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Molecular sieving is based on mobility differences of species under

extreme confinement, i.e. within pores of molecular dimensions. The

pore properties of a material determine its separation efficiency, while

pore network engineering provides a way to optimize the sieving

performance. Unlike rigid and structurally limited carbon and zeolite

molecular sieves, metal organic frameworks (MOFs) offer flexible

networks with unlimited pore tailoring possibilities, by using different

linkers, functional groups and metals/clusters. Nevertheless,

knowledge-based pore optimization towards highly selective mate-

rials is hampered by the complex relationship between structural

modifications and molecular diffusivity. Machine learning (ML)

approaches can elucidate this correlation, but pertinent research in

MOFs has so far focused solely on sorption properties. Herein, we

report the first ML-assisted work towards understanding how the

replacement of basicMOF building units affects the pore structure and

consequently the molecular diffusivity. The ML approach developed is

general; the work is however focused on zeolitic-imidazolate frame-

works (ZIFs) with SOD topology. Since there is no database of relevant

ZIF variations, we constructed a new ensemble of 72 existing and new

ZIFs through systematic sub-unit replacement, developed a force-

field for each of these structures and performed molecular dynamics

(MD) simulations on fully flexible systems to calculate framework

properties and the diffusivity of different molecules (ranging from

helium to n-butane). Based on this new database, a predictive multi-

step ML model was developed and trained. The model can rapidly

and efficiently estimate the diffusivity of molecules in any possible ZIF
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structure with SOD topology by using readily accessible input

information.
Nanoporous metal–organic frameworks (MOFs) can be engi-
neered at the molecular level1–11 and are thus, in theory, ideal
platforms for developing novel molecular sieving materials
tailored for any gas separation application. In sieving systems
and particularly in membranes made of crystalline, ultra-
microporous solids with narrow pores or pore windows (<5 Å),
the overall selectivity is mainly governed by diffusivity,12,13

which for a specic species is determined by the molecular level
characteristics of the pore network. For a given topology, careful
selection of coordination sub-units (e.g., metals or clusters and
linkers in MOFs) coupled with additional subtle linker func-
tionalization can in principle accurately tune the shape and size
of pores or pore windows and/or modify the framework exi-
bility leading to extremely high mobility differences even for
very similar molecules. However, up to now this strategy is
practically inapplicable as there is a major scientic gap; the
correlation between modications in exible frameworks and
the diffusivity of a species is extremely complex, almost
impossible to address experimentally and thus remains largely
unresolved. Computational material screenings and high-
throughput simulations,14–17 as well as Machine Learning
(ML)-assisted investigations18–20 could be of great help; so far,
however, the focus has been mainly on gas adsorptivity or
fSciFY PNPC, TEPA Leippos – NCSR Demokritos, 27, Neapoleos Str., 153 41 Ag.

Paraskevi, Greece
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simplied diffusivity simulations based on the assumption of
rigid frameworks that can greatly compromise the validity of
computations, as recently shown by Yang and Sholl.21 Diffu-
sivity investigations in non-rigid pore networks constitute a far
more challenging simulation task, where framework exibility
creates a complex interplay between possible material modi-
cations and the resulting mobility of gases in the pores. ML-
assisted computations on gas diffusion in MOFs have not
been reported, and this is apparent by the total lack of refer-
ences on diffusion in relevant review papers.22–27

In this work, we present for the rst time a data mining
strategy assisted by ML for predicting the diffusivity of species
in exible crystalline nanoporous materials. Unlike conven-
tional ML approaches in which databases of existing MOF (e.g.,
CoRE) are screened in order to identify the best performing
structures (e.g., in terms of adsorption capacity) our aim is to
develop a tool that can predict the diffusivity of a molecule upon
any possible structural alteration. This tool may then be used
for the design and synthesis of new MOFs by directing the
synthesis efforts towards meaningful structures. Zeolitic-
imidazolate frameworks (ZIFs),28,29 a sub-family of MOFs and
in particular ZIF-8 analogues were chosen as a case study for
three reasons: rstly, due to their unique exible structure and
swinging/gate opening effect they have been widely investigated
for several membrane-based gas separation processes;30

secondly, there are indications that some modications may
indeed lead to highly selective materials, but a clear modica-
tion–diffusivity correlation has yet to be understood;1,30–34

nally, ZIF-8 analogues exhibit a distinct structural character-
istic, which is the aperture connecting the framework cages,
that seems to control diffusivity,33,35–38 and subsequently the
material performance. However, contrary to MOFs, an
adequately extended database of ZIF-8 type structures that can
support a big data analysis, is unavailable. In this respect, a new
structural dataset was created. The set comprises 72 chemically
robust ZIF variants with SOD topology (ZIF-8 type) that were
developed aer systematic replacement of the linker, metal
and/or functional group. It should be mentioned that in order
to isolate and study the impact of building units' modications
on diffusivity, we chose to work on one topology only. In fact,
topology variations would severely obscure our ndings as this
is an additional factor,20,39 which can greatly affect the aperture
size as well as the network connectivity and therefore the
diffusion of penetrants.33,40 The design of new variants was
driven from the insight gained from our recent works41–45

regarding the impact of modications on the aperture which
bridges the cages (Fig. 1). In brief, bulkier linkers decrease the
aperture,43,44 while its size and rigidity depend on the ionic
radius of the metal.42 On the other hand, the functional group's
impact on aperture is not fully understood. Information on the
building units of each ZIF of the dataset is reported in ESI
(ESI_1‡), along with refences to existing ZIFs that incorporate
some of these units.

Force eld parameters, such as charges, and bond length,
angle and torsional parameters, for each of the 72 ZIF structures
were developed through elaborate density functional theory
(DFT) calculations. In a second step, the force elds were
13698 | J. Mater. Chem. A, 2022, 10, 13697–13703
employed in fully exible molecular dynamics (MD) simulations
in order to calculate for each framework the sizes of aperture
and “stretched” aperture, i.e., the aperture when a penetrant
molecule of He, H2, O2, CO2, N2, CH4, C2H4, C2H6, C3H6, C3H8, i-
C4H10 and n-C4H10 lies in its center (results are provided as
ESI_2‡). The third step was the deduction of diffusivity of each
of these penetrants in all ZIFs, by means of dynamically cor-
rected transition state theory (dc-TST), through simulations that
accounted for the exibility of the frameworks. DFT, MD and dc-
TST simulation details are given in ESI_1,‡ while all force eld
parameters are tabulated in ESI_3.‡ Fig. 2 summarizes the
workow of our computations. At this point, it is worth noting
that ve (5) out of the 72 ZIFs of our dataset have been
synthesized, and used to validate our computational approach,
by comparing simulations with experiments for ZIF structural
characteristics and properties such as gas sorption, diffusivity,
and permeability in these ZIFs.41,42,44,46,47

Overall, the new ZIF database, which can be found in ESI_2,‡
sums up to 712 entries (ZIF-penetrant-aperture-stretched aper-
ture and diffusivity). Fig. S1‡ shows the resulting distribution of
aperture sizes and diffusivities in our dataset, proving that the
modication scheme adopted spans throughout the range of
interest. In general, more than 2000 ZIFs based on SOD
topology can be designed (see Table S3‡) by using different
metals, linkers, and functional groups and this can increase
dramatically if combinations (e.g., two different metals) are
employed. The 72 ZIFs of our study focus on a part of the
available structural landscape; the structures considered
however, cover sufficiently the most important range of aper-
tures and diffusivities. Indeed, diffusion through apertures
beyond the largest one employed (CdIF-1: 3.92 Å) is quite
unrestricted and thus the separation potential for all gas pairs
under investigation is poor, while apertures below the smallest
one (Be-ZIF-7-8-I: 1.96 Å) will result to diffusivities that are
extremely low for any practical application.

Based on the dc-TST results (details provided in ESI_2‡) it is
evident that diffusivities and their ratios can vary by several
orders of magnitude in different ZIFs, aer minute aperture
changes; for example, the ratio DCO2/DCH4 for ZIF-8 is approx. 9,
which is increased to 3 � 103 by replacing one out of three mIm
linkers with bIm (ZIF-7-8), causing a 15% decrease of the
aperture size. An additional modication in the framework, by
replacing the Zn2+ metal with Be2+ decreases the aperture by
13%, leading to a DCO2/DCH4 substantial enhancement from 3�
103 to 6.43� 109. Likewise, the replacement of Zn2+ with Co2+ or
Cu2+ in ZIF-8 reduces the aperture diameter by just 0.03% or
0.06%, but Dpropylene/Dpropane increases by 30% or 85% respec-
tively, shiing the structure from just satisfactory to top per-
forming.48 Beyond this aperture size – diffusivity relationship,
a closer look at the dataset (see ESI_2‡) reveals a rather extreme
complexity at several levels. For instance, bulkier linkers
decrease the aperture diameter while simultaneously increase
its exibility, resulting in higher diffusivities than expected in
several cases (e.g., bIm vs. mIm). In addition, some combina-
tions of metals and linkers give unexpected results; Zn2+

replacement by Co2+ is expected to decrease the aperture, but in
some cases the reverse happens (e.g., F-ZIF-7-8 vs. Co-F-ZIF-7-8;
This journal is © The Royal Society of Chemistry 2022
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Fig. 1 (a) Profile view of the aperture bridging two cages in ZIF-8 and (b) front-view of the aperture. The multicolor sketch depicts the ZIF-8
building unit and its sub-units.
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Br-ZIF-7-8 vs. Co-Br-ZIF-7-8). Likewise, Cd, has the largest ionic
radius and is thus expected to produce the largest apertures, but
this is not the case (e.g., Cd-I-ZIF-7-8 vs.Mn-I-ZIF-7-8). Moreover,
the impact of the functional group on the aperture size/
exibility is largely unclear. Overall, it seems that a rather
obscure “dynamic” penetrant/framework interaction controls
molecular mobility. The above show that correlating structural
changes with gas mobility is a multivariant and extremely
complex problem that cannot be deconvoluted by simplistic
structure–diffusion relationships.48

A possible way to address such highly complicated rela-
tionships is to employ articial intelligence (AI) approaches and
in this respect an ML model was trained to predict the loga-
rithm of diffusivity of the various penetrants in ZIFs (details in
the Computational Methodology of ESI_1‡). The training set is
based on the newly developed ZIF database and comprises
Fig. 2 Workflow: generation of ZIFs database and computations.

This journal is © The Royal Society of Chemistry 2022
simulation deduced values (aperture sizes, stretched aperture
sizes and penetrant diffusivities), as well as physically mean-
ingful numerical descriptors of the ZIF building units and the
gases (Tables 1 and S8‡). The ML model predictive performance
is shown in Fig. 3(a).

The trained model exhibits a satisfying efficiency all over the
diffusivity scale range, with an average performance of R2¼ 0.96
and explained variance EV ¼ 0.96. Additionally, feature impor-
tance analysis was performed and revealed the descriptors that
govern our model (Fig. 3(b)). Among the various gas features,
van der Waals diameter (gas_vdW) is the most prominent, while
aperture size proves to be the dominant ZIF descriptor.
Surprisingly, the stretched aperture does not affect the model
performance. It should be emphasized at this point that except
aperture sizes (normal and stretched), the descriptors are
readily available physical properties. Stretched aperture seems
J. Mater. Chem. A, 2022, 10, 13697–13703 | 13699
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Table 1 Descriptors for ZIF modifications and penetrants

Features

Ionic radius of metal

Length
Mass
s and 3a of aperture atoms (see ESI)
Length
Mass

Penetrant (diffusing molecule) Mass van der Waals diameter
Kinetic diameter
Acentric factor

a Lennard–Jones parameters.
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to be unimportant and could thus be omitted but the very
important aperture size requires elaborate DFT and MD calcu-
lations on fully exible crystals hampering the generic, facile
use of the ML model (e.g., for ZIF sub-units and penetrants not
included in our dataset).

Based on the above, a two-step ML strategy could prove
applicable: a rst model, M1, may be trained on ZIF physical
descriptors (Table 1) in order to predict the aperture sizes of ZIF
variants. Then, a second model (M2) can be trained to predict
the diffusivity of a penetrant in a ZIF, by using the penetrant
descriptors (Table 1) and the predicted ZIF aperture as well as
the rest of the ZIF descriptors of M1. The overall procedure is
summarized schematically in Fig. 4.

The comparison of the predicted aperture sizes of M1 with
the actual (simulation) ones (Fig. 4) yields R2 ¼ 0.90 and EV ¼
0.91, highlighting an overly satisfying predictive potential. M2
predicts the log(D) of any gas with R2 ¼ 0.93 and EV ¼ 0.93,
which is a surprisingly high performance especially when
considering that it is based only on readily available physical
Fig. 3 (a) Performance of the ML model for diffusivity prediction and (b

13700 | J. Mater. Chem. A, 2022, 10, 13697–13703
properties and the M1 predicted aperture size. In fact, by
comparing the performances of the rst model (Fig. 3) and the
two-step model, it becomes evident that only a small amount of
information is lost by using the M1 predicted aperture sizes
(instead of the MD calculated ones). Additionally, based on the
importance ranking of descriptors, a much simpler M2 model
(M2_simple), was trained only on the most prominent
descriptors for ZIFs (predicted aperture size from M1) and the
gases (vdW diameter). The M2_simple model (Fig. 4) has R2 ¼
0.86 and EV ¼ 0.85, which is considered quite impressive, given
the simplicity of the input required versus the complexity of the
task.

In conclusion, since an adequate ensemble of pre-
synthesized or pre-designed ZIF-8 variants was not available
we have built 72 new SOD structures by varying both the organic
and the metal sections of the framework. Instead of adopting
the conventional approach of using a common force-eld across
all the ZIF variants, we performed accurate DFT calculations
specically for each structure. The force-elds developed were
) dominant descriptors on the model.

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 Description of the two-step ML model and its performance.
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used for MD and dc-TST simulations in fully exible crystals.
The results (apertures and diffusivities) were for the rst time
considered collectively for the training of predictive MLmodels,
that account for the interplay between the structure modica-
tions and the diffusion of penetrants.

Most ML-related works employ descriptors (such as pore
diameters, free volume and gravimetric/volumetric surface
areas) that need prior knowledge of the full unit cell represen-
tation of the frameworks under study, as well as descriptors that
are extracted (e.g., potential energy surfaces) by computations
on the unit cell.49–52 In our case, the use of similar descriptors or
even elaborate DFT-based descriptors (e.g. charges, bond
length/bond angle parameter) is by all means possible and
actually leads to improved predictive power (data not pre-
sented). Nevertheless, the utilization of simple and mainly
readily available input information such as the mass and size of
the basic building units, was chosen in order to make the ML
routines easy to employ: a researcher can consider a new
functionalization of ZIF-8, bypass the multiple computational
steps (ZIF cluster construction, DFT calculations, unit cell
construction and MD, dc-TST simulations) and directly obtain
a good estimation of the diffusivity of different penetrants (and
thus the structure's selectivity potential) through a simple two-
step ML model.
This journal is © The Royal Society of Chemistry 2022
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