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Supported low-nuclearity metal catalysts integrating single atoms or small clusters have emerged as
promising materials for diverse applications. While sophisticated synthetic methods provide a high level
of nuclearity control in the subnanometre regime, these routes do not fulfil the requirements for
translation into industrial practice of (i) effectiveness for high metal contents and (ii) facile scalability.
Herein, we present a gas-phase redispersion strategy consisting of sequential C,H, and HCl treatments
to gradually disperse Ru, Rh and Ir nanoparticles supported on commercial activated carbon with metal
content up to 10 wt% and initial average sizes of = 1 nm into small clusters and eventually single atoms.
Avoidance of nanoparticle surface overchlorination, which hinders C,H, adsorption, is identified as key
for the redispersion process, as demonstrated by the inefficacy of both C;H,—HCl cofeeding and inverse
sequence (i.e., HCL first) treatments. Precise size control (+0.1 nm) is enabled by regulating the number
of C,H,—HCl cycles. Detailed characterisation by X-ray absorption spectroscopy, electron paramagnetic

resonance and time-resolved mass spectrometry reveals that the redispersion occurs via a layer-by-layer
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Accepted 21st November 2021 mechanism. Specifically, the migration of surface chlorinated metal species to the carbon support is

induced by the C,H, treatment, depleting accessible surface Cl atoms, while the subsequent HCl
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1. Introduction

Commercial heterogeneous catalysts frequently consist of sup-
ported highly dispersed metal species, targeting the maximal
utilisation of the active component.* Aiming at full participation
of metal nuclei in the catalytic cycle, research efforts have been
directed towards low-nuclearity species, ranging from sup-
ported clusters of at most a few tens of atoms to single-atom
catalysts (SACs).> Nanoscale engineering at the atomic level
has demonstrated that the addition or removal of metal atoms
to the active ensembles leads to distinct electronic properties
and non-linear variation of reactivity patterns, often decisive to
fulfil the catalytic cycle of the targeted application.>® However,
the exploitation of the unique reactivity of low-nuclearity cata-
lysts in industrial practice calls for the development of scalable
synthetic methods with control over speciation and nuclearity
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treatment rechlorinates the cluster surface. The strategy paves the way for the generation of high-
density metal sites with tuneable nuclearity for tailored applications.

in the subnanometre regime. To this end, a number of strate-
gies has been developed for supported clusters with controlled
nuclearity including selected-precursor deposition,*® support
engineering,” wet chemical reduction and dendrimer encap-
sulation.™ Nevertheless, these methods face several challenges
to avoid formation of large clusters and nanoparticles (NPs),
thermodynamically favoured over low-nuclearity species, at
high metal loadings, which are necessary to achieve
industrially-suitable density of active sites.> Recently, remark-
able progress has been achieved for the generation of high-
loading single-atom catalysts (SACs). In particular, research
efforts have been directed towards carbon supports, owing to
their well-known ability to stabilise metal sites and tune their
coordination environment.'” Pioneering studies have reported
advanced synthetic methods to stabilise isolated atoms with
high metal content either (i) during the synthesis of the
heteroatom-doped carbon supports via pyrolysis of organic
precursors (10-16 wt%)* or functionalised graphene quantum
dots (40 wt%),"* or (ii) by wet chemistry methods exploiting
existing hosts (18 wt%).** These strategies rely on generating
suitable anchoring sites via the introduction of heteroatoms,
defects and/or vacancies, but their applicability has not been
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demonstrated on practical supports,*® which would be highly
desirable to expand their versatility.

Redispersion methods of metal NPs on practical supports
constitute a compelling alternative, simultaneously offering
a potential route to precisely tune metal species nuclearity in
the subnanometre regime until full atomic dispersion is ach-
ieved."” Several studies have demonstrated the efficacy of
halogen-mediated strategies, namely chlorination, oxy-
chlorination and halohydrocarbon-mediated treatments,
generating MO,CL, or MCI, species that redisperse via interac-
tion with the support.’ State-of-the-art studies have reported
encouraging results on the efficacy of these strategies on metal
loadings up to 5 wt% by synergistically coupling halohy-
drocarbons with compounds presenting lone pair electrons
(e.g., CO, NO or O,), promoting the redispersion of the metal
clusters by weakening the surface atom bonds to the cluster
bulk via electron transfer.’*** These findings hold promise for
exciting prospects, calling for the exploration of other classes of
promoters for halogen-mediated strategies, among which
mildly-reducing compounds emerge as potentially effective
candidates to cleave bonds in metal clusters.” To this end,
a promising pair may be identified in HCl and C,H,, on the
basis of literature-reported Ru NPs supported on N-doped
carbon that were atomically redispersed under C,H, hydro-
chlorination conditions.”® Nevertheless, in that case competi-
tive particle agglomeration was observed, resulting in lack of
control over the redispersion process. To date, this remains
a critical challenge that, if resolved, could pave the way towards
a scalable strategy for the generation of high loading metal
catalysts on commercial supports with tuneable nuclearity.

Herein, we present a scalable redispersion strategy, con-
sisting of sequential C,H, and HCI treatments, to synthesise Ru,
Ir and Rh catalysts with metal loading up to 10 wt% on N-doped
and commercial activated carbons with controlled metal
nuclearity in the subnanometre regime down to atomic
dispersion. Fine control over the metal species nuclearity is
enabled by regulation of the number of C,H,-HCI cycles. The
inefficacy of both the C,H,-HCI cofeeding and inverse sequence
(i.e., HCI first) approaches demonstrates the beneficial impact
of avoiding NP surface overchlorination, which prevents the
adsorption of C,H,. By combination of microscopic, spectro-
scopic and spectrometric analyses, the redispersion mechanism
is revealed to be a layer-by-layer process in which C,H, prompts
the migration of chlorinated metal species from the nano-
particle surface onto local defects in the carbon support, while
HCI chlorinates the newly exposed metal atoms. This work
presents a potentially industrially-amenable route to generate
carbon-supported metal species with tuneable nuclearity for
tailored catalytic applications.

2. Experimental
2.1 Metal NP synthesis

Commercial activated carbon (AC, Norit ROX 0.8) was ground
and sieved (particle size 0.4-0.6 mm). The N-doped carbon
support (NC) was prepared in a two-step synthesis, consisting of
an oxidative polymerisation of aniline and a subsequent
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carbonisation step.>* Aniline (50 mmol, Acros, 99.5%) was dis-
solved in deionised water (40 cm®, pH 0.4; adjusted by hydro-
chloric acid, 1.25 M, Sigma Aldrich, >37%) at room
temperature, cooled to 277 K, and subsequently added to
a precooled solution (277 K) of ammonium persulfate
(50 mmol, Acros, 98%) in deionised water (20 cm?®). After
vigorous manual stirring (5 min), the mixture was kept at room
temperature for 24 h to complete the polymerisation process.
The formed polyaniline was thoroughly washed with deionised
water for neutralisation, dried in vacuum (393 K, heating rate
5 K min~?, hold time 12 h), and afterwards treated at 1073 K
(heating rate 5 K min~ ", hold time 1 h, static N,). The obtained
N-doped carbon, having a N content of 9.7 wt% and a total
surface area of Sgpr = 517 m”> g~ ', was ground and sieved
(particle size 0.4-0.6 mm). All metal-based catalysts were
prepared via an incipient wetness impregnation method with
a nominal metal loading of 10 wt%. The desired metal
precursor, RuCl;-xH,0O (ABCR, 99.9%, 40.0 wt% Ru),
IrCl;-xH,0 (ABCR, 99.9%, 65 wt% Ir) or RhCl;-xH,O
(Acros Organics, 99.9%, 38 wt% Rh), was dissolved in water
(1.5 em® g7") and the obtained solution was added dropwise to
the selected carbon carrier (AC or NC). Subsequently, the
samples were dried (473 K, heating rate 5 K min~", hold time
12 h, static air) to yield the nanoparticle catalysts, denoted as
10M/AC or 10M/NC. The prereducing treatment was carried out
at 573 K (heating rate 10 K min ", hold time 3 h), flowing pure
H, (PanGas, purity 5.0) at a total volumetric flow of Fy = 40 cm®
STP min .

2.2 Redispersion treatment

The redispersion treatment was conducted at atmospheric
pressure in a continuous-flow fixed-bed micro-reactor (Scheme
S1t). The gases C,H, (PanGas, purity 2.6), HCl (Air Liquide,
purity 2.8, anhydrous), Ar (PanGas, purity 5.0, internal stan-
dard) and He (PanGas, purity 5.0, carrier gas), were fed using
digital mass-flow controllers (Bronkhorst) to the mixing unit,
equipped with a pressure indicator. A quartz micro-reactor
(10 mm inner diameter) was loaded with the catalyst (W, =
0.1 g, particle size 0.4-0.6 mm) and placed in a homemade
electrical oven. A K-type thermocouple fixed in a coaxial quartz
thermowell with the tip positioned in the centre of the catalyst
bed was used to control the temperature during the redis-
persion treatment. Prior to treatment, the catalyst was heated in
a He flow to the desired temperature (T = 473 K) and allowed to
stabilise for at least 30 min before the gas mixture was fed (total
volumetric flow, Fr = 15 cm® STP min~"). The sequence for each
cycle consisted of (i) exposure to C,H, atmosphere for 1 h
(40 vol% C,H,, 44 vol% He and 16 vol% Ar), (ii) He flushing for
5 min (84 vol% He and 16 vol% Ar), (iii) exposure to HCI
atmosphere for 1 h (44 vol% HCI, 40 vol% He and 16 vol% Ar)
and (iv) He flushing for 5 min (84 vol% He and 16 vol% Ar). The
treated samples are denoted as 10M/C X where M: metal, C:
“AC” or “NC”, X: # of C,H,-HClI treatment cycles and y: “a” if the
cycle terminated after the C,H, treatment. Time-resolved mass
spectroscopy (MS) analysis of the reactor outlet stream was
performed with a Pfeiffer Vacuum Thermo-Star GDS 320 T1 MS

This journal is © The Royal Society of Chemistry 2022
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to monitor the relative concentration of produced vinyl chloride
(C,H;Cl, VCM) with m/z 62 and m/z 64. In line with the natural
isotopic abundance of **Cl and *’Cl, m/z 62 and m/z 64 were
detected in a characteristic 3 : 1 ratio.

2.3 Characterisation

Inductively coupled plasma optical emission spectrometry (ICP-
OES) was conducted using a Horiba Ultra 2 instrument equip-
ped with photomultiplier tube detection. The solids were dis-
solved in a 3 : 1-mixture of HNO; and H,0O, under sonication
until the absence of visible solids. Powder X-ray diffraction
(XRD) was measured using a PANalytical X'Pert PRO-MPD
diffractometer with Cu-Ka radiation (1 = 1.54060 A). The data
was recorded in the 10-70° 26 range with an angular step size of
0.017° and a counting time of 0.26 s per step. Scanning trans-
mission electron microscopy (STEM) with a high-angle annular
dark-field (HAADF) detector was performed on an aberration-
corrected HD2700CS (Hitachi) microscope operated at 200 kV.
High-resolution transmission electron microscopy (HRTEM)
was performed on a double-corrected microscope JEM-
ARM300F (GrandARM, JEOL), which was operated at an accel-
eration potential of U, = 300 kV (electron gun: cold-field
emitter; AE = 0.35 eV). Static volumetric chemisorption of
acetylene was performed in a Micromeritics 3Flex Chemi
instrument at 303 K. Energy-dispersive X-ray spectroscopy was
conducted in a Talos F200X instrument with an FEI SuperX
detector at 200 kV. Image frame times ranged from 20 to 40 ps
(512 x 512 px). Samples were prepared by dipping the copper
grid supporting a holey carbon foil in a suspension of the solid
in ethanol and drying in air. The Ir 4f and Rh 3d X-ray photo-
electron spectroscopy (XPS) spectra of the Ir and Rh samples
were acquired on a Physical Electronics Quantera SXM instru-
ment using monochromatic Al-Ka radiation, generated from an
electron beam operated at 15 kV, and equipped with a hemi-
spherical capacitor electron-energy analyser. The samples were
analysed at an electron take-off angle of 45° and a constant
analyser pass energy of 55 eV. Owing the Ru 3d core levels
superimposing the C 1s core level, the Ru speciation was ana-
lysed based on Ru 3p XPS spectra.”* The Ru 3p XPS spectra of the
Ru samples were acquired on a Physical Electronics Quantum
2000 instrument, where the samples were analysed at an elec-
tron take-off angle of 45° and a constant analyser pass energy of
46.95 eV. Both spectrometers were calibrated for the Au 4f;),
signal at 84.0 & 0.1 eV. The Ru 3p and Rh 3d XPS spectra were
fitted by mixed Gaussian-Lorentzian and the Ir 4f XPS spectra
were fitted by Functional Lorentzian component profiles after
Shirley background subtraction. The selected peak positions are
based on literature data and fixed with an error of £0.2 eV. The
detailed fitting parameters are given in the ESI.} The elemental
concentrations were quantified based on the measured photo-
electron peak areas (C 1s, N 1s, O 1s, Cl 2p, Ru 3p, Ir 4f and Rh
3d), using the respective photoionisation cross sections as
relative sensitivity factors.*® X-ray absorption fine structure
(XAFS) measurements were carried out at the SuperXAS beam-
line of the Swiss Light Source.”” The incident photon beam was
provided by a 2.9 T superbend magnet and subsequently

This journal is © The Royal Society of Chemistry 2022
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collimated using a Pt-coating (for the Ru K edge). The rejection
of higher harmonics and focusing were achieved with a Rh-
coating (for Ir L; edge) and a Pt-coating (for Ru K and Rh K
edges), respectively. The beamline was calibrated using the
respective metal foils. The sample area illuminated by the X-ray
beam was 0.5 mm x 0.2 mm. All spectra were recorded in
transmission mode at room temperature. The extended X-ray
absorption fine structure (EXAFS) spectra were acquired with
a 1 Hz frequency (0.5 s per spectrum) and then averaged over
5 min. The resulting raw data were processed using the Pro-
QEXAFS software,”® and the EXAFS spectra were analysed using
the Demeter software.” Hydrogen temperature-programmed
reduction analyses (H,-TPR) were performed in a Micro-
meritics Autochem II 2920 analyser equipped with a thermal
conductivity detector (TCD). Peaks in the TCD signal are
assigned based on reference values in the literature.®>*
Continuous wave (CW) electron paramagnetic resonance (EPR)
spectroscopy experiments were performed at 10 K on a Bruker
Elexsys E500 spectrometer equipped with an Oxford helium
(ESR900) cryostat operating at X-band frequencies (=9.4 GHz)
using a ER4122SHQE Bruker EPR Resonator. All CW EPR
spectra were acquired (spectrometer settings: microwave
frequency = 9.4 GHz, center field = 330 mT, sweep width = 200
mT, modulation frequency = 100 kHz, microwave power = 207
uW, power attenuation = 30 dB, conversion time = 327.68 ms,
time constant = 81.92 ms), while all measured g-factors were
offset-corrected against a known standard (i.e., free radical 1,1-
diphenyl-2-picrylhydrazyl). The EPR spectra were simulated on
Matlab using the Easyspin software.*> The positions of spectral
features in EPR spectra are defined by the principal values of the
g-tensor: a single g-factor for the isotropic case, g, g, and g,
for the orthorhombic case, gy and g, for the axial case.
Specifically, for a low spin d5 ion in a tetragonally distorted site
(like signal Ru-Cl), it is possible to quantitatively relate the
principal values of the g-factor with crystal field parameters
through the following equations:**

gu = g@ — b%) — kb’ 1)
g1 = g + 2V2kab (2)
] i
21
a:% T 29 = (3)
| (rrd)
] B .
b:%lf ! 29 . @)
L (rd)
"= )

where g.: the free electron g-factor (g. = 2.0023), k: the orbital
reduction factor, ¢: is the splitting of the t,4(0) and tyg(£1)
energy levels induced by the tetragonal crystal field and &: the
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one-electron spin-orbit coupling constant, which can be
assumed independent on structural changes in the Ru™
ronment. 7 is therefore directly proportional to the crystal field
splitting. The increase of n with the number of C,H,-HCI
treatment cycles agrees with our interpretation as discussed in
the results and discussion section (vide infra, Section 3.2.1). The
best fit was obtained for k = 1.

envi-

3. Results and discussion
3.1 Controlled redispersion of carbon-supported Ru NPs

3.1.1 Development of the redispersion strategy. Carbon-
supported Ru NPs were first synthesised by simple incipient
wetness impregnation of AC and NC with aqueous solutions of
RuCl;-xH,0 (nominal metal loading of 10 wt% confirmed by
ICP-OES, Table S1f) and thermally activated at 473 K (see
experimental section, sample code: 10Ru/AC and 10Ru/NC,
respectively). In an effort to overcome the current limitations
in the effectiveness of halogen-mediated redispersion methods,
a potential solution may consist in promoting the effect of the
selected halogen compound with a mildly-reducing agent.'® To
this end, C,H, and HCI were identified as a promising pair,
prompted by the previously-reported redispersion of NC-
supported Ru NPs into single atoms induced by simultaneous
exposure to both gases (cofeeding) that is, yet, ineffective for Ru
NPs supported on commercial AC due to the weaker anchoring
properties of O-functionalities compared to N-functionalities.?*
However, owing to lack of control over the redispersion driving
force, the cofeeding approach could not lead to atomic disper-
sion of NC-supported Ru NPs upon increasing the metal content
(from 5 wt% to 10 wt%, Fig. 1 and S1f), even with prolonged
treatment durations (from 12 to 50 h, Fig. S1t). To overcome
this limitation, a new approach was explored aiming to (i)
decouple, (ii) control and (iii) maximise the effect of each gas in
the process. Therefore, the Ru NPs were sequentially exposed to
HCIl and C,H, atmospheres and vice versa. The treatment
conditions were selected to achieve equivalent exposure to each
molecule as experienced when C,H, and HCl were cofed. While
treatment with HCI first did not affect the size of the Ru NPs,
exposure to C,H, first resulted in partial redispersion. This
observation reveals the central role of avoiding competitive
adsorption of the two gases, which presumably leads to surface
overchlorination preventing adsorption of C,H,,* in gaining
control over the process. Furthermore, the partial redispersion
observed in the latter case hints at a surface layer removal of Ru
species, suggesting that multiple C,H,-HCI treatment cycles
may be required to fully disperse NPs into isolated atoms. On
the basis of these findings, a new strategy was developed, con-
sisting of cyclic exposure of Ru NPs to alternating (1 h) C,H, and
HCI atmospheres. Strikingly, not only does this strategy achieve
atomic dispersion on both NC and commercial AC, as visualised
in HAADF-STEM analysis (Fig. 2, S1 and S21), but it also enables
gradual and controlled NP redispersion, as reflected in the
evaluation of the average cluster size at different stages of the
treatment (Fig. 2, sample code: 10M/C-X where M: metal, C:
“AC” or “NC”, X: # of C,H,-HCl treatment cycles and y: “a” if the
cycle terminated after the C,H, treatment). In stark contrast to
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Fig. 1 HAADF-STEM images of 10Ru/NC, in fresh and treated forms,
indicating the average metal particle size (dp). The graphical repre-
sentation of the different samples (colour code: purple = Ru, red = O
and green = Cl) show the effect of different redispersion treatments:
C,H,—HCl cofeeding for 12 h (1ORu/NC-12h, ineffective in the redis-
persion of the Ru NPs) and sequential HCl and C,H, atmosphere for
6 h each (10Ru/NC-HCI-C,H,) likely resulting in overchlorinated Ru
NPs as well as sequential C,H, and HCl atmospheres for 6 h each
(10RU/NC-C,H,—HCl) leading to partial redispersion. Treatment
conditions: W = 0.1g, Fr =15 cm® STP min~%, T = 473 K, cofeeding:
40 vol% CoH,, 44 vol%s HCL, 16 vol% Ar, CoH, exposure: 40 vol% CoHo,
44 vol% He, 16 vol% Ar and HCl exposure: 44 vol% HCL, 40 vol% He,
16 vol% Ar.

the previously-reported methods, which could modulate the
reduction in the NP size in the nanometre regime,* the pre-
sented strategy enables finely-resolved control over the redis-
persion process to the subnanometre regime, tuning the metal
nuclearity by regulating the number of C,H,-HCI treatment
cycles.

3.1.2 Role of Cl surface atoms of fresh nanoparticles in the
redispersion process. Owing to the small size of Ru clusters,
below the resolution of XRD (=<1 nm, Fig. S3}), their structural
characterisation mainly relies on EXAFS (Fig. 3a and S4, Tables
S2 and S3t). Interestingly, no pronounced metallic contribu-
tions were observed, suggesting a metal oxychloride architec-
ture, RuO,Cl,, where Ru atoms are bridged by O atoms. To
explore the role of Cl ligands in the redispersion process, the Ru
NPs were prereduced under a H, atmosphere, 10Ru/AC-R,
keeping the temperature lower than 673 K to remove surface
Cl atoms while preventing RuO, reduction to metallic Ru.**
Accordingly, the chlorination degree was markedly reduced
(Ru-Cl CN = 2.0 and CN = 0.9 in 10Ru/AC and 10Ru/AC-R,
respectively) and the sample acquired an enhanced metallic
character CN = 0.2 and CN = 1.2 in 10Ru/AC and 10Ru/AC-R,
respectively). Owing to the limitation of EXAFS in

This journal is © The Royal Society of Chemistry 2022


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ta09238c

Open Access Article. Published on 22 November 2021. Downloaded on 2/6/2026 5:20:23 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

10RWAC 10RW/AC-2]

&*

= 1nm

Nanoparticles

View Article Online

Journal of Materials Chemistry A

10Ru/AC-4

10RU/AC-6

0.8 1
O O
E 0.6 .
¢ 0

S C,H, HCI O

»OY W@ O
02 T T T T T T T T . T = T

0 1 3 4 5 6
# cycles / -

Fig. 2 Average metal particle size (d,) of 10Ru/AC, in fresh and treated forms, as a function of the number of C;H,—HCl treatment cycles and
HAADF-STEM images of selected samples, visualising the control over nuclearity enabled by the redispersion treatment. One cycle consists of
exposure to C,H, atmosphere followed by exposure to HCl atmosphere, for 1 h each. Treatment conditions: Wea = 0.1 g, Fr =15 cm® STP min?,
T = 473 K, CoH, treatment: 40 vol% CoH,, 44 vol% He, 16 vol%, Ar, HCl treatment: 44 vol% HCL, 40 vol% He, 16 vol% Ar.

distinguishing between Ru-O and Ru-C bonds, more accurate
information on the impact of the prereducing treatment on
RuO, species was acquired by H,-TPR analysis of 10Ru/AC and
10Ru/AC-R, showing that RuO, species were substantially
preserved (Fig. 3d). Notably, the removal of surface Cl atoms
inhibited the NP redispersion (Fig. S57), indicating their pivotal
role in the process by forming mobile RuO,Cl, species.'**
3.1.3 Evolution of the metal nuclearity. Insights on the
generated cluster speciation were gained by means of XPS and
XAS analyses, conducted on 10Ru/AC samples after consecutive
C,H,-HCI treatment cycles. In line with the XANES results
(Fig. S6t), the Ru 3p XPS spectra progressively assume a more
oxidised character (Fig. 3b, Table S4t). Owing to the oxychloride
architecture of the Ru clusters, where Ru-Ru interactions are
weak, information on their nuclearity from EXAFS relies on
other coordination shells. Remarkably, two distinct Ru-O/C
fingerprints are identified upon fitting the EXAFS spectra of
10Ru/AC in both fresh and treated forms (Fig. S7, Table S27): (i)
short-bonding Ru-0/C contributions at R = 1.83 A ascribable to
RuO,Cl, species in the clusters,*” and (ii) long-bonding Ru-0/C
contributions at R = 2.2 A likely reflecting metal-support
interactions, possibly of carbide nature.®® The evolution of the
metal nuclearity over the course of the treatment thus manifests

This journal is © The Royal Society of Chemistry 2022

in progressively decreasing short-bonding Ru-O/C interactions
(CN = 0.9 and CN = 0.5 in 10Ru/AC and 10Ru/AC-6, respec-
tively), contrasted by more prominent long-bonding Ru-O/C
interactions (CN = 2.4 and CN = 4.7 in 10Ru/AC and 10Ru/
AC-6, respectively). Additionally, in agreement with XPS anal-
ysis and the weaker adsorption of HCI on Ru single atoms
compared to NPs,* the redispersed Ru species present a lesser
chlorinated character (Ru-Cl CN = 2.0 and CN = 1.5 in 10Ru/AC
and 10Ru/AC-6, respectively).

3.2 Redispersion mechanism

3.2.1 Contributions of C,H, and HCI to the redispersion
process. To probe the role of each gas in the redispersion
process, a comparative analysis was conducted between pro-
longed exposure (12 h) of 10Ru/AC solely to C,H, and HCI.
Remarkably, HAADF-STEM analysis revealed that only C,H,
promotes the process, leading to partial redispersion (=0.4
nm), while exposure to HCI leaves the NP size unaltered
(Fig. S51). However, it should be noted that atomic dispersion
could not be achieved with sole C,H,, likely limited from
depletion of the originally present surface Cl atoms. Consis-
tently, analysis of the Ru K edge EXAFS spectra show stronger
long-bonding Ru-O/C interactions in 10Ru/AC-1a compared to
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Fig. 3 Characterisation of 10Ru/AC, in fresh and treated forms, resolving the roles of C,H, and HCl in the redispersion process. (a) Ru K edge

spectra showing progressively stronger Ru—O/C and weaker Ru-Cl

oxidised character and (c) EPR spectra exhibiting (i) three different contributions to the Ru

interactions, (b) Ru 3p XPS spectra evidencing increasingly prominent
" signal, showing increasing anisotropy and weaker

Ru""-Ru'" interactions over the course of the treatment, as well as (i) a graphite signal evidencing a progressively increase in local defect on
graphitic carbon phases in the support. (d) H,-TPR profiles of 10Ru/AC and 10Ru/AC-R, showing significant loss in the Ru-Cl peak upon
reduction, in line with the metallic Ru character detected in both the Ru K edge and Ru 3p XPS spectra of the reduced sample.

10Ru/AC (CN = 4.1 and CN = 2.4, respectively), complemented
by weaker short-bonding ones (CN = 0.5 and CN = 0.9,
respectively) and a simultaneous loss in Ru-Cl coordination
(CN = 1.4 and CN = 2.0, respectively), which is partially recov-
ered upon exposure to HCI (CN = 1.9 in 10Ru/AC-1) while both
the long-bonding and the short-bonding Ru-O/C interactions
remain substantially unaffected (CN = 4.1 and CN = 0.5 in
10Ru/AC-1a and CN = 4.2 and CN = 0.6 in 10Ru/AC-1, respec-
tively). Accordingly, comparison of the Ru 3p XPS spectra of
10Ru/AC-1 and 10Ru/AC-1a, as well as of 10Ru/AC-3 and 10Ru/
AC-4a (i.e., at later stages of the redispersion treatment), indi-
cates formation of new chlorinated Ru species on the surface of
the metal cluster occurring via oxidative Cl-addition under HCI
atmosphere. Conversely, comparison of the Ru 3p XPS spectra
of 10Ru/AC-1a and 10Ru/AC, as well as of 10Ru/AC-4a and 10Ru/
AC-3, shows a mildly reducing effect of C,H,, mainly resulting
in the removal of the surface Cl atoms in the metal cluster.
These results were further corroborated by EPR analysis,
simultaneously providing additional insights on the progres-
sively stronger interaction of the Ru species with the support.
Owing to the non-Kramers nature of Ru® and Ru"" species, EPR
only detects Ru™ species, presenting a low-spin d° configura-
tion that gives rise to one unpaired electron (s = 1/2). These can
be fitted by a weighted sum of four contributions (Fig. 3c and

5958 | J Mater. Chem. A, 2022, 10, 5953-5961

S8, Table S57): (i) a broad anisotropic signal with axial g-factor
ascribed to Ru™" mainly coordinated by Cl (weak-field coordi-
nating atoms) in an tetragonally distorted geometry (g, = 2.265
and gy; = 1.95, Ru™-Cl signal), (ii) another anisotropic signal
with rhombic g-factor attributed to Ru™ mainly coordinated by
O and C (strong-field coordinating atoms) (g, = 2.08, gy, = 1.99,
2z = 1.865, Ru™"-O/C signal), (iii) a very broad signal, assigned
to Ru"™ ions interacting in relatively large clusters (g = 2.15,
Ru™-Ru" signal), as well as (iv) an additional sharp signal with
isotropic g-factor, typical of delocalised electrons in graphitic
carbon structures (g = 2.0048, graphitic carbon signal).***® In
agreement with EXAFS and XPS analyses, the intensity of the
Ru"™-Cl signal in 10Ru/AC dramatically decreases upon expo-
sure to C,H,, 10Ru/AC-1a, regaining prominence upon exposure
to HC, 10Ru/AC-1. Compared to 10Ru/AC, the Ru™-Cl signal in
10Ru/AC-1 is stronger, evidencing chlorination of an increased
number of metal sites resulting from the higher dispersion
degree and lower anisotropy, reflected by a shift towards higher
magnetic field and indicative of a lower chlorination degree in
the redispersed metal sites. After the first cycle, the cluster
anisotropy gradually decreases over consecutive treatments,
resulting in a stronger crystal field induced by higher coordi-
nation with the O or C functionalities in the support (ie.,
increasing 7, see experimental section, Fig. S9at). The signal

This journal is © The Royal Society of Chemistry 2022
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intensity progressively reduces in favour of increasing intensity
of the Ru™-0/C signal (Fig. S9b7). In line with this, Ru™"-Ru™
interactions are no longer detected in the spectra of either
10Ru/AC-3 or 10RuAC-6. Intriguingly, the stronger interaction
of the Ru species with the support also reflects in the more
prominent graphitic carbon signal, ascribed to local defects in
graphitic carbon structures that originate from exposure to
C,H, and presumably serve as anchoring sites for the mobile
RuO,Cl, species (Fig. 3d and S9c{). Owing to the known ability
of Ru to form graphitic carbon layers,” HRTEM analysis was
conducted to verify the accessibility of the metal sites, but no
evidence of encapsulation of Ru clusters is visible (Fig. S107),
which is consistent with the similar surface metal content in
10Ru/AC and 10Ru/AC-6 detected in XPS (Table S6t). Notably,
the EPR spectra of 10Ru/AC-R, prereduced under a H, atmo-
sphere, and 10Ru/AC-R-6, where the redispersion is inhibited,
exhibit similar graphitic carbon signals (Fig. S8f), further
corroborating the important role of the local defects in the
process.

3.2.2 C,H, adsorption as descriptor for the redispersion
process. Consistent with the reported superior catalytic activity
of RuO,Cl, NPs compared to Ru single atoms in the C,H,
hydrochlorination reaction for VCM production,” the C,H,
adsorption capacity, identified as a key descriptor for the
performance,** decreases with increasing Ru dispersion (also

a b
C,H,
100 A
O
:I 1 T T T T L
¥ 2]
= © %
£ @) =
°
= Q
TN n
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) £
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14 0,
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Fig. 4 (a) CoH, adsorption capacity determined by chemisorption

analysis of 10Ru/AC, fresh and after consecutive C,H,—HCl treatment
cycles, and (b) time-resolved MS product analysis, showing the
evolution of peaks associated to C,H,, VCM and O, during the CoH,—
HCl treatment cycles. The decreasing trend in the C,H, adsorption
capacity of the samples agrees with the C,H; signal in the product
analysis, exhibiting progressively shorter time required for stabilisation
(as shown in the inset).
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reflected in decreasing VCM evolution during the treatment,
vide infra, Fig. 4). Accordingly, the C,H, adsorption capacity
only marginally increases upon exposure to HCl, which leaves
the cluster size unaltered, presumably due to the desorption of
some residual acetylene molecules. To explore the dynamics of
the redispersion process, the reactor outlet stream was analysed
by time-resolved MS. During the C,H, treatments, the C,H,
signal rapidly rises and gradually stabilises, indicating initial
adsorption and subsequent conversion into VCM. Intriguingly,
the sharp maximum in the VCM signal is followed by a delayed,
broader O, signal whose maximum occurs after VCM is almost
fully depleted. Following the O, evolution, no more VCM is
detected, in line with the steady-state C,H, signal, clearly
indicating complete exhaustion of the accessible Cl atoms
initially present on the cluster surface, which will require
exposure to HCI for rechlorination. These findings enable
delineation of a layer-by-layer redispersion mechanism, con-
sisting of the following steps: (i) the C,H,-induced removal of
surface Cl atoms via VCM evolution, (ii) the generation of
undercoordinated RuO,Cl, species migrating from the original
Ru cluster onto defects in the carbon support, possibly
promoted by the exothermicity of the C,H, hydrochlorination
reaction, (iii) the coupling of undercoordinated surface O atoms
presumably originating from RuO,Cl, species detachment
(leading to the formation and evolution of O,) and (iv) the
rechlorination of cluster surface upon exposure to HCI (Fig. 5).
The high aptitude of RuO, species to be chlorinated agrees with
previous density functional theory simulations on carbon-
supported RuO, NPs.** Furthermore, adsorption energies of
C,H,, —189 k] mol™", and HCI, —255 kJ mol ", computed by
density functional theory,* explain the importance of avoiding
competitive adsorption in the process. Specifically, the domi-
nant adsorption properties of HCI over C,H, suggest that in the
presence of both gases the evolution of VCM would be followed
by immediate rechlorination, inhibiting the redispersion
process by hindering the adsorption of C,H, and thus the
formation of the mobile RuO,Cl, species.

3.3 Extrapolation to other metals

Encouraged by the controllability and scalability, we explored
the effectiveness of the redispersion strategy for supported Ir
and Rh catalysts. Remarkably, not only was atomic dispersion
achieved in both cases at 10 wt% loading, but the same fine
control over nuclearity was enabled by regulation of the number
of C,H,-HClI treatment cycles (Fig. 6, S11 and S127). As for the
Ru NP catalysts, no prominent metallic character was observed
for either Ir or Rh NPs in either XPS or XAS (Fig. S13 and S14,
Tables S3, S7 and S87), likely due to the high affinity of these
metals for C1 (M-Cl CN = 5.1 and CN = 4.4 in 10Ir/AC and 10Rh/
AC, respectively). However, in contrast to 10Ru/AC, no short-
bonding M-O/C contributions could be identified, suggesting
a metal chloride architecture and further corroborating the key
role of mobile metal chloride species in the redispersion
process. In line with the XPS analysis, showing dechlorination
and a more oxidic character (Fig. S13, Tables S7 and S8t), the
metal-support interaction with the support becomes more
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Fig. 5 Schematic representation of the C;H,-induced redispersion mechanism of (a) RuO,Cl, NPs supported on carbon. (b) C;H; reduces the
NP surface, evolving VCM, depleting accessible surface Cl atoms, and O, while promoting Ru redispersion into smaller clusters or atoms. (c)
Exposure to HCl leads to oxidative Cl addition, rechlorinating the cluster surface. (d) The alternating treatment is effective until full atomic
dispersion is achieved. Colour code: purple = Ru, red = O, green = C|, grey = C and white = H.

10Ir/AC 10Ir/AC=-6

10Rh/AC-6

Fig. 6 Successful extrapolation of the redispersion treatment to
supported Ir and Rh catalysts. HAADF-STEM images of 10Ir/AC and
10RN/AC, in fresh and treated forms, together with average particle
size (d,,). Atomic dispersion is visualised in 10Ir/AC-6 and 10Rh/AC-6.

prominent in the atomically redispersed species (Ir-O/C CN =
0.7 and CN = 1.6 in 10Ir/AC and 10Ir/AC-6, respectively, and Rh-
O/C CN = 2.5 and CN = 4.0 in 10Rh/AC and 10Rh/AC-6,
respectively), while the M-Cl interactions decrease (Ir-Cl CN
= 3.6 in 10Ir/AC-6 and Rh-Cl CN = 1.6 in 10Rh/AC-6). These
results hold promise for the general applicability of the redis-
persion strategy to a broad range of metals.

4. Conclusions and outlook

In summary, our study demonstrated a redispersion strategy,
comprising alternating C,H, and HCI treatments, to synthesise

5960 | J Mater. Chem. A, 2022, 10, 5953-5961

high-loading (10 wt%) Ru, Ir and Rh catalysts on carbon
supports with controlled metal nuclearity in the subnanometre
regime. Precise size control (£0.1 nm) is enabled by regulating
the number of C,H,-HCI cycles. The avoidance of NP surface
overchlorination, which hinders C,H, adsorption, is identified
as key for the remarkable efficacy of the C,H,-HCI alternating
strategy, as demonstrated by inhibition of the redispersion
process resulting from both the C,H,-HCI cofeeding and
inverse sequence (i.e., HCI first) approaches. Detailed charac-
terisation, including XAS, EPR and time-resolved MS analyses
revealed that the metal NP redispersion follows a layer-by-layer
process in which C,H, promotes the migration of surface
MO,Cl,/MCl, species to the carbon support while HCI regener-
ates them via chlorination of the newly-formed surface MO,/M
species.

For future endeavours, the C,H,-HCl alternating redis-
persion approach offers a compelling synthetic route to finely
tune metal nuclearity at high loadings and on practical
supports, one of the most challenging aspects in nanoscale
engineering of catalytic materials. Such control will be central to
(i) derive structure-performance relationships at high density of
active sites, where metal site proximity may give rise to
enhanced catalytic performance,” and (ii) implement the
acquired knowledge in the design of supported metal catalysts
with defined nuclearity for large-scale, targeted applications. To
this end, the modulation of the coordination environment of
the redispersed metal species constitutes an additional
synthetic parameter that will require dedicated studies for
optimal catalytic behaviour. Finally, the scale-up amenability of
the presented redispersion protocol holds promise for high
throughout synthesis, to ultimately produce commercial sup-
ported low-nuclearity metal catalysts.
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