tr = 100 fs.
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of the dielectric response, the Hamiltonian that describes the
dye in the matrix is:

Hemb ¼ Ĥmol � F Zj i Zh j þ Tj i Th j½ � þ T el þ
F2

4eel
(8)

where Ĥmol is the molecular Hamiltonian in eqn (2), F is the
reaction field in energy units, amounting to the product of
the electric field times m0, the dipole moment associated withe
the zwitterionic Z and T diabatic states, Tel is the kinetic energy
associated with the reaction field, and the last term is the
corresponding potential energy, where eel measures the matrix
polarizability. In the hypothesis that the solute occupies a
spherical cavity of radius r0 inside the dielectric medium, an
explicit expression for eel can be written, in terms of the matrix
dielectric constant at optical frequencies, eopt = Z2 (where Z is
the matrix refractive index):

eel ¼
m0

2

4pe0r03
eopt � 1

2eopt þ 1
(9)

Since the electronic degrees of freedom of the matrix are faster
than the molecular degrees of freedom of interest, the antiadiabatic
approximation can be adopted to renormalize out the medium
degrees of freedom, leading to a very simple and inspiring effective
molecular Hamiltonian that has precisely the same expression as in
eqn (2), but with a renormalized z value:32,34

z! z� m0
2

8pe0r30

eopt � 1

2eopt þ 1
(10)

Matrices of interest for organic light-emitting devices appli-
cations have eopt spanning a very narrow range comprised
between 2.6 and 3.0. Setting the cavity radius to the Onsager
radius (increased by 0.5 Å), r0 = 6.44 Å, the renormalized z varies
between 1.57 eV and 1.55 eV.

For the sake of comparison, Table S1 (ESI†) lists vertical
transition energies (at the equilibrium ground state geometry)
calculated in gas-phase and for eopt = 2.6 and 3 eV, in our
effective model, and via TDF-DFT treating the solvent according
the three flavors of PCM available in Gaussian 16.47 As expected,32

linear response (LR) fails to reproduce the stabilization of CT
states, either singlet or triplets: LR corrections are in fact propor-
tional to transition densities, that are negligible for states like S1

and T1 with an almost pure CT character. Indeed, the marginal
increase of the transition frequencies in LR vs the gas-phase is
ascribable to the stabilization of the ground state energy. The
external iteration approach fails in the opposite direction, largely
overestimating the dielectric effects on transition energies.
The perturbative corrected linear response (cLR) approach leads
to transition energies that compare very well with those obtained in
our effective model. However, in cLR the excited state wavefunc-
tions are the same as the LR wavefunctions, and are therefore only
marginally different from the gas-phase wavefunctions. Accord-
ingly, cLR will not offer reliable estimates of SOC matrix elements
or of transition dipole moment elements involving S1 or T1 states.

The singlet–triplet gap, calculated in the effective model as
the energy difference between the lowest non-adiabatic eigentates

in the singlet and triplet subspaces, decreases from the gas phase
value, 0.0513 eV, to 0.0260 eV and 0.0238 eV in a dielectric
medium with eel = 2.6 and 3, respectively. Comparing these values,
obtained from non-adiabatic calculation and hence accounting
for zero-point corrections, with the adiabatic gaps in TD-DFT is of
little use. The comparison with experimental data is delicate as
well, due to the large experimental uncertainties. Specifically,
estimates for DMAC–TRZ in ref. 22 are obtained from the energy
difference between the onset of fluorescence and phosphores-
cence bands. The very broad structure of both bands makes the
estimate uncertain. Even worst, fluorescence spectra are
measured at room temperature, while phosphorescence spectra
are collected at 20 K.22 The dielectric response (both the refractive
index and the dielectric constant) of any material show a large
dependence on temperature, and, in turn, this variation largely
affects the position of the singlet and triplet states.

Fig. 6 shows the temperature-dependent rates (ISC, RISC,
radiative) calculated in the gas phase (z = 1.72 eV) and for the
two limiting values of the effective z = 1.57 eV and 1.55 eV.
Radiative rates are marginally affected by the matrix polarizability,
while both RISC and ISC rates decrease considerably when going
from gas phase to the matrix, suggesting that relying on gas-phase
computational results may affect the quality of the analysis.
On the other hand, the variability of eopt in common matrix is
very limited, so that addressing the effects of the matrix polariz-
ability from the experimental perspective is difficult.

RISC and ISC rates are calculated based on ORCA results for
SOC matrix elements.48,49 Out of the three spin states ORCA
gives finite SOC for only one state, so that a single channel is
available for either ISC or RISC. Calculated rates refer to this
channel. However, in the hypothesis that the population of the
three triplet states is instantaneously equilibrated, the effective
RISC rate, to be compared with experiment, must be divided by
a factor of 3.50 Accordingly, we estimate the effective RISC rate
for DMAC–TRZ in a non-polar matrix in the 7� 104�2� 105 s�1

range, in line with experimental results falling in the range
2–5 � 105 s�1 in non polar matrices (Zeonex and UGH) as well
as in toluene solution.22 ISC rates are estimated of the order of
2 � 106 s�1 approximately one order of magnitude smaller than
experimental results (B2 � 107 s�1). Calculated radiative rates
B2 � 106 s�1 are again roughly one order of magnitude smaller
than experimental fluorescence rates, which are however also
affected by the non-radiative decay. In any case, we feel that the
overall agreement is very good considering that we are exploiting
the same model that was previously defined and parametrized
against TD-DFT results and validated against experiment.34

4 Discussion and conclusions

The Marcus equation is often adopted to calculate RISC
rates.12,16,51 However, attention must be payed to the basic
approximation underlying the Marcus model. Specifically, the
original Marcus model52,53 or its generalization to include high
frequency molecular vibrations (Marcus–Levich–Jortner, MLJ
model54,55), apply to the calculation of transfer rates between
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two diabatic states, whose energy depends on one or more
vibrational and/or conformational and/or solvation coordinates.
Relevant potential energy surfaces are usually set as harmonic,
with the same frequency but displaced minima (spin-boson model
with linear coupling). But the most stringent approximation is that
the matrix element that mixes the two diabatic states is constant.53

However, when applied to RISC rates calculations, the Marcus
model is typically exploited with reference to adiabatic singlet
and triplet states as obtained from quantum chemical calculations.
In the adiabatic picture the state-to-state FGR, at the heart of the
Marcus model, requires the calculation of the following matrix
elements:

hci(r,Q)wi,v(Q)|ĤSOC|cf(r,Q)wf,u(Q)i = hwi,v(Q)|HSOC
if (Q)|wf,u(Q)i

(11)

where ci/f(r,Q) is the electronic wavefunction relevant to the
initial/final state and wi/f,v/u is the v/uth vibrational wavefunction
relevant to the i/f electronic manifold. The electronic wave-
function describes the motion of electronic coordinates r, and
parametrically depends on the nuclear coordinates Q. The
vibrational wavefunctions only depend on Q. In the second term
of the above equation an integral over the electronic coordinates
allows to define the relevant matrix element of the interaction
Hamiltonian:

HSOC
if (Q) = hci(r,Q)|HSOC|cf(r,Q)ir (12)

where h. . .ir stands for the integral on the electronic coordinates.
If HSOC

if (Q) is weakly dependent on Q it can be Taylor-expanded
around the equilibrium geometry. The zeroth order term
(the Condon term) brings the problem back to the Q-independent
interactions characteristic of the Marcus model, so that the Marcus
or MLJ equations can be safely applied. However if the Q dependence
of HSOC

if (Q) cannot be disregarded, the factorization of the
electronic and vibrational problems is more delicate and leads
to additional terms (Herzberg–Teller, etc.) well beyond the
Marcus model.

In TADF systems, and specifically in DMAC–TRZ (see Fig. S1,
ESI†), HSOC

if (Q) shows a quite impressive Q-dependence as it
vanishes at d = 0, where the singlet–triplet gap closes, and
becomes sizeable at intermediate angles and specifically at the
triplet equilibrium geometry. Applying the Marcus or MLJ
expressions in these conditions represents a strong approximation,
explaining the observation of wildly different results for RISC
rates estimates. Indeed, fixing the HSOC

if (Q) to the value relevant
to d = 0 (or in any case to the value obtained where the singlet–
triplet gap vanishes) leads to vanishing RISC rates.51 On the
opposite, if the SOC is set to the value relevant to the equili-
brium geometry for the triplet state as in ref. 12 and 15 sizable
RISC rates are obtained, that for the specific case of DMAC–TRZ
are roughly one order of magnitude larger than in our
non-adiabatic calculation (Fig. S4, ESI†). Since, as explained
above, the Marcus factorization does not apply when the Q-
dependence of the interaction matrix element is non-negligible,
augmenting the Marcus (or MLJ) expression just introducing a
Q-dependent interaction18 is formally incorrect and leads to
uncontrolled results.

The importance of properly accounting for spin-vibronic
terms, well beyond the Marcus or MLJ models, has been very
clearly expressed by Penfold et al.14 In their approach, using a
diabatic basis, with Q independent SOC among basis states,
they regain the Q-dependence of the adiabatic SOC matrix
elements accounting for the non-adiabatic mixing of different
diabatic states, getting closed formulas thanks to a perturbative
treatment. In our essential state model34 the mixing between
the CT and the LE triplets, is parametrized to reproduce the
adiabatic Q-dependent SOC interaction and singlet–triplet
gap, as obtained from TD-DFT. Then RISC and ISC rates are
obtained via a direct non-adiabatic diagonalization of the
adopted effective Hamiltonian in an approach that fully
accounts for non-adiabatic phenomena and the anharmonicity
of the system, without the need to rely on perturbative expansions
for the spin-vibronic matrix elements. Moreover, in the Penfold
model a single channel for SOC is considered (corresponding to
the |Zi–|Li coupling in our model), so that only the mixing, driven
by vibronic effects, of the |Li and |Ti into T1 states is responsible
for a sizable hS1|HSOC|T1i interaction. In our model, we also
account for the (vibronically induced) mixing of |Ni and |Zi states
into the S1 state. This mixing on one side explains the observation
of a finite absorption intensity of the CT transition, on the other
side, it opens a second SOC channel, related to the SOC inter-
action between the diabatic |Ni and |Ti states.

The effective model developed for DMAC–TRZ in ref. 34
opens the way to a nominally exact calculation of RISC, ISC and
radiative rates fully accounting for anharmonicity and non-
adiabaticity. It also allows to investigate the effects of a fine-
tuning of model parameters, showing, e.g., that a softening of
the conformational modes has detrimental effects on TADF.
More importantly, we are in the position to address environ-
mental effects on TADF systems. TADF is governed by a subtle
interplay of singlet and triplets, LE and CT states: environmental
effects, and specifically the medium polarity and polarizability
have different effects on the different states affecting the singlet–
triplet gap as well as the mixing between the LE and CT triplets
with large effects on the SOC. A rationalization of these highly
non trivial effects is however difficult as several protocols are
presently available leading to contrasting results, as recently well
illustrated by Mewes.15 The origin of the contrasting protocols
for environmental effects on TADF (and more generally on the
definition of spectral properties of molecules in condensed
media) can be traced back to the improper treatment of the
medium polarizability. Specifically, either continuum solvation
models (including PCM, COSMO, etc.) or atomistic solvation
models treat the environmental polarizability in an adiabatic
approach, solving the molecular Hamiltonian for fixed environ-
mental charges.32,56 This approximation is well suited for polar
solvation, related to very slow degrees of freedom, but fails on
the environmental polarizability, related to the very fast electronic
motion in the medium. This leads to a variety of solvation models,
none of which is able to properly address the effect of the medium
polarizability. The problem is overcome here adopting an
antiadiabatic approach to address the role of the medium
polarizability.32
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Here we only address the role of the matrix polarizability, as
measured by the refractive index at the optical frequencies.
We postpone to another publication the discussion of polarity
effects that require a careful consideration of the relative rates
of molecular processes (RISC, ISC, radiative and non-radiative
decays) and the medium (solvent, matrix, etc.) relaxation. The
marginal variability of the refractive index in common organic
solvents and matrices suggests that it is impossible to optimize
the TADF behavior of a dye acting on the medium refractive
index. However it is extremely important to recognize that when
going from gas phase to an organic medium, the large variation
of the refractive index has enormous effects on the energies of
the excited state and more generally on TADF. It is therefore of
little use to compare results obtained from gas-phase calculations
with experimental data in condensed phases. As already
recognized by Mewes, indeed, the RISC rates may change by
orders of magnitude when going from gas phase to a non-polar
organic medium. Quite interestingly, for DMAC–TRZ, RISC and
ISC rates decrease by approximately one order of magnitude when
going from gas phase to the organic medium, even if the singlet
triplet gap decreases. The reason for less effective RISC can be
traced back to the stabilisation in the medium of the CT states,
that leads to a decoupling of the CT and LE triplet and hence to a
decrease of the SOC. Quite interestingly, the opposite behavior is
observed by Mewes, with RISC rates increasing by a few order of
magnitude from gas phase to condensed media. Apart from the
use of a different solvation model, we believe that this contrasting
result is indeed related to the different nature of excited states in
the molecules investigated by Mewes with respect to DMAC–TRZ.
In Mewes molecules, in fact, the LE triplet lays in the gas phase
lower in energy than the CT triplet, but the order is reversed in
non-polar matrices, leading to a large amplification of RISC.

In conclusion, we presented an original approach to the
calculation of ISC and RISC rates in TADF molecules. The approach
relies on the definition of a reliable essential state model for the
dye, based on first-principles calculations. The model accounts
for few electronic diabatic states, and for effective vibrational and
conformational coordinates. Not relying on further approximations,
the model fully addresses anharmonic and non-adiabatic
phenomena. Quite interestingly, the model lends itself quite
naturally to describe environmental effects: here we discuss the
role of the environmental polarizability, the more subtle polar
effects are deferred to a subsequent publication.
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