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rocatalysts discovered by scaling
relations of Gibbs-free energies of key oxygen
adsorbates in water oxidation†

Jihyeon Park,ab Sinwoo Kangab and Jaeyoung Lee *abc

Symbolic regression (SR) is the most widely used machine learning (ML) tool for determining the governing

equation from a given dataset. However, a major problem associated with SR is gaps in the results (missing

results) when moremathematical operations are introduced. We applied deep symbolic regression (DSR) to

a dense space of overpotential formulas to reveal the scaling relations of the Gibbs free energies of the key

intermediate adsorbates during the oxygen evolution reaction (OER) on FeNi surfaces in alkaline media. The

highest-ranked empirical equation f(x) generated from 40 000 000 hidden equations by DSR predicted an

optimized electrocatalyst ratio of Fe8.7 : Ni91.3, which resulted in a minimum overpotential of 0.368 V in the

water-splitting process. Our approach provides a new perspective for understanding nonlinear dynamics in

the electrochemical processes of chemical-energy conversion and storage.
1 Introduction

Electrocatalytic water splitting in alkaline media is one of the
most eco-friendly methods for producing hydrogen; however,
the biggest obstacle to its commercialization is the sluggish
oxygen evolution reaction (OER).1–4 This is because the OER is
a four-electron process that proceeds through various adsorp-
tion processes and intermediate species, including *OH, *O,
and *OOH.5,6 Although the binding energy between the adsor-
bates and catalyst surfaces shows a variety of remarkable linear
correlations,7–11 it is difficult to optimize them independently
because the entire process is systematically related. The scaling
relationships between the adsorption energies and various
descriptors suggest a research direction for developing a well-
performing catalyst for the OER. In particular, the scaling
relations between the Gibbs free energies of the key adsorbates
(*OH and *OOH) suggest a research direction for developing
a well-performing catalyst for the OER. However, even in FeNi-
based catalysts, which rank as the best-performing non-
precious-metal catalysts, the minimum overpotential is
limited to approximately 0.37 V.5,12–18 Therefore, many
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researchers have reported that they broke the scaling relations
by designing highly active OER catalysts.

The conventional trial-and-error method for synthesizing cata-
lysts with high activities has the advantage of providing experi-
mental data for the developed materials and catalytic
performances. Thus, meaningful perspectives can be gained from
practical results. However, the trial-and-error method is a time-
consuming process, expensive, and difficult to control
precisely.19–21 In contrast, computational strategies such as density
functional theory (DFT) are very useful for the rapid screening of
an enormous number of catalyst candidates. However, since most
DFT calculations are based on an ideal combination of absorbates
and crystal structures, the actual experimental results are difficult
to correlate with the various descriptors.22,23 Therefore, if the actual
OER results and various descriptors could be associated from
a computational standpoint, a more effective method can be
derived.

However, it is challenging to consider both the interdepen-
dence of each step in the OER and the various descriptors simul-
taneously. In particular, when using symbolic regression (SR),
which aims to elucidate the relationships between variables,24–26

the number of possible functions increases exponentially as the
number of variables and the types of mathematical operations
used in the SR increase. Such a process is time-consuming and can
inadvertently cause the occurrence of gaps (missing results) in the
list of generated formulas.

Deep symbolic regression (DSR) is an algorithm that combines
deep learning (DL) with SR to overcome the shortcomings of SR.27

DL, which has the characteristic of improved performance as
learning progresses, penetrates deep into the gaps between the
formulas created by SR. Therefore, in DSR, the performance in
J. Mater. Chem. A, 2022, 10, 15975–15980 | 15975
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expressing the target value gradually improves as the algorithm
proceeds with the increased spatial density of the equations.

In this study, we rst employed the DSR algorithm to nd
correlations between actual experimental results and physical/
calculative properties through the DSR algorithm. FeNiOxHy

has the highest activity among non-precious-metal catalysts,
and seven samples of this catalyst were synthesized with
different contents of Fe and Ni using electrodeposition. The
catalytic activity data for FeNiOxHy (needed for the DSR algo-
rithm) was obtained from our cyclic voltammetry (CV) tests on
the seven catalysts, while the physical/calculative property data
was obtained from other references.
2 Materials and methods
2.1 Synthesis of FeNiOxHy

The catalyst lms were synthesized via electrodeposition
according to a previously reported method.28–30 Nickel nitrate
(Ni(NO3)2, Sigma-Aldrich) and iron chloride (FeCl2$H2O) were
dissolved in deionized water to prepare the electrodeposition
solution. The total concentration of the metal precursor solu-
tion used was 0.1 M. In this study, the ratio of Ni to Fe followed
the precursor ratio, which was conrmed by energy-dispersive
X-ray electron microscopy (e.g., Fe10Ni90OxHy means that the
catalyst lm was prepared using a solution of 10% nickel nitrate
and 90% iron nitrate). Ni100, Fe10Ni90, Fe20Ni80, Fe30Ni70,
Fe50Ni50, Fe70Ni30, and Fe100 constituted a standard set
prepared for the database. Aer bubbling the solution with N2

for 30 min to prevent FeOx precipitation, electrodeposition was
conducted in a two-electrode system. The gas diffusion layer
(GDL; MGL 190, AvCarb), used as the working electrode, was cut
to dimensions of 1 cm � 1 cm (excluding the connecting part
with the gold screw electrode). Carbon cloth was used as
a counter-electrode to provide a sufficient working area, while
preventing the dissolution of Pt wire. The deposition and elec-
trochemical reaction areas were calculated to be 2 cm2, in
consideration of both the front and back sides of the GDL.
Electrodeposition was conducted at an applied current of �2.5
mA cm�2 for 30 s. Fe5Ni95, Fe15Ni85, and Fe25Ni75 were also
prepared for validating the empirical equation.
2.2 Electrochemical characterization

A potentio/galvanostat (VSP, Bio-Logic) was used for electro-
chemical characterization in a polyether ether ketone (PEEK)
cell. PEEK prevents both oxygen adsorption and penetration
through the walls, thus minimizing oxygen-related issues.31 All
measurements were performed in 0.1 M Fe-free KOH, as
adopted from the purication method reported by Boettcher
et al.30 A graphite rod was used as a counter-electrode instead of
the widely used Pt mesh because of the Pt dissolution issue32,33

and a Hg/HgO electrode with 1 M KOH lling solution was used
as the reference electrode. Cyclic voltammetry (CV) curves were
acquired at a scan rate of 5 mV s�1, and the iR drop was
compensated by 85% using Bio-Logic EC-Lab soware. The
working electrode applied a potential from 0 to 1 Vvs. Hg/HgO with
both anodic and cathodic sweeps per cycle. Tafel plots were
15976 | J. Mater. Chem. A, 2022, 10, 15975–15980
acquired free of iR drop at a low scan rate (5 mV s�1) to suppress
capacitive current.34 Electrochemical impedance spectroscopy
was performed at 1.7 Vvs. RHE by applying a voltage with an
amplitude of 10 mV in the frequency range from 100 kHz to 100
MHz. All measurements in this study are presented in terms of
the reversible hydrogen electrode (RHE) scale using the equa-
tion: E(Vvs. RHE) ¼ E(Vvs. Hg/HgO) + 0.098 + 0.095 � pH.

2.3 Preparation of properties for database

Properties involving Ni : Fe ratios were calculated from linear
relationships based on those of pure Ni and pure Fe. For
example, a property (Xi) of FeaNi(1�a)OxHy was calculated from
aXFei + (1 � a)XNi

i . In addition, the active oxidation state for the
OER was carefully considered when Ni and Fe were
combined.35–38 The number of d-electrons (Nd), atomic radii (g),
and Pauling electronegativity (c) are listed in Table S2† as
functions of the oxidation state. In alkaline water electrolysis,
the adsorption energy for each reaction step remains the subject
of controversy;15,17,39,40 however, the most widely accepted four-
step reaction was used (eqn (1)–(4)).41,42

DG1 ¼ DGOH (1)

DG2 ¼ DGO � DGOH (2)

DG3 ¼ DGOOH � DGO (3)

DG4 ¼ DGO2
� DGOOH (4)

Eqn (5) and (6) were used to calculate max(DGi) and the
electrochemical step symmetric index (ESSI), respectively, as
follows.43

maxðDGiÞ ¼ maxDGi

e�
� 1:23 (5)

ESSI ¼ 1

n

Xn

1

�
DGi

þ

e�
� 1:23

�
; where DGi

þ :¼ DGi . 1:23 (6)

2.4 Physical characterization

The surface morphology of the electrodeposited samples was
examined using eld-emission scanning electron microscopy
(FE-SEM; Hitachi, S-4700). The surface binding energy of the
sampled metal oxide on the carbon paper was analyzed by high-
performance X-ray photoelectron spectroscopy using an Al Ka
X-ray source (HP-XPS; Thermo-Fisher). All the binding energies
were tted based on the C 1s reference (285.0 eV) using Avant-
age soware. Grazing incidence X-ray diffraction (GI-XRD)
analysis (DMAX2500-PC, Rigaku) was used to evaluate the
crystallinity of the ultrathin surfaces of the samples.

3 Results and discussion

The prepared database was divided into four parts according to
the current density (1, 5, 10, and 20mA cm�2) and input into the
DSR algorithm. All databases included nine properties (Xi: Nd,
This journal is © The Royal Society of Chemistry 2022
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Fig. 1 (a) Hierarchical internal algorithm structure of the deep
symbolic regression (DSR) that generates the completed equationwith
three different node types: yellow (binary), sky-blue (unary), and gray
(terminal). Database is DSR input and the empirical equation is DSR
output; (b) precision score graph as a function of the number of
learning steps (max score is the maximum precision score of 4000
different equations per step, and best score is the best precision score
in all previous steps); and (c) reformatted graph based on the final best
equation with a gray solid line corresponding to the y ¼ x � 0.1 graph
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g, c, DG1 to DG4, max(DGi), and ESSI) and one object value,
overpotential (yi : h). All mathematical equations from the DSR
algorithm were aimed at determining the best function to
represent the object value (eqn (7)).

dataset (Xi ˛ Rn, yi ˛ R), function f:Rn / R (7)

The equations generated by the DSR algorithm can be
expressed as hierarchical symbolic trees. The tree branch desig-
nated “node”, as shown in Fig. S2,† has three types. Mathematical
operations, including +,�,�, andO, which require two variables,
are represented by light-yellow nodes. In contrast, mathematical
operations, including exp; ln;

ffiffiffi
x

p
; x2; sin; and cos, which

require one variable, are represented by sky-blue nodes. The
terminals whose branches no longer extend are represented by
gray nodes.

The input database goes through a recurrent neural network
(RNN), and the DSR algorithm performs mathematical opera-
tions step-by-step until the equation is completed. Notably, the
mathematical operations sampled at each step are not
randomly emitted by independent trials but depend on the
probability (p) of the mathematical operations at all previous
steps. In other words, the probability is directly proportional to
the success of each attempt as evaluated in the previous steps.
That is, the ith mathematical expression (si) can be expressed by
the probability vector (j), including all previous expressions
(s1:i�1) and the RNN internal parameters (q) (eqn (8)), and the
probability of the function at that time is identical to the
product of the probabilities of all steps (eqn (9)). Further details
can be found in ref. 27.

pðsijs1:i�1; qÞ ¼ j
ðiÞ
L ðsiÞ (8)

pðsjqÞ ¼
Yjsj
i¼1

j
ðiÞ
LðsiÞ

(9)

However, because the functions have a hierarchical-tree
structure, there are several restrictions in the equation expres-
sion stage of the DSR algorithm. First, the expression length of
the mathematical equation must not be less than 4 or more
than 30 parameters. If the length was less than 4, the equation
would likely be too simple to be accurate, and if the length was
more than 30, the equation would become too complex to
interpret intuitively. The second restriction is that the children
of the operator cannot all be constraints ðℂÞ. If this was allowed,
the results would still be constrained (e.g.,
sinðℂÞ ¼ ℂ; ℂ� ℂ ¼ ℂ). The third restriction is related to the
operator, which requires one variable and states that a child
operator should not be an inverse function of its parent (e.g.,ffiffiffiffiffi

x2
p

; elnðxÞ). The last restriction is that a trigonometric oper-
ator should not have a descendant because such expressions
cannot be found in nature (e.g., sin(x + cos(x))).

Fig. 1a shows a structural diagram of the DSR algorithm, which
generates an equation for expressing the overpotential at a specic
current density of 10 mA cm�2. The preprocessed database with
the physical and calculative properties is applied to the DSR
This journal is © The Royal Society of Chemistry 2022
algorithm, and the algorithm constantly attempts to create an
equation expressing the overpotential with these properties. In this
situation, the equation is created in a hierarchical process inside
the DSR algorithm, which can be expressed as a tree structure
(Fig. S2†). However, this is only a schematic explaining the struc-
ture of the algorithm, and in practice, a complete equation is
produced by the algorithm, as shown in eqn (10). Therefore, it is
difficult to determine how a completed equation is calculated and
produced by the DSR algorithm, which is also a representative
feature of deep learning.

h
empirical

10 mA cm�2ðXiÞ ¼ e
sin

�
ln

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðDGiÞ

p
þ ESSI

maxðDGiÞ

���
(10)

The DSR algorithm produces 4000 different equations at
each step and evaluates them simultaneously. The normalized
root-mean-square error (NRMSE) of the overpotential is calcu-
lated using the empirical overpotential (ŷ) and actual over-
potential (y) at a specic current density of 10 mA cm�2 was
calculated and rated using eqn (S1) and (S2),† respectively. The
closer the precision score is to 1, the higher the accuracy. The
blue open circles in Fig. 1b represent the maximum score
among the 4000 equations for each step, and the red solid line
represents the best score in all the previous steps. As the
number of learning steps increases, the maximum and best
scores also increase, indicating that the RNN inside the DSR
algorithm conducts reinforcement learning of the previous step
and gradually improves the performance to generate empirical
equations with increasing number of steps. It seems that if
more time is consumed, better empirical equations with higher
(Ref. 1: 44, Ref. 2: 45,and Ref. 3: 46).

J. Mater. Chem. A, 2022, 10, 15975–15980 | 15977
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Fig. 2 The sum of adsorption steps 2 and 3 (DG2+3) as a function of the
overpotential (at 10 mA cm�2), the dashed red line corresponds to the
conventional scaling relationship value of 3.2 eV (DGscaling

2+3 ), the solid
black line and the gray zone correspond to the mean value of DG2+3 of
all prepared catalyst (D�G2+3 ¼ 3.001 eV) and the standard deviation of
DG2+3 of all prepared catalyst (DGstd

2+3 ¼ 0.195 eV), respectively.

Fig. 3 (a) Chronoamperometry tests conducted at 10 mA cm�2 vs.
RHE at the controlled temperature of 25 �C in 1 M KOH for 180 min;
and (b) Tafel plots and slopes of FeNiOxHy acquired free of iR drop at
a low scan rate of 5 mV s�1 to suppress capacitive current.
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precision scores are created. Furthermore, when a parameter
was excluded from eqn (10) to conrm the parameter effect, the
NRMSE score increased, and the empirical equation became
extremely complicated, with a low R2 value (Table S5†).

The top 50 equations with their scores are shown in the ESI.†
The top-ranked empirical equation expressing the overpotential
is the same as that shown in eqn (10), with an NRMSE score of
0.7201. To precisely show the correlation, the overpotential
calculated using eqn (10) and the actual overpotential at 10 mA
cm�2 are shown in Fig. 1c, with an added gray graph of y ¼ x �
0.1. The average and standard error values of the overpotentials
for each Fe : Ni ratio in FeNiOxHy in the database are repre-
sented by blue symbols and error bars, respectively. All the blue
symbols are close to the y ¼ x graph, indicating that the
empirical equation was successful in describing the data.
Furthermore, the top-ranked empirical equation also ts the
results from additional experiments (pink symbols), as well as
from other reference data (pea-green symbols), showing a high
R2 of 0.9894. Moreover, the empirical equations obtained via the
DSR algorithm were also reformatted and plotted at current
densities of 1, 5, and 20 mA cm�2, which were then veried by
additional experiments (Fig. S3†).

Since a deep learning-based algorithm was used, the top-
ranked empirical equation expressing the overpotential at 10
mA cm�2, which is a representative method for OER perfor-
mance, is difficult to understand intuitively. The equation
includes only two calculative properties (max(DGi) and ESSI);
therefore, it was unclear in which direction we should drive our
research to further lower the overpotential. To evaluate this
instinctively, the equation was expressed as a three-dimensional
(3D) graph (Fig. S4†). Although the overpotential value oscillates
owing to the trigonometric function, the graph indicates that we
15978 | J. Mater. Chem. A, 2022, 10, 15975–15980
should seek to reduce both max(DGi) and ESSI. However, the
minimum value of the overpotential is limited to e�1 ¼ 0.368 V
due to the synthesis function of exp and sin.

For an ideal OER catalyst, all adsorption energies (DGi)
should be identical (1.23 eV), and the sum of DG2 and DG3

should be 2.46 eV (DG2+3 ¼ DGOOH � DGOH). However, in the
real world, the average value of DG2+3 in a large group of OER
catalysts is usually 3.2� 0.2 eV, irrespective of the overpotential,
as shown in Fig. 2.43–48 Interestingly, even if most of the OER
overpotentials are affected by DG2 or DG3, the minimum value
of the empirical equation to break the scaling relationship
could still not break the “great wall of the scaling relationship”.
It is impressive to observe the natural limiting overpotential in
the actual OER environment determined via articial intelli-
gence (eqn (11)). Furthermore, this suggests that there is no
correlation between breaking the scaling relation and lowering
the overpotential.10,43

e�1 ¼ 0.368 V z (3.2–2.46) eV/2e� (11)
This journal is © The Royal Society of Chemistry 2022

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ta02594a


Fig. 4 OER performance and overpotential of FeNiOxHy catalysts
achieved at h of 350 mV and j of 10 mA cm�2, respectively, as
a function of Fe composition; blue and indigo-blue (Ni100, Fe10Ni90,
Fe20Ni80, Fe30Ni70, Fe50Ni50, Fe70Ni30, and Fe100 for database), pink
and red (Fe5Ni95, Fe15Ni85, and Fe25Ni75 for validation). The gold star
represents DSR-derived ratio of Fe8.7Ni91.3.
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In the forward scan, an oxidation peak of Ni was present until
the Fe content reached 25% (Fig. S5†). We only collected results
for the database in the backward scan to avoid any interference
from this oxidation peak. The current density at the same poten-
tial increases until the Fe content reaches 10% and decreases as
the Fe content exceeds 10%. The best Fe10Ni90 electrode retained
its low overpotential with an increase of only 2.51 mV per minute
(i.e., a 0.00273% overpotential increase per minute) (Fig. 3a).

The slope range of the Tafel plot in the Fe range 5–20% is 45–
50 mV dec�1, exhibiting a clear difference from that in the other
ratios (Fig. 3b). Therefore, to reduce the overpotential in a prac-
tical water electrolysis cell/stack, it is not necessary to use a cata-
lyst with a specic ratio such as the ideal 8.7% as determined
from Fig. 4. Instead, any FeNiOxHy catalyst with an Fe content
between 5% and 20% with respect to Ni should be sufficient.

From the CV cycles of the mixed ratios of FeNiOxHy

(Fig. S5†), two features were extracted as a function of Fe
content: one for the previously mentioned overpotential at
a current density of 10 mA cm�2, and the other for the specic
current density at an overpotential of 350 mV (Fig. 4). Thus, as
the Fe content is increased in the range 5–20%, the over-
potential decreases and then increases, and the specic current
density increases and then decreases, covering the local
minimum and maximum of overpotential and current density,
respectively. This result is comparable to recent works in which
FexNi1�x (0 < x < 0.25) is mainly considered to be at the maxi-
mized activity.18,49

The measured overpotential ranges from 0.3 to 0.35 V, which
is lower than those in the other ranges, and the measured
specic current density is 4–9 times higher than those in the
other ranges (also see Fig. S6†). To determine the ideal ratio, we
used the DSR algorithm again, but in terms of specic current
This journal is © The Royal Society of Chemistry 2022
density. Notably, the variables and target values for the algo-
rithm were the Fe content and specic current density (at 350
mV), respectively. The detailed conditions and equations are
listed in Table S1 and eqn (S3),† respectively. From the differ-
ential value of the empirical equation, the ideal Fe content was
calculated to be 8.7% (gold star in Fig. 4 and eqn (S4)†), which is
close to that obtained by density functional theory (DFT)
calculations, as reported by the Goddard III group.38 They
conrmed that the overpotential for the OER was higher when
the bulk Fe content in FeNi was approximately 1/9.
4 Conclusions

In summary, we used a DSR algorithm to nd the hidden
empirical equations of the OER based on the physical (Nd,g,c)
and calculative properties (DG1 to DG4, max(DGi), ESSI) of
FeNiOxHy. A top-ranked equation expressing the overpotential
at 10 mA cm�2 among 40 000 000 formulas was generated using
Gibbs free energies (max(DGi)) and ESSI. To conrm whether
the created equation was well tted, we synthesized several
intermediate ratios (Fe5Ni95, Fe15Ni85, and Fe25Ni75) and ob-
tained the overpotentials from other references, conrming
a high R2 of 0.9894. We concluded that the equation success-
fully predicted the overpotentials for our additional experi-
ments, as well as for the unlearned data. FeNi catalysts with an
Fe content of 5–20% exhibited long-term stability and a low
Tafel plot slope. Surprisingly, the minimum value of the over-
potential function generated by DSR was e�1 (¼ 0.37 V), which is
nearly identical to that obtained from the scaling relation.
Finally, the algorithm derived the optimal ratio of Fe : Ni as
8.7 : 91.3. Our approach provides a new perspective for inter-
preting electrochemistry using articial intelligence and may
lead to improvements in catalyst design for water electrolysis.
Author contributions

J. P. designed the computational framework and performed the
machine learning calculations. S. K. supported additional
experimental observations. J. P. and J. L. was in charge of overall
direction and planning.
Conflicts of interest

There are no conicts to declare.
Acknowledgements

This research was supported by the National R&D Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science and ICT (NRF-2021K1A4A8A01079455)
and this work was supported by AI-based GIST Research Scientist
Project grant funded by GIST in 2022.
Notes and references

1 J. A. Turner, Science, 2004, 305, 972–974.
J. Mater. Chem. A, 2022, 10, 15975–15980 | 15979

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ta02594a


Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ju

ly
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

0/
20

/2
02

5 
9:

33
:1

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2 I. Katsounaros, S. Cherevko, A. R. Zeradjanin and
K. J. J. Mayrhofer, Angew. Chem., Int. Ed., 2014, 53, 102–121.

3 S. Kang, K. Ham and J. Lee, Electrochim. Acta, 2020, 353,
136521.

4 K. Ham, S. Hong, S. Kang, K. Cho and J. Lee, ACS Energy Lett.,
2021, 6, 364–370.

5 Z.-F. Huang, J. Song, S. Dou, X. Li, J. Wang and X. Wang,
Matter, 2019, 1, 1494–1518.

6 D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang, S. Liu, J. Tang,
J. Zhang, D. Liu, L. Zheng, Y. Kuang, X. Sun and B. Liu,
Angew. Chem., Int. Ed., 2019, 58, 736–740.

7 M. M. Montemore and J. Will Medlin, Catal. Sci. Technol.,
2014, 4, 3748–3761.

8 F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl,
T. R. Munter, P. G. Moses, E. Skúlason, T. Bligaard and
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43 O. Piqué, F. Illas and F. Calle-Vallejo, Phys. Chem. Chem.

Phys., 2020, 22, 6797–6803.
44 I. C.Man,H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Mart́ınez,

N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov and
J. Rossmeisl, ChemCatChem, 2011, 3, 1159–1165.

45 M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer,
D. Gianolio, A. G. Pereira, Á. Garćıa, J. Torrero,
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