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Introduction

A MOF-based electronic nose for carbon dioxide
sensing with enhanced affinity and selectivity by
ionic-liquid embedmentf

Peng Qin, Salih Okur, Yunzhe Jiang and Lars Heinke ©*

The unequivocal detection of CO, is important in many situations, like in the living environment, plant
cultivation and the conservation of cultural relics and archives. Due to their large specific surface areas
and highly ordered and tunable structures, metal-organic frameworks (MOFs) have the potential to
improve CO, sensing, however, they often suffer from low CO, affinity and selectivity. lonic liquids (ILs)
have high CO, affinity, but their performance in sensors is hampered by their nonporous, liquid form.
Here, we present a low-cost and portable CO, sensor system based on an array of gravimetric sensors
made of MOF films with embedded ILs in the pores. The array is composed of MOF films of two different
structures, which are HKUST-1 and UiO-66, filled with 3 different types of ILs and 2 different pore-filling
levels, resulting in an array of up to 14 different sensors. We show that the different combinations of IL
and MOF result in different affinities for CO, and other analytes. With the help of machine learning using
a neural network, the sensor array was used to quantify the CO, concentration as well as to distinguish
CO, from other gases and vapors, like nitrogen, ethanol, methanol and water, and to distinguish certain
binary mixtures. While the MOF-sensor array without IL achieves only a small accuracy for determining
the CO, concentration, the IL@MOF sensor array can accurately classify the gas types (98% accuracy) in
mixed gas atmospheres of unknown composition and concentration as well as can determine the CO,
gas concentration with an average error of only 2.7%. Using only MOFs with a pronounced chemical
stability (like UiO-66) in the sensor array also allows the detection and identification of CO, in a humid
atmosphere. Moreover, the presented sensor system has very high sensitivity with a CO, limit of
detection below 100 ppm, which is four times smaller than the CO, concentration in air. This work
shows the unprecedented performance of the sensor arrays of MOFs with embedded ILs, referred to as
IL@MOF-electronic nose (IL@MOF-e-nose), for sensing the composition and concentration of CO, gas
mixtures.

Especially in relatively sealed rooms (e.g. air-conditioned rooms
without ventilation and air exchange), the CO, concentration

Carbon dioxide is an essential component of the atmosphere,
a frequent product of life activities and industrial processes as
well as the major culprit of the global greenhouse effect. Apart
from the climate damage, high CO, levels can have a variety of
effects and can be harmful to human health. When the
concentration remains at 0.3% or higher for a long time, people
may experience significant headaches, and people will feel dizzy
at CO, concentrations of 4-5%.% CO, concentrations of at least
9% for more than 5 minutes may cause the death of humans.?
In indoor situations, the main CO, sources are exhaled breath
and open fires, e.g. from fireplaces, candles and gas cookers.
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gradually increases and can quickly reach critical values. There,
the CO, detection is vital. In addition to the indoor applications,
carbon dioxide sensing is critical for many different industrial
applications, including landfills,* horticulture,® controlled
atmosphere storage and packaging® and metal treatment.”
Conventional CO, sensors generally use Non-Dispersive
Infrared (NDIR) technology.® Once there is moisture in the
analyte gas or the CO, concentration is high, the absorption
bands overlap and the CO, quantification is inaccurate. Pho-
toacoustic CO, sensing is a mature technology,”** but so far it
has only been used in expensive laboratory-scale applications.
Gravimetric sensors, like quartz crystal microbalance (QCM)
sensors, have the advantages of simple device structure, high
sensitivity, low cost, short analysis time and reusability.">** The
resonance frequency, which is proportional to the mass of the
adsorbed molecules, is used as the sensor signal.* The affinity
of the sensor can be tuned by modifying the QCM sensor
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surface. For example, QCM-based sensors modified with
nanoporous materials with large specific surface areas have
been used for the detection of various gases and vapors.>™®
QCM-based CO, sensors have been presented but, while the
detection of large CO, concentrations is straightforward, the
detection limit and sensitivity are, to date, too poor for practical
applications.” The main challenge for gravimetric CO, sensors
is the active sensing material which should have a high affinity
towards CO,, but a low affinity towards other gases, and CO,
should adsorb reversibly allowing for repeatable sensor usage.

MOFs are a class of nanoporous materials, composed of
metal nodes connected by organic ligand molecules.”®** The
structure and properties of MOFs can be designed to a wide
extent. In this way, the chemical building blocks, the pore size
and shape, the surface functionality and even orderliness have
been modified to optimize the CO, adsorption capacity.”**
However, for practical applications, the CO, affinity has to be
significantly increased and the cross-sensitivity to other gases
has to be generally decreased. Ionic liquids (ILs) are a class of
unique liquids with high CO, affinities.?”*® ILs are composed of
organic cationic and anionic molecules and have a wide struc-
tural and functional diversity.>*-*' Based on their CO, affinity,
ILs are used as active sensing materials for sensing CO,.***
However, their liquid and non-porous nature hamper their
application in sensors.*>*® Nanoporous MOF materials can
serve as host materials for the embedment of ILs, and the
combination of the two can enhance the CO, sensing perfor-
mance.’”*® IL@MOF composites were also used in various
applications, for example, they show a strong performance in
CO, adsorption**** and separation,*™*® I, capture,” heteroge-
neous catalysis®*®' or battery applications.*>>* For sensor
applications, the cross-sensitivity, which means that the CO,-
concentration signal is interfered by the presence of humidity
and other gas or vapor molecules, is often a severe issue, but
unexplored to date. A powerful method to minimize the cross-
sensitivity is to use arrays of sensors with different affinities.
Such a sensor system is also referred to as electronic nose, e-
nose.>’

Here, we present a sensing system capable of detecting CO,
and its mixtures with common vapor molecules. It is based on
an electronic nose (e-nose), which is an array of QCM sensors
coated with 2 different nanoporous MOF films, which are MOFs
of type HKUST-1 and UiO-66, Fig. 1. (HKUST-1 stands for Hong
Kong University of Science and Technology 1, also known as
Cu;(BTC), with BTC = benzene-1,3,5-tricarboxylate), and UiO
stands for Universitetet i Oslo.) To enhance the CO, affinity and
selectivity, six sensors of each MOF structure were loaded with
three different ionic liquids: [BMIM][SCN], [BMIM]|TFSI],
[BMIM][PF,] with pore fillings of 20% and 50%. ((BMIM] stands
for 1-butyl-3-methylimidazolium, [SCN] for thiocyanate, [TFSI]
for bis(trifluoromethylsulfonyl)imide and [PFs] for hexa-
fluorophosphate). Higher IL-pore-fillings are avoided, due to
the decreased free pore volume resulting in slow analyte diffu-
sion and uptake. MOF films of type HKUST-1 and UiO-66 were
chosen, because of: (1) their appropriate pore size, which is
large enough to host ILs; (2) their pronounced stability, also
when loaded with IL. Moreover, UiO-66 is also stable under
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Fig.1 Sketch of the MOF films, the IL structures and the sensor array.
The MOF structures and the IL ions are labelled. The color code of the
atoms is: C grey, H white (not shown for the MOFs), O red, N blue, Cu
orange, Zr cyan, F green, N blue and S yellow. The ILs are [BMIMI[TFSI],
[BMIM][PF¢] and [BMIM][SCNI.

humid conditions. (3) The syntheses of both MOFs were opti-
mized allowing the preparation of homogeneous and highly
crystalline films. The responses of the e-nose to different gases
or vapors of CO,, N,, ethanol, methanol and water as well as
some mixtures were tested. As expected, the sensor signal (or
uptake) of most analyte molecules was reduced by the IL
embedment in the MOF pores, due to the reduced free pore
volume. On the other hand, the IL embedment results in an
increased uptake of CO, and water upon IL-embedment,
despite the reduced free pore volume. The ratio of the IL-
embedment-caused signal increase for CO, varies with the
MOF structure and the type of IL, resulting in different sensi-
tivities of the different IL@MOF-sensors. With a neural
network-based machine learning algorithm,*® the data of the
sensor array were analyzed. As a result, the e-nose can quantify
the CO, concentration down to a limit of detection below the
CO, level in air and can distinguish between the different gases
and mixtures with 98% accuracy. This study shows that the
ionic-liquid-loading in nanoporous materials can enhance the
CO, sensitivity and selectivity and that such IL@MOF-based
sensor arrays show superior performance for CO, sensing.

Experimental section
MOF film syntheses

All MOF films are prepared on silver-coated QCM sensors. The
HKUST-1 films were prepared using a layer-by-layer (Ibl) method
by sequentially exposing the substrate surface to the solutions
of the metal nodes and of the linker molecules, resulting in
surface-mounted MOFs (SURMOFs).*>* The MOF films with an
HKUST-1 structure®* were prepared from an ethanolic solution
of 1 mM copper acetate and 0.2 mM BTC. The 1bl SURMOF

This journal is © The Royal Society of Chemistry 2022
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synthesis was performed by the spray method® with 100
synthesis cycles. Prior to the SURMOF syntheses, all QCM
substrates were functionalized with a 11-mercapto-1-undecanol
(MUD) self-assembled monolayer (SAM).

UiO-66 films were prepared by the vapor-assisted conversion
(VAC) method.* ZrOCl,, terephthalic acid (BDC) and acetic acid
were dissolved in DMF as the precursor solution. DMF and
acetic acid mixture solution were filled in the glass vessel as
a vapor source. One drop (50 pL) of the precursor solution was
deposited uniformly on the sensor surface. The vessel was then
sealed and heated to 120 °C for 3 hours. Finally, the samples
were dried in vacuum at room temperature.

Embedment of IL in MOF films

The loading of the MOF films with IL was performed by
immersing the samples in an IL/acetonitrile solution, as opti-
mized in previous publications.®**® The immersion was carried
out at room temperature for about 20 minutes. Afterwards, the
sample was rinsed for about 2 seconds using acetonitrile and
then dried in a stream of pure nitrogen. The IL concentration in
acetonitrile was 20% and 50%, respectively, resulting in roughly
20% and 50% IL pore filling, respectively.®**® The sensor names
with the MOF structures and the IL-loadings are given in Table 1.

Characterization of samples

X-ray diffraction (XRD). XRD analysis was performed using
a Bruker D8 X-ray diffractometer. The X-ray optical path of the
goniometer is in the Bragg-Brentano geometry (6-6). The X-ray
wavelength is A = 0.154 nm (CuKa).

Scanning electron microscopy (SEM). SEM images were
taken with a TESCAN VEGA3 SEM. A thin (~5 nm) platinum film
was sputtered onto the sample using a LEICA EM ACE600 high
vacuum coater to avoid charge accumulation on the sample
surface and to improve the image quality.

e-nose/sensor array. The electronic nose (e-nose) is a home-
made multi-channel QCM sensor array, see Fig. 1 and S1.1 Each
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sensor, which is an AT-cut quartz crystal, has a resonant
frequency of 10 MHz. The QCM sensors are all purchased from
JWT China, and their core components are circular quartz
crystals of about 10 mm in diameter. The top and bottom
surfaces of the resonant substrate are covered with circular Ag
electrodes with a diameter of about 6 mm and an area of 28.3
mm?. The MOF films were grown on the surfaces of the top Ag
electrodes. In the experiment, the frequency shifts of all sensors
were recorded every 1-1.7 seconds. The whole system was
controlled by a program code written in MATLAB.

The gas flow system used to generate a specific content of the
target analyte is shown in Fig. S1.1 Argon is used as the carrier
gas, while CO, and nitrogen are the analyte gases. Their flow
rates are controlled by mass flow controllers. Different
concentrations of CO, (or nitrogen) are realized by mixing the
pure argon and CO, gas streams (or nitrogen stream). The
mixing ratio of the two gas streams is controlled by mass flow
controllers. For example, the flow rate in the argon channel is
196.06 ml min~"' and the CO, stream is 3.94 ml min ", resulting
in a gas mixture with a CO, concentration of 1.97%,,, (or 2 kPa).
Methanol, ethanol and water enriched gas flows were prepared
like in our previous publications.®”*® One stream passes
through the gas wash bottle and bubbles through the liquid
VOC to produce VOC-enriched vapor. The other stream is pure
argon. The two streams are then combined and the VOC
concentration can be controlled by adjusting the flow rates.

Each sensing experiment consists of 3 phases. First, the
sensor is in a pure argon gas stream and the MOF pores are
emptied. This is the baseline. Then, the gas stream is instan-
taneously switched to the analyte-enriched argon gas with
a constant analyte concentration. The adsorption of analyte
molecules in the MOF film leads to an increase in mass and,
thus, in a change in the frequency of the QCM sensor, which is
the sensor signal. The third step is the desorption of the
adsorbed molecules in pure argon gas. The adsorption step is 30
minutes long. The desorption step is typically 60 minutes long
to ensure that all gas molecules are desorbed. In the

Table 1 The sensor names, the IL loading (determined by EDX, see Table S2) as well as the sensitivities and LODs of the individual sensors

determined from Fig. 3

Sensitivity in Hz/%ye;

LOD in Yoyol

Sensor IL loading in IL

name IL and MOF pairs per unit cell CO, N, Ethanol Methanol Water CO, N, Ethanol Methanol Water
S1 HKUST-1 (empty) 0 47.041 17.077 141.2 190.64 95.9410.0102 0.0281 0.0034 0.0025 0.005
S2 [BMIM][TFSI |50, @HKUST-1 5.3 + 1.4 47.657 13.109 118.4 164.61 136.72 0.0101 0.0336 0.0041 0.0029 0.0035
S3 [BMIM][TFSI]500, @HKUST-1 9.8 + 0.3 53.307 10.016 110.13 154.4 188.6 0.009 0.0479 0.0044 0.0031 0.0025
sS4 [BMIM][SCN],00, @HKUST-1 6.1 + 1.1 51.116 14.213 128.42 169.45 170.8 0.0094 0.0338 0.0037 0.0028 0.0028
S5 [BMIM][SC ]50% @HKUST-1 11.9 + 0.4 56.174 10.937 110.74 161.2 212.68 0.0085 0.0439 0.0043 0.003 0.0023
S6 [BMIM][PF¢]200, @HKUST-1 5.1+ 1.6 47.026 13.276 117.98 164.15 149.4 0.0102 0.0362 0.0041 0.0029 0.0032
S7 [BMIM][PF¢)200, @HKUST-1 9.7+ 11 52.995 10.002 109.45 154.35 196.2 0.0091 0.048 0.0044 0.0031 0.0024
S8 UiO-66 (empty) 0 37.477 11.268 104.25 146.56 94.85 0.0128 0.0426 0.0046 0.0033 0.0051
S9 [BMIM][TFSI 200, @UiO-66 1.7 £ 0.6 39.144 8.656 88.084 129.57 127.75 0.0123 0.0555 0.0054 0.0037 0.0038
S10  [BMIM][TFSI]s0,, @UIO-66 5.5+ 0.6 41.397 7.075 81.506 123.98  151.57 0.0116 0.0678 0.0059 0.0039  0.0032
S11 [BMIM][SCN],00, @UiO-66 2.3+ 0.6 40.108 9.664 93.637 133.48 136.25 0.012 0.0497 0.0051 0.0036 0.0035
S12 [BMIM][SCN]s509, @UiO-66 6.2 + 0.9 44.157 7.67 83.631 126.62 192.68 0.0109 0.0626 0.0057 0.0038 0.0025
S13 [BMIM][PF¢200, @UiO-66 2.2 +0.9 38.983 8.63 87.545 129.12 141.99 0.0123 0.0556 0.0055 0.0037 0.0034
S14  [BMIM][PF]500, @UiO-66 4.9+ 0.6 41127 7.058 81.062 123.72  155.17 0.0117 0.068 0.0059 0.0039  0.0031

This journal is © The Royal Society of Chemistry 2022
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experiments, 35 different analyte concentrations, see Table S1,t
were used. All experiments were performed at room tempera-
ture (295 K).

Data analysis. For data analysis, a neural network written in
python was used for classification and regression to determine
the gas composition and content in the gas mixture.*® The
Pytorch” framework was used for the construction of the neural
network and the qualitative and quantitative prediction of the
gas mixture. The neural network consists of four hidden layers
with 14 inputs per input layer, 128 neurons per hidden layer, 32
outputs per output layer for classification, and two outputs per
output layer for the regression task. A linear rectification func-
tion” and a stochastic gradient descent optimizer” were used.
For analyzing the sensor data, 100 data points were taken 120 s
after the start of each gas molecule exposure period, see red
arrows in Fig. 2. (Please note, data points taken later in the
sensor experiments result in the same sensor performance, see
Fig. 6 below.) From the resulting input data, classification was
performed using 10-fold cross-validation, with 90% used as
training data and 10% used as test data. A mean square error
loss function” was used for the regression task. A cross-entropy
loss function was used for the classification task. Thus, the
composition and content of the gas mixture are simultaneously
estimated by the neural network output. The program code is
given in the ESL.{
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Fig.2 E-nose data as a function of time. The signals are shown for the
exposure to CO, with a concentration of 1.97%,, (a), 1.48%,c (D),
0.98%.01 () and 0.19%,4, (d) as well as 0.19% of CO, with 10% humidity
(e) and 20% humidity (f), respectively. The gas concentrations are
labelled in the panels. The color code for the MOF sensors is shown in
the legend, the sample names are given in Table S1.1 The red arrows
indicate the data taken for the sensor performance analysis (Fig. 3-5).
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Results and discussion

The entire e-nose, i.e., the sensor array, is composed of 14 QCM
sensors coated with HKUST-1 MOF films (7 times) and with UiO-
66 MOF films (7 times). While one MOF film each remained
empty (without IL-loading), 6 HKUST-1 films and 6 UiO-66 films
were loaded with three different ionic liquids and 20% and 50%
pore filling, respectively. The X-ray diffractograms of the
samples (Fig. S21) show that the MOF films are crystalline with
the target HKUST-1 and UiO-66 structures. The diffractograms
of the samples are very similar, indicating a very similar crys-
tallinity of the samples. In addition, the diffraction patterns
show that the crystal structures of all samples remain
unchanged upon IL loading. The samples were further charac-
terized by infrared and energy-dispersive X-ray (EDX) spectros-
copy, Fig. S4 and S5, verifying the targeted MOF structure and
IL embedment. The amount of the IL content per MOF unit cell
is quantified by EDX spectroscopy. The determined content is
shown in Table 1 and S2+.

To explore the performance of the sensor array, gas sensing
experiments were conducted for different concentrations of
CO,, N, ethanol, methanol and H,O. Argon was chosen as the
carrier gas because of the small interaction between the noble
gas and the nanoporous host, resulting in a very small argon
uptake at room temperature. When the gas flow through the e-
nose was switched from initially pure argon to the analyte-
enriched argon flow, the frequency shifts of all QCM sensors
changed, which are proportional to the mass of the adsorbed
analyte molecules in the MOF films. The frequency shifts were
recorded as sensing signals. In this way, the response of the
sensor array was explored for different compositions and
different concentrations of gas mixtures, ie., CO, (0.09-
1.97%401), N3 (0.09-1.97%,1), ethanol (0.09-1.97%,,;), methanol
(0.09-1.97%,,;) and water vapor (0.09%,, and 0.19%,). In
addition, the response of the sensor array to CO,: N, = 1:1 gas
mixtures (2%y0; and 0.09%,,, in argon) and to 0.19%,,; CO, with
different humidity levels (10%, 20% and 30%, which corre-
spond to concentrations of 0.23%y,], 0.46%y, and 0.68%;,;) was
also explored. In total, 35 experiments with different concen-
trations and compositions were performed, see Table S1. Fig. 2
shows the frequency shift of the HKUST-1 QCM sensor array
when exposed to CO, at different concentrations. Further
adsorption data are shown in Fig. S6-S18.7 All transient uptake
(i.e., analyte exposure) and release curves are qualitatively
similar.

All sensor signals as a function of different concentrations of
CO,, N,, ethanol, methanol and water are shown in Fig. 3 for the
HKUST-1 sensors (sensors S1-S7) and in Fig. S20 and S217 for
the UiO-66 sensors (sensors S8-S14).

The data for all sensors and gas molecules are essentially
linear and can be described with the Henry's region of a Lang-
muir isotherm. Fig. 3f shows the ratios of the CO, and N, uptake
of an individual IL-loaded sensor relative to the CO, and N,
uptake by the empty HKUST-1 sensor. The relative values of
ethanol, methanol and water uptake are shown in Fig. S19.7 As
shown, there is a significant difference in the adsorption of CO,

This journal is © The Royal Society of Chemistry 2022
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Fig.3 Negative values of the frequency shift versus gas concentration
of (a) CO,, (b) Ny, (c) H,O, (d) ethanol and (e) methanol. For all HKUST-
1 MOF sensors, the frequency shift (which is proportional to the mass
change) exhibits an essentially linear dependence on the gas
concentration in the explored range. (f) Ratio (Aform) Of the gas uptake
by the sensors loaded with IL and the gas uptake by the empty HKUST -
1 sensor versus the gas concentration.

and water versus N,, ethanol and methanol by the IL-loaded
sensors. The IL-embedment results in a smaller uptake of
nitrogen, ethanol and methanol. This is caused by the IL in the
pores, reducing the available pore volume of the MOF. On the
other hand, the uptakes of water and CO, increase for the IL-
loaded sensors compared to the empty-MOF sensors. For
example, the uptake of CO, by HKUST1 loaded with 50% pore
filling of [BMIM]|[SCN] increased by 69%, compared to the
empty MOF sensor. This is due to the stronger solubilization
ability of the ionic liquid for CO, (and water).” Although CO, is
a non-polar molecule, it has a large quadruple dipole moment
and polarizability, which account for its strong interaction with
the IL molecules. The interaction between the CO, molecules
and the IL molecules in the pore is based on the electrostatic
interaction between the ionic liquid and CO,.”>”® In addition,
weak dispersive interaction may contribute to the energy.” It
was found that the interaction between CO, and the IL, and
thus the solubility, is dominated by the anions, rather than the
cations.” In line with solubility studies of different (bulk) ILs
based on BMIM,” the interaction of CO, with TFSI is larger than
that with PFg, see Fig. 3f or Table 1.

The slopes of the linear range of the isotherm, which
correspond to the sensitivity, are shown in Table 1. It is worth
noting that each sensor has a different slope for the same gas
molecule. This is caused by the fact that the MOF material is

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 Radar plot of the frequency shift Af for exposure to gases of
0.19%,0 concentration. The gases are CO,, N, CO,:N, = 1:1,
ethanol, methanol, H,O, CO, + 10%, 20% and 30% humidity, respec-
tively, see labels. Each axis (with a scale from 0 to 30 Hz) represents
a different sensor, see Table 1. For better visibility, the data of nitrogen
have been multiplied by 8, of CO, : N, = 1: 1 mixture by 2 and the H,O
data have been divided by 2.

loaded with different concentrations and different types of ILs.
For CO,, the [BMIM][SCN]50,@HKUST-1 sensor showed the
largest sensitivity, followed by the [BMIM]|[TFSI]|500, @HKUST-1.
More importantly, the same sensor showed different sensitiv-
ities for different analytes. For the HKUST-1 sensors, the CO,
sensitivity ranges between 47.0 Hz/%,,; for the empty MOF (S1)
and 56.2 Hz/%,, for the MOF with 50% pore filling of [BMIM]
[SCN] (S5). The sensitivities of the HKUST-1 sensors for N,
ethanol, methanol and water are in the ranges of 10-17 Hz/%y,,
109-141 Hz/%yo, 154-191 Hz/%,, and 95-213 Hz/%y,
respectively. For UiO-66, the CO, sensitivity ranges between 37.5
Hz/%,,) for the empty MOF (S8) and 44.2 Hz/%,,, for the MOF
with 50% pore filling of [BMIM][SCN] (512). The sensitivities of
the UiO-66 sensors for N,, ethanol, methanol and water are in
the ranges of 7.0-11.3 Hz/%yo, 81-104 Hz/%,,, 124-147
Hz/%y0 and 95-193 Hz/%,,, respectively. Most importantly, the
different combinations of IL and MOF structures result in
different sensitivities for each analyte. This feature is important
for distinguishing the analytes via machine learning, see below
(and see also Fig. 4 below).

The limits of detection (LODs, Table 1) of individual sensors
are calculated as 3 times the standard deviation divided by the
sensitivity. As standard deviation, we used the average value of
the standard deviation of each individual sensor, determined
from the baselines in Fig. 2 and S6-S91 before the analyte
exposure begins (at about 1000 s). The average value of the
standard deviation is 0.16 Hz. For the HKUST-1, while the empty
sample (without IL) has a CO, LOD of 0.0102%,,, the LODs of
the IL@MOF sensors are significantly smaller, with the smallest
LOD of only 0.0085%,,, (i.e., 85 ppm). This is lower than the
present atmospheric CO, concentration of about 350 ppm (i.e.
0.035%,,). The sensor arrays also have very low detection limits
for N,, ethanol and methanol, ranging from 0.0025 to 0.068%,.

In addition to exploring the sensor response to different
concentrations of CO, and different concentrations of N,, the
sensor performance for different concentrations of CO,-N, and
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CO,-water mixtures (in argon) was also experimentally explored.
In Fig. S10 and S11,T the sensor array signal data versus time for
different concentrations of CO, and N, gas mixtures are shown.
The application of the sensor array in humid environments was
also investigated. The response of the sensor array to 0.19%y,
CO, with 10%y,1, 20%;,,; and 30%,, humidity was tested, Fig. S17
and S18.F Due to the high stability of UiO-MOFs’” and due to the
reproducibility of the uptake by UiO-66 in a moist atmosphere,’®
the UiO-66 sensor performance is not hampered by the humidity
and the sensor can operate normally at 30%,, humidity. On the
other hand, the HKUST-1 sensor exhibits a decrease in sensor
signal at 30%,,; humidity (compare Fig. 2e and f and S177),
which is attributed to the water-induced formation of defects in
HKUST-1, decreasing the analyte uptake.” This means, while the
IL@UiO-sensors are suitable for practical applications, also in
a humid environment, the application of the IL@HKUST-1 is
limited to a dry atmosphere.

Fig. 4 shows the radar plots of the frequency shift of the
sensor array for a gas concentration of 0.19%,,,. Radar plots for
different gas concentrations are shown in Fig. S23.1 The radar
plots show that each analyte has a unique response pattern that
can be distinguished visually. This means that the sensor array
can qualitatively distinguish between the gas molecules.

a) 2 sensors with empty MOFs d)
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To quantitatively analyze the sensor performance for the
different gas molecules, the sensor array data were analyzed
with a machine learning algorithm, here a neural network was
used. The confusion matrix visually reflects the classification
performance of the algorithm, where the correct classification is
on the diagonal. For a given analyte concentration, the confu-
sion matrixes for CO,, N,, ethanol, methanol and CO,: N, =1:
1 are shown in Fig. S24.1 It shows that the sensor array can
accurately discriminate the analytes.

Typically, the components, composition and concentration
of the analytes are unknown in a real-life sensing problem.
Fig. S251 shows the confusion matrix for all the sensor data
explored for different compositions and different concentra-
tions of gases, from 0.09%,,; content to 1.97%,,, content. Their
average classification accuracy is 93.8%.

The results of the sensor performance with the neural-
network algorithm using only the data from some sensors (i.e.
only a part of the sensor array) as input data are shown in Fig. 5.
There, the input data are either only from the two empty MOF
sensors, two IL-loaded-MOF sensors, two water-stable IL-
loaded-UiO sensors and the entire sensor array. All analytes
regardless of the concentration are individual classes. It shows
that the full sensor array applied to all data without assigned
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Fig.5 The confusion matrixes and the comparison of actual gas concentrations with the estimated gas concentrations, as a result of the sensor
data analysis with the neural-network algorithm. (a—c) The input data are from sensors S1 and S8, i.e. HKUST-1 and UiO-66 without IL-loading.
(d—f) The input data are from sensors S5 and S12, i.e. [BMIM][SCN]s0%,@HKUST-1 and [BMIM][SCN]s505,@UiO-66. (g—i) The input data are from two
UiO-sensors (S8 and S12), i.e. UiO-66 and [BMIM][SCN]sq5,@QUIO-66. (j—1) The input data comprise the data from all sensors (S1-S14). All
concentrations of all CO,, N,, ethanol, methanol and CO, : N, = 1:1 are classified as one analyte each. (It corresponds to Fig. S25,1 however,

ignoring the gas concentration).
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concentrations (i.e. classification of CO,, N,, ethanol, methanol
and CO,:N, = 1:1 without concentration information
markers) achieves an outstanding classification accuracy of
98.0% (Fig. 5j). It shows that the IL@MOF-e-nose is fully
capable of analyzing the gases (and mixtures) with unknown
concentrations. For comparison, the data from only two sensors
(S1 and S8) of plain MOF, i.e., HKUST-1 and UiO-66 without IL
loading, cannot clearly distinguish CO, from the other analytes,
(Fig. 5a). The average accuracy is 84.5%, but only 66.3% for CO,,
which is unacceptable for practical applications.

On the other hand, two sensors of MOF (one HKUST-1 and
one UiO-66) with embedded IL (i.e. [BMIM][SCN]s0¢, @HKUST-
1, S5 and [BMIM][SCN]500, @UiO-66, S12) can distinguish all
analytes with an average accuracy of 94.6%, and can identify
CO, with 93.9% accuracy (Fig. 5d).

For using only two water-stable UiO-MOFs, empty (S8) and
filled with [BMIM][SCN]s00, (S12), the average classification
accuracy is even slightly higher, 95.9% (Fig. 5g). This shows that
2 UiO-MOF-sensors filled with IL can be an excellent e-nose.

Based on the neural network, the quantitative analysis of
different gas concentrations can be achieved by regressing
a mixture of gases of different compositions using the sensor
data not used in the training network, see Fig. 5 b, c, e, f, h, g, k
and 1. Using the data of the entire sensor array, the estimated
concentration essentially agrees with the real CO, concentra-
tion with an average error of 2.7%.

The average error in estimating the N, concentration is 3.2%.
The IL@MOF-e-nose not only has superb sensitivity and selec-
tivity for a single target gas, but also can accurately predict the
type and concentration of the gases. However, the regression
task using only two sensors (S1 and S8) without IL-loading does
not allow the quantitative analysis of the different gas concen-
trations, see Fig. 5b and c. The average error in the predicted
CO, concentration is 37.5% and the average error in the pre-
dicted N, concentration reaches 39%.

For two IL-loaded sensors with high sensitivities (S5 and S12,
Fig. 5e and f), the average errors for predicting the CO, and N,
concentrations are 9.1% and 10.7%, respectively. For using only
2 water-stable UiO-MOFs (S8 and S12, Fig. 5h and i), the
average error for predicting the CO, and N, concentrations are
9.3% and 10.4%, respectively. The error in predicting the gas
concentration is relatively small, so the sensor array enables
effective prediction of the type and concentration of the target
gas, especially CO,.

The effect of ambient humidity on the sensor operation is
explored in Fig. S26.f The entire sensor arrays can operate
normally at humidity levels below 30%. When the humidity is
10% and 20%, the average error of the estimated CO, concen-
tration is 5.2%. The average error in the estimated CO,
concentration is 9.8% when the humidity is 30%. Using only the
data of the UiO-sensors as the input (S8-S14), which are stable
in humid environments, the average error in the estimated CO,
concentration is 5.5%. For using only the data from 2 UiO-
sensors, the average error in the estimated CO, concentration
is still rather small, only 6.2%. This demonstrates the great
performance of the e-nose under humid conditions.

This journal is © The Royal Society of Chemistry 2022
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Fig. 6 Discrimination accuracy of 5 analytes (see Fig. 5a, d, g and j) at
different time intervals. Each value is determined from 100 consecu-
tive data points, corresponding to approximately 2 minute time
intervals, where the final data points end at the values on the x-axis.
The input data comprise data from the entire sensor array (black), the
data for sensors S5 and S12 (red) and the data from sensors S1 and S8
(green). The x-axis is the time after the start of exposure to the
analytes.

The transient signal of the sensor array can be described
with a mono-exponential decay function with time constants of
0.6 to 2.0 min for the CO, uptake and roughly 6 min for the CO,
release, see Table S3.f Based on the time constants, the sensor
response time and recovery time can be calculated. On the other
hand, although the signals have not yet reached its equilibrium
values in the analyte atmosphere, the (non-equilibrium) data of
the e-nose can be used for discriminating the analytes. The
accuracy of discrimination of the sensor data as a function of
time is shown in Fig. 6. The data show that the sensor array
reaches its final classification accuracy about 2 minutes after
start of the analyte exposure. This means, although the sensor
response time has not yet passed, the sensor array is able to
classify the analytes precisely.

The reproducibility of the data was explored by repeating the
same analyte exposure experiments 4 times, see Fig. S27 and
S28.7 The data show that the signal is reproducible with only
very small deviations between the different experiments. The
average standard deviations between the signal were approxi-
mately 0.5 Hz, which is much smaller than the signal magni-
tude (of about 100 Hz).

While the experiments here were performed at room
temperature, the QCM transducer also allows the sensing at
other temperatures. With the knowledge of the adsorption
enthalpy of the analytes in the IL@MOF material, the sensor
response at different temperatures can be predicted. While the
small changes of the resonance frequency occur when strongly
changing the gas flow rate through the sensor cell, the sensor
response is not affected by changes of the flow rate. The QCM
sensors can be reused for preparing new IL@MOF films, after
removing the MOF films from the surface (e.g., by ultra-
sonication in water or aqueous acidic acid).

Conclusions

A gravimetric sensor array based on 14 QCM sensors coated with
HKUST-1 and UiO-66 MOF films loaded with three different ionic
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liquids, [BMIM][SCN], [BMIM][TFSI| and [BMIM][PF,], at 20%
and 50% concentrations is presented. The investigation of sensor
response to different gases and vapor analytes, including CO,,
N,, ethanol, methanol, water and some mixtures as well as
simultaneous classification and regression based on neural-
network machine learning analysis for different concentrations
were performed. The data show that, in addition to an increase in
sensitivity, the embedment of IL in the pores of MOFs enhances
the selectivity significantly, especially with respect to CO,. The
presented IL@MOF-e-nose has a very low limit of detection of
0.0085%,,, for CO, and excellent selectivity. Moreover, the e-nose
was also able to predict the concentrations of the analytes with
a very small error rate in the range of a few percent. By using only
robust MOFs (i.e. UiO-66) as the IL-host, the sensor array also
shows excellent performance in a humid environment, showing
its potential for practical real-life applications.

Considering the huge variety of ionic liquids and nanoporous
materials like MOFs, there exist endless possibilities of combining
them and optimizing the selectivities. Thus, we believe there is
large potential for sensors with nanoporous materials with
enhanced sensitivities obtained by ionic-liquid embedment. We
like to stress that the performance of the e-nose strongly depends
on the used sensor, and picking the best sensors from a large
selection is not a trivial task, see for instance (ref. 80 and 81).
Therefore, we assume that the e-nose performance can be further
enhanced by optimizing the sensor selection as well by optimizing
the combinations of the MOF and IL.
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