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Tracking Janus microswimmers in 3D with
machine learning†‡

Maximilian Robert Bailey, * Fabio Grillo and Lucio Isa *

Advancements in artificial active matter systems heavily rely on our ability to characterise their motion. Yet, the

most widely used tool to analyse the latter is standard wide-field microscopy, which is largely limited to the

study of two-dimensional motion. In contrast, real-world applications often require the navigation of complex

three-dimensional environments. Here, we present a Machine Learning (ML) approach to track Janus

microswimmers in three dimensions, using Z-stacks as labelled training data. We demonstrate several examples

of ML algorithms using freely available and well-documented software, and find that an ensemble Decision

Tree-based model (Extremely Randomised Decision Trees) performs the best at tracking the particles over a

volume spanning more than 40 mm. With this model, we are able to localise Janus particles with a significant

optical asymmetry from standard wide-field microscopy images, bypassing the need for specialised equipment

and expertise such as that required for digital holographic microscopy. We expect that ML algorithms will

become increasingly prevalent by necessity in the study of active matter systems, and encourage

experimentalists to take advantage of this powerful tool to address the various challenges within the field.

Inspired by the collective phenomena that emerge in biological
systems across a range of length scales, active matter systems –
agents that transduce freely available energy into directed
motion1 – have been the subject of extensive research in soft
matter and statistical physics. In particular, the behaviour of
active materials at the microscale is of interest due to the
interplay between thermal fluctuations and the driving force
of motion. This driving force makes active matter systems
intrinsically out-of-equilibrium, and endows them with promis-
ing properties for applications, ranging from smart drug
delivery2 to water remediation.3

Perhaps the most popular model system to study the
dynamics of active matter are Janus microswimmers,4 which
are also arguably the simplest class of synthetic active agents.
These (typically micron-sized) particles possess patches with
different chemical or physical properties (e.g. catalytic activity)
that can generate asymmetric gradients around the particle
under certain experimental conditions, leading to motion by
self-phoresis.5–8 The dynamics of these Janus microswimmers
are typically confined to 2D because of their density and

interactions with the substrate, whether they move by self-
diffusiophoresis9 or self-dielectrophoresis.10 However, from an
applications perspective, the ability to navigate in 3D is highly
desirable.11 As such, there is a growing interest in the synthesis
of microswimmers that display 3D motion and in developing
greater understanding of their swimming behaviour.12–16

Unfortunately, tracking the motion of microswimmers in
the third dimension presents new experimental challenges that
must be overcome. Conventional light-microscopy techniques
are ill-suited to track the diffusion of micron-sized objects in
three dimensions, especially when the particles exhibit
enhanced mobility. A widespread approach to studying (fluor-
escent) colloids in 3D is confocal microscopy.17 This involves
scanning the volume of interest via a series of Z-stacks, using a
pinhole to exclude signal outside the imaged Z-slice. The
resultant intensity distributions of the fluorescent particles
are then used to obtain a 3D reconstruction from which the
particle centres can be identified. This methodology, although
accurate, is limited in temporal resolution by the time taken
between subsequent Z stacks.18 In the case of active Janus
colloids, which can move several body-lengths per second, this
leads to a smearing of the traced particle and thus difficulties in
accurate centre finding. Furthermore, the surface patches of
Janus microswimmers, typically realized with thin metal films,
leads to an asymmetry in its optical properties, hindering the
proper reconstruction of the intensity distribution and thus
jeopardising the tracking.

To overcome these issues, Campbell et al. used the method
previously proposed by Spiedel et al. for passive particles to
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Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.
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track the vertical position of fluorescent gravitactic Janus
microswimmers from 2D microscopy images using the outer-
most radius of the concentric rings of the fluorescent particles
as they swim out of focus.19,20 Unlike confocal microscopy, this
method does not require a rigorous model and knowledge of
the optical properties of the microscope. A single Janus particle
was fixated in gellan gum, from which the ‘‘bright ring radius’’
of the fluorescent particle was extracted at different heights, to
which a calibration curve was fitted using a cubic polynomial.
The heights of the Janus microswimmers were then predicted
from the evolution of the bright ring radius of the fluorescent
Janus microswimmers taken from a single 2D plane. The
described method effectively extracted 3D trajectories from
2D videos using a fluorescent microscope and a basic piezo
Z-stage, allowing standard microscopy image acquisition con-
ditions. However, it is noteworthy that the radius of the bright
rings can be on the order of hundreds of pixels, and as the rings
cannot overlap, this limits 3D tracking to very dilute suspensions.
Zhang et al. proposed a similar approach to track thermally-
diffusing non-fluorescent particles by radially projecting the
diffraction pattern of a particle and comparing it to a reference
model obtained with a Z-stack.21 Least-squares fitting of the radial
profile is then used to determine the Z-height, which minimises the
difference between the radial projection of the imaged particle and
the reference model. This method is highly sensitive to asymmetries
in the particle, and therefore is not viable for a freely-rotating Janus
particle. Likewise, the detailed methodology presented by Kovari
et al., solving for the vertical position by minimising the difference
between the interpolated, continuous look up table (LUT) of radial
profiles taken with Z-stacks and the radial profile of the imaged
particle, relies on the Mie scattering of symmetric particles,22 and
therefore also cannot be applied effectively to microswimmers with
significant optical asymmetries.

To track non-fluorescent particles in 3D, digital holographic
microscopy has emerged as a powerful technique capable of
digitally reconstructing 3D images with holograms obtained
from the interference pattern between the sample and a refer-
ence laser beam.18 The methodology has been demonstrated to
track the motion of photo-gravitactic microswimmers in 3D,13

albeit those that principally swim directly upwards, which mini-
mises the extent of visible cap asymmetry. The optical asymmetry
of a Janus particle, and the particle-wise variations present in their
surface patches, would otherwise further complicate holographic
reconstruction.23 Midtvedt et al. used Machine Learning (ML)
U-Nets, a convolutional encoder–decoder neural network archi-
tecture, to interpret in-line holographic data obtained with
localization accuracies comparable in performance to off-axis
holographic microscopy.24 They were thus able to reduce the
computational cost of holographic microscopy-based 3D
tracking. Their DeepTrack 2.0 software provides a fascinating
test case for the applicability of ML to the 3D (and 2D) tracking
of particles. Despite this potential decrease in computational
cost, holographic microscopy still requires specialised imaging
configurations, limiting the general accessibility of this technique.
Furthermore, the U-Net is trained on simulated Mie scattering
spectra of spherical particles, which does not account for the

asymmetries present in Janus particles, which can have implications
for accuracy as discussed above. Therefore, a general approach
enabling the 3D tracking of spherical non-fluorescent microswim-
mers with asymmetries in their optical properties is still lacking.

For example, photocatalytic TiO2–SiO2 Janus microswimmers
synthesised in large quantities via Toposelective Nanoparticle
Attachment (TNA), were recently shown to possess unusual 3D
mobility, characterised by predominantly 2D motion inter-
dispersed with ballistic out-of-plane segments.25 Unsurprisingly,
the asymmetric optical properties from the TiO2 nanoparticle cap
introduced significant difficulties in accurate 3D tracking by
standard methods. Therefore, a simple approach using the
particle’s grayscale moment of inertia, which varied as a function
of its vertical position, was developed. Similar to the strategy in
ref. 20, an LUT of the microswimmers’ evolving moment of
inertia was extracted from a series of particle Z-stacks, to which
a cubic polynomial was fitted (see ref. 25 of ESI‡). However, the
over-reliance on a singular image property averaged over a few
particles is undesirable, and motivates a more robust approach to
the 3D tracking of non-fluorescent Janus microswimmers with
conventional wide-field microscopy techniques.

We thus return to ML, previously discussed in reference to
the Deeptrack 2.0 software, as a promising approach to 3D
microswimmer tracking. In contrast to conventional statistical
approaches that assume an appropriate data model, ML models
algorithmically learn the relationship between a target response and
its predictors.26 ML can thus be more generally described as a way
that machines can learn to perform tasks without specific program-
ming or a set of rules to follow. Inspired by the ability of ML models
to detect underlying patterns in data, we here investigate the
suitability of traditional ML techniques for 3D tracking from
standard 2D brightfield microscopy images. Relevant features are
extracted from light-microscopy videos, and the underlying struc-
ture characterising their vertical position are extracted using the
freely accessible Scikit-learn package.27 To evaluate our method,
we study the classic non-fluorescent Pt–SiO2 particle system
(R = 1.06 mm) with a clear optical asymmetry, as an example of a
challenging but common example of Janus microswimmers whose
vertical position would not be easily identifiable with conventional
methods (see Fig. 1). We take Z-stacks of the Pt sputter-coated
particles freely diffusing in pure water (i.e. passive due to the absence
of a fuel), rather than ‘‘sticking’’ them to the glass slide. This likely
increases the labelling error of the Z-stacks, but better represents the
experimental conditions of the mobile states and the ability of the
active colloids to rotate in 3D as they swim.25 We conclude by
studying a different TiO2–SiO2 particle system obtained by TNA with
a modified microscope configuration, and demonstrate that tradi-
tional ML models can provide a viable and generalisable approach to
track non-fluorescent Janus microswimmers moving in 3D.

1 Experimental method
1.1 Particle synthesis

1.1.1 Pt–SiO2 microswimmer synthesis. Pt–SiO2 Janus par-
ticles were synthesised following well-established protocols.28
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Briefly, monolayers of SiO2 microparticles were prepared by
spreading a 50 mL droplet of SiO2 microparticles (0.5% w/w,
2.16 mm microParticles GmbH) onto a glass-slide, which was
pre-treated in a plasma-oven to increase its wettability. A thin,
5 nm Pt film was then sputter-coated onto the monolayer to
obtain asymmetrically functionalised Pt–SiO2 Janus particles.
The particles were collected by sonication for 1 minute followed
by multiple rounds of centrifugation in water.

1.1.2 TiO2–SiO2 microswimmer synthesis. TiO2–SiO2 micro-
swimmers were prepared as previously described25. Briefly,
Pickering SiO2–Wax emulsions were prepared from 250 mg
SiO2 (5% w/w, 2.16 mm microParticles GmbH) suspensions in
a 10.8 mg L�1 didodecyldimethylammonium bromide (DDAB)
solution, using a 1 : 10 molten wax : water volumetric ratio.29 The
suspension was heated to 75 1C then stirred for 15 min at
3000 rpm before vigorous mixing at 13 500 rpm for 160 s using
an IKA T-25 Digital Ultraturrax. After the emulsification step, the
Pickering emulsion was immediately placed in an ice bath to
rapidly solidify the colloidosomes. The emulsion was then
washed in 0.1 M NaCl solution to remove surfactants, before
further washing in deionised water. The SiO2–Wax colloido-
somes were dispersed overnight by gentle agitation in an
aqueous solution of a post-modified (poly)pentafluoroacetate
(pPFPAC) polymer.30 The pPFPAC-colloidosomes were then
washed thoroughly in deionized water before redispersion in a
phosphate-buffered saline (PBS) pH 7.0 suspension containing
the TiO2 (P-25 aeroxide) nanoparticles. After gentle mixing
overnight, the TiO2 functionalized colloidosomes were collected
by filtration and the wax was removed with chloroform to obtain
the final microswimmers.

1.2 Image acquisition

1.2.1 Pt–SiO2 Z-stacks. 280 mL dilute solutions of the
Pt–SiO2 in milliQ were pipetted into a flow-through cell (cell
137-QS; Hellma Analytics) with a light path length of 1 mm.
Particles were imaged on an inverted microscope (Nikon
Eclipse Ti2e) under Köhler illumination with white-light using
a 40� objective (CFI S Plan Fluor ELWD 40XC) with adjustable
collar (set to 1 mm), and Z-stacks were taken with an exposure
time of 30 ms using a Hamamatsu C14440-20UP digital camera.
The Z-labels were then adjusted to account for refractive index
mismatches between the air objective and water media as in
ref. 31.

1.2.2 TiO2–SiO2 Z-stacks. 280 mL dilute solutions of the
TiO2–SiO2 in milliQ were pipetted into a flow-through cell (cell
137-QS; Hellma Analytics) with a light path length of 1 mm.
Particles were imaged on an inverted microscope (Nikon
Eclipse Ti2e) under Köhler illumination with white light using
a 40� objective (CFI S Plan Fluor ELWD 40XC) with adjustable
collar (set to 1 mm), and Z-stacks were taken with an exposure
time of 30 ms using a Hamamatsu C14440-20UP digital camera.
To simulate the conditions of swimming experiments, the
particles were also illuminated with UV (340 nm), using a
Lumencor SPECTRA X light engine as the excitation source
through the objective (epifluorescence). The Z-labels were then
adjusted to account for refractive index mismatches between
the air objective and water media as in ref. 31.

1.2.3 3D motion experiments. 280 mL dilute solutions of
the TiO2–SiO2 in fuel-rich aqueous conditions (H2O2, Acros
Organics, 3% v/v) were pipetted into a flow-through cell (cell
137-QS; Hellma Analytics) with a light path length of 1 mm. The
particles were imaged on an inverted microscope (Nikon
Eclipse Ti2e) under Köhler illumination with white light using
a 40� objective (CFI S Plan Fluor ELWD 40XC) with adjustable
collar (set to 1 mm), and videos were taken with an exposure
time of 30 ms using a Hamamatsu C14440-20UP digital camera
at 10 FPS. To activate the TiO2 photocatalyst and induce
swimming, particles were illuminated with UV (340 nm), using
a Lumencor SPECTRA X light engine as the excitation source
through the objective (epifluorescence). Particles were imaged
26.6 mm below their focal plane, to maximise the effective range
over which their 3D motion could be tracked.

1.3 Image pre-processing and extraction of relevant particle
features for model training

Before training the ML models, it is first necessary to extract
out the relevant image features to reduce the computational
complexity of the algorithmic learning process, and remove
spurious or otherwise non-instructive information (e.g. back-
ground noise). Briefly, Z-stacks of the diffusing particles are
first taken as described above. The raw image Z-slices contain
multiple particles in the field of view, which must first be
localised. As our method relies on the interference patterns of
the particles, it is necessary that they are relatively well spaced
from each other and from the edges, and therefore particles not
meeting a threshold separation distance (3 particle diameters)

Fig. 1 Optical micrograph from a Z-stack of passive (no fuel – diffusing by
Brownian motion only) Janus particles to obtain labelled data sets. The
optical asymmetry due to the Pt metal film is clearly visible. Snapshots of
different Z-slices are shown to demonstrate the changes to the extracted
raw particle masks with at different Z values.
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between each other or the edges of the image are removed. A
square around each remaining particle centre (mask) is then
extracted from the images, and labelled with its corresponding
height (Z-slice). The masks are then adjusted to possess the
same mean grayscale intensity, before the application of a
median filter with a 3 � 3 kernel size, and then normalisation
of the pixel values to take values between 0 and 1. The Z-labels
are then adjusted to match a reference image plane, due to
difficulty in experimentally ensuring the exact same labels
between different Z-stacks. From the adjusted and processed
masks, key image features are extracted to reduce the dimen-
sionality of the inputs into the model for training. In this
manner, a small vector can be used to represent a much larger
particle mask, significantly reducing computational time and
sensitivity to noise. These vectors, which are labelled according
to the adjusted Z values, are then randomly shuffled and
separated into a Training and Test set, before a final feature
engineering step to further reduce the dimensions of the input
parameter space. As outlined later, the model learns on the
training set, and the quality of its predictions are evaluated on
the Test set. By preventing the model from learning from the
test data, this allows a better evaluation of the generalisability
of the predictions.

1.3.1 Extraction of particle masks from Z-stacks and pre-
processing. Prior to extracting the features from the labelled
Z-slices, we first performed a pre-processing step on the raw
image data. Particle centres were localised in the field of view
using the MATLAB implementation of the Hough circle
transform,32 which we found to be the most effective over the
largest range of Z-stack slices. Due to the asymmetry of our
(non-fluorescent) particles, the underlying assumptions of the
more commonly used centroid method do not hold.33 The
vertical depth over which centre finding is accurate is highly
dependent on the optical configuration of the microscope and
should be determined empirically; for the Pt–SiO2 system, this
was a range of approximately 35 mm, however, in the case of our
TiO2–SiO2 microswimmers, we were able to reach up to 40 mm
by adjusting the illumination conditions. A square mask, the
size of which is dependent on the microscope resolution and
particle dimensions, was then extracted around the particle
centres to obtain a labelled set of particle masks. The particle
masks were adjusted to all have a mean pixel intensity of 145
units (8-bit grayscale), an edge-preserving median filter trans-
form with a 3 � 3 kernel size was then applied, and finally the
pixel values were re-scaled to 0–1 before exporting the masks for
further processing as necessary.

As the model was trained from experimental Z-stacks (rather
than simulated data), it was important to ensure that the
particle masks are labelled as consistently as possible. We
observed that the diffusing particles occupy different vertical
positions above the objective, based on their appearances in the
microscopy images. Furthermore, it is difficult to reproducibly
assign the same focal point (Z = 0 mm, see Fig. 1) of particles at
different regions of the glass cell across Z-stacks taken. By
visual inspection of many particle Z-stacks, we noted that each
particle defocuses into a black sphere approximately 5 mm

above the slice where it is in-focus (see Fig. 1). This provides
us with a reference height that can be compared between the
different Z-stacks acquired, to ensure consistent labelling
between the Z-stacks and thus the data observations. To use
this feature at Z = 5 mm as the reference plane, we examine
5 different Z-stacks, and select for each a representative particle
mask where the particle first appears as black sphere. We then
average these 5 different particle masks to obtain a reference,
Z = 5 mm image. We take the radial profile of this created
reference mask, which we defined as the average pixel value of
the region spanned by a circle with its origin at the centre of the
reference image, for different values of the circle’s radius (from
1 pixel to 40 pixels, inclusive). We then scan through the
Z-stacks, and for each Z-stack we find the 10 Z-slices that were
the most similar to the created, reference image. This was
achieved by finding the 10 particle masks in each Z-stack which
have the lowest squared difference between their radial profile
and that of the reference, radial profile. Of these 10 Z-slices, we
select the radial profile from the particle with the lowest
Z value, and re-scale all values in the Z-stack such that the
selected particle mask is now labelled as Z = 5 mm. We never-
theless note that this could lead to certain mislabelling of data
points, and therefore increase the model error determined
during its validation.

1.4 Feature extraction and feature engineering

The ML models discussed here are trained on features taken
from the 2D particle masks, extracted and labelled as described
above, to determine the vertical (Z) position of a microswimmer
from the image-based inputs provided. The processed particle
masks are 111� 111 pixels in dimension (graycale, 0–1 normalised
values), and therefore flattening the image directly as an input
vector would create a large feature space with 12 321 dimensions.
This would significantly slow down training, introduce large
amounts of noise from unnecessary image information, and
increase the risk of overfitting and thus poor model generalisability.
Therefore, it is first necessary to reduce the dimensionality of the
input data to improve the training step. This can be achieved by
computing various metrics from the particle masks which capture
their key features. We identify the following image properties which
are initially extracted from the particle masks.

1. The radial profile of the particle mask
2. The difference in the maximum and minimum values of

the radial and the horizontal profiles of the particle masks
3. The number of local minima and maxima in the hori-

zontal profile of the particle masks
4. The image moment of inertia from the particle mask
The radial profile of a particle mask from its centre (as

described above), can be used to detect the presence of the
interference pattern observed in the images.22 To evaluate the
radial profile (40 pixels), we took the mean of the pixel intensities
of the entire circle spanned by the specified radius from the
centre, rather than individual concentric rings as often per-
formed in the literature. This smoothed the noise arising from
the wide-field optical configuration used, but more importantly
dampened the significant asymmetry in the optical properties
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arising from the Janus structure of the microswimmers. From the
radial profile of each Z-slice particle mask, we also extract the
difference between the maximum and minimum value of
the radial profile as an additional, potentially important feature.
We likewise extract the difference between the minimum and
maximum value of the horizontal profile of each particle mask,
obtained by averaging across all vertical pixels of the particle
mask for each pixel along the horizontal axis.

The horizontal profile is noisier than the radial profile,
largely due to the lack of self-similarity present from averaging
over an increasingly growing circle, but it is also more sensitive
to the fringes of the interference pattern. We therefore smooth
the horizontal profile before determining the number of local
maxima and minima present, using the inbuilt MATLAB func-
tions islocalmin and islocalmax. The number of minima and
maxima is not a continuous relationship, and therefore these
features are treated as categorical variables. All other features
described and used here are treated as numerical, continuous
variables. As they take discrete values, the categorical features
(number of minima and maxima), were first treated to be
properly included in the trained models (One-Hot-Encoding,
OHE). From the distribution of the number of maxima and
minima, we find that observations with more maxima and
minima than 3 (in both cases) are outliers, and therefore
set all values for the maxima and minima 43 to 3. This left
two categorical variables which have values of 0, 1, 2, or 3
(8 total features – each with an associated binary value).

Finally, the particle mask’s first image moment,34 also
referred to as the image’s moment of inertia (as it is analogous
to the moment of inertia around the image centroid, treating
pixel intensities as mass), is calculated for each particle mask.25

Thus, from the initial 111 � 111 particle mask with associated
Z-label, 51 predictor variables are initially obtained (43 numerical
variables and the 8 categorical variables). Next, we perform
feature engineering of the numerical variables to further reduce
the dimensionality of the feature space and reduce the potential
for overfitting (see Fig. 2).

Before performing feature engineering, we first randomly
shuffled and split the data into Training and Test sets. Preventing
the model from seeing the Test dataset during the training stage
ensures that no information from the Test set can influence the
outcomes of the model training. This is necessary to test the

generalisability of the model predictions. We randomly shuffled
all Z slice observations of the particle masks, then split the initial
dataset into 80% for training the models, and 20% for validating
its predictions. We then perform feature engineering on the 43
numerical variables identified previously. From visual inspection,
we observe that the distributions for the sequential values of the
radial profile in particular appear to show significant self-
similarity (see Fig. S4, ESI‡). This can be explained by the method
used to extract the radial profiles from the particle masks, as we
evaluate the mean pixel intensity of a circle of increasing size
centred at the origin. Therefore, sequential values of the radial
profile will contain significant amounts of information from the
previous values. To treat this collinearity present in the numerical
feature space, we use the Python factor_analyzer function to
reduce the dimensionality of our feature space (see Fig. 2). The
factor_analyzer function implements a varimax rotation and can
be used to identify underlying latent variables which capture the
largest amount of variance amongst the original feature space.
This in turn allows a significant reduction in the number of
numerical parameters to be input into the model. The number of
extracted features that we use depends on the regression model
applied, as we explain in further detail later.

After extracting the relevant feature vector from our Z-stack
images as described above, we fitted the selected model on the
Training dataset, or tuned its hyper-parameters to improve perfor-
mance where closed-form solutions do not exist. The trained
model is then used to predict the Z-labels of the hold-out Test
set of observations, and these predictions are then compared to
the actual labels obtained from the Z-stack. To evaluate model
performance on unseen data, we use the normalised error
e = s(zmeasured � zlabel)/Ztotal (where e is the normalised error,
s(zmeasured � zlabel) is the sample standard deviation of the resi-
duals, and Ztotal is the total valid range of tracking, from ref. 35).
Given the diversity of traditional ML models that can be fitted, we
focus here on linear models (Linear and Polynomial regression),
and a non-linear ensemble Decision Tree model (Extremely Ran-
domised Decision Trees), to investigate the suitability of ML to
track the 3D motion of Janus microswimmers. Further discussions
of other models that we investigated (Random Forest, XGBoost,
and a Voting Ensemble combining the predictions of the
Extremely Randomised Decision Trees and XGBoost models),
including a brief investigation into the applicability of convolu-
tional neural nets, can be found in the ESI.‡

2 Results
2.1 Linear regression

We begin our study with the simplest ML model, a standard
linear regression using the extracted image features to predict the
Z-values labelled from the Z-stack. A closed-form solution for the
cost function of a linear regression model exists when the mean-
squared-error (MSE) is used, known as the normal equation (see
eqn (1)). However, it is more computationally efficient to calculate
the Moore–Penrose inverse of the vectorized form of the MSE
using Singular Value Decomposition (SVD) to obtain the feature

Fig. 2 Schematic for extraction of relevant features for model training
from raw microscopy videos. Masks around particle centres are first
created and processed before the relevant image properties are obtained.
After reducing the variable space, the desired features are selected.
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weights, which is the default approach used by the Scikit-learn
LinearRegression class. When there is a large feature space, it is
nevertheless advisable to use a general optimization algorithm
such as gradient descent-based methods. Linear regression
models are highly effective when there is a linear relationship
between the predictor variables and the target variable. However,
there are a set of assumptions when using linear regression
which are often not met in more complex datasets. One of these
is the absence of collinearities in the feature space, however this
is not the case in e.g. the radial profile of the particle masks as
described in the previous section.

Using the Python factor_analyzer function, we automatically
extract 9 underlying variables from an initial parameter space of 43
numerical features, in doing so reducing the extent of the colli-
nearity in the numerical parameter space. However, as we wish to
reduce the dimensionality of the linear regression for the subse-
quent attempt at polynomial linear regression, we take the first 5
variables with the highest explanatory power (with respect to the
total variance) of the initial numerical variables. Between them,
99.5% of the variance in the underlying initial numerical feature
space is captured. We finally append the categorical OHE features
(number of troughs and peaks) to these 5 features, and run the
Scikit-learn in-built LinearRegression class on the training dataset
(80% of all observations after shuffling, 31 834 observations).

ŷ = (XTX)�1�(XTY) (1)

where Y is the vector of observations of the dependent variable,
X is the matrix of independent variables for each observation,
and ŷ = argminy8Y � Xy82.

From a linear regression model, we obtain a normalised
error of 0.080. This translates to an unnormalized value on the
order of a particle diameter, which is clearly not acceptable for
particle tracking applications. More importantly, we clearly
observe that the residuals of the model predictions are non-
Gaussian, and that there appears to be an underlying data
structure present (see Fig. 3, left column). This demonstrates

that a simple linear regression is not sufficient to capture the
complexities of the data structure, due to the presence of non-
linearities. We therefore move to more complex models, and
also do not consider regularization to further improve this
simple linear model.

The next ML model that we fit is a polynomial regression
model including higher order terms and interactions between
the numerical features. In this manner, linear weights can be
fitted to non-linear data, and thus a closed-form solution also
exists for polynomial regression. The presence of higher order
terms and their interactions significantly increases the number
of weights to be fitted, and therefore care should be taken in
reducing the dimensionality of the feature space and the order
of the regression to prevent a combinatorial explosion of
parameters (see eqn (2)). The Scikit-learn PolynomialFeatures
class transforms the input predictor variables to include all
higher order terms and interaction terms between each feature.
The LinearRegression class can then be applied to this trans-
formed data set as before. As the categorical features which are
one-hot-encoded are sparse columns with binary values, only
the numerical features should be transformed with Polynomial-
Features. The categorical OHE features can then be appended to
this transformed dataset. From 5 numerical features, trans-
formed to include terms up to the 3rd order, we thus obtain
56 features (and the intercept) to which the 8 categorical
features are added. To minimize the possibility of overfitting,
we constrain the weights by using Ridge regression. In Ridge
regression, a penalty term on the size of the squared weights is
added to the cost function to be minimized. This keeps the
weights as small as possible, but does not provide feature selection
as with LASSO or Elastic-Net regularization techniques. However, it
possesses a closed-form solution, making it computationally more
efficient and less erratic. Ridge regression can be simply
implemented on Scikit-learn using the Ridge class, and we
use the GridSearchCV class to identify the optimal penalty term.

nþ d
d

� �
or
ðnþ dÞ!
n!d!

(2)

where n is the dimension of the original feature space, and d is
the highest order of the polynomial.

We find that higher-order polynomial regression provides
little to no reduction in training-validation error, and in some
cases, can increase it significantly due to over-fitting. We
therefore limit our model to a 3rd order polynomial Ridge
regression model which we fit to our training data, and then
test as previously described. The residuals of the model fitted to
the test data are shown in Fig. 3, middle column, bottom row. We
note a significant improvement in the normalised prediction
error from the linear regression case to 0.032. Furthermore, we
see that most of the systematic periodicity in the residuals
present for the standard linear regression has disappeared.
Nonetheless, we can still see some structure in the residuals, in
particular around Z = 0 mm where the asymmetry of the Janus
particles is likely the most visible.

Fig. 3 Comparison of the model predictions (top row) and residuals
(bottom row) obtained against the ground-truth values from labelled Z-
slices, for different regression strategies (39 320 total observations). Left:
Predictions obtained using linear regression. Middle: Predictions obtained
using polynomial regression. Right: Predictions obtained using Extremely
Randomised Decision Trees (ERTs). For comparison, the models were
trained and tested on the same randomly shuffled datasets.
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2.2 Decision tree models

The inability of linear models to satisfactorily capture the
structure of our extracted image properties suggests the use
of more complex ML techniques. One powerful and widely used
class of models are those based on Decision Trees. Decision Trees
make a series of recursive binary splits on the input parameter
space, greedily minimising (typically) the Gini impurity (or
variance for regression) of the two subsets of data after the
split.36 Since there is no direct mapping between the predictors
and the target variable, Decision Trees, unlike linear regression,
can handle non-linearities in datasets. Furthermore, the hier-
archical structure of Decision Trees means they can implicitly
capture interactions between features.37 However, the flexibility
of Decision Trees to model non-linear data is such that they are
very sensitive to variations in datasets and prone to overfitting.38

To overcome these issues, Decision Trees are typically integrated
into ensembles to average the predictions and thus reduce the
model variance at the cost of some bias. So long as the trees are
in sufficient number and diversity, even a set of only ‘‘weak’’
learners (low accuracy) can be combined to obtain a ‘‘strong’’
learner (high accuracy).39 To ensure that the Decision Trees are
sufficiently diverse, a number of strategies can be implemented.
Here, we highlight one example of an ensemble Decision Tree
learner – the Extremely Randomised Decision Trees ensemble
model (ERT).40 For further discussion of the different decision
tree ensemble models we investigate, see the ESI.‡

The ERT model is based on a modification to the well-known
Random Forest (RF) model,41,42 where randomly determined
thresholds for each feature at the nodes of a Decision Tree to
split the dataset to improve the scoring metric, rather than
determining the optimal thresholds for each feature. Not only
does this decrease the variance of the model further compared
to a standard RF (at the cost of more model bias), it also
significantly reduces the training time for an equivalent RF
model, as determining the best thresholds for each feature at
each node is one of the most computationally intensive tasks of
training. We expect that the high variance present in the input
image data makes a model that prioritises variance at the cost
of bias more effective at making predictions of the particle’s
vertical positions.

We train our ERT ensemble model using the Scikit-learn
ExtraTreesRegressor class. Unlike the linear regressors, we input
all latent features identified during the exploratory factor
analysis step (9 factors), which we find reduces the prediction
error. With the categorical OHE features, we therefore initially
have 17 predictor variables to input into our ERT ML model. To
identify potentially non-significant features, we furthermore
add a ‘‘noise’’ feature during training, with values drawn from
a normal distribution for each observation.43 After fitting the
ERT, we call the feature_importances_ attribute of the fitted
model and find that the observation that the number of peaks
and troughs Z3 in the horizontal intensity profile of the
particle masks are both less informative to the model than
the random noise term. We therefore reassign all peaks and
troughs with a value Z2 to a value of 2, and re-fit the categorical

OHE features, reducing the feature space by 2 features to a total
of 15 variables. Due to the large number of hyperparameters
which can be tuned when fitting a ERT (e.g. number of trees,
feature sub-set size per node, depth of a tree etc.), we use k-folds
(k = 10) cross validation using the GridSearchCV functionality
of Scikit-learn to identify the optimal fitting parameters by
minimizing the RMSE on the k validation sets.

After identifying the optimal hyperparameters by K-folds
cross validation, we fit an ERT model on the entire training set.
We then determine the generalizability of the trained model on
the Test dataset, and find an improvement in the model error to
0.021. Furthermore, the structure of the residuals is more homo-
scedastic than those of the polynomial regression model (see
Fig. 3, right column) with only some bias at the extreme values,
which was also observed when fitting 3D data with Deeptrack
2.0,24 albeit the explanation for their prediction errors does not
apply to our case. The superior performance of the ensemble
decision tree models appears to justify their selection, and
indicates their suitability for the problem of tracking the 3D
motion of Janus microswimmers.

2.3 Tracking 3D motion

We investigate the 3D tracking abilities of our ML-based
approach and the generalisability of the strategy described here
on our photo-responsive TiO2–SiO2 microswimmers. Due to
gravity and the existence of well-characterised ‘‘sliding states’’,
the benchmark of Pt-based microswimmers9,23 typically shows
motion constrained to a 2D plane, and we thus expand our tests
to a more challenging case of photocatalytic microswimmers.25

Like the Pt–SiO2 system we have previously discussed, our TiO2

microswimmers also possess a challenging (but different)
asymmetry in their optical properties. The Janus coating of
TiO2 nanoparticles appears as dark ‘‘chunks’’ under brightfield
microscopy (see Fig. S1, ESI‡), allowing us to investigate how well
our ML model can handle different types of optical asymmetry.
We furthermore use a modified optical configuration with
regards to exposure times and brightfield intensity, to check
whether our ML workflow can be used across a range of experi-
mental conditions. By adjusting the microscope configuration,
we were finally able to track the particle centres over 40 mm, a
wider range than for the Pt–SiO2 system (35 mm).

We extract the same features from the particle masks;
however, the exploratory factor analysis stage identified 12 relevant
latent factors in this case rather than 9. We attribute this to a range
of factors, such as the different optical configuration used, which
allows us to scan a wider Z range, as well as the different optical
asymmetry of the particles studied. We directly train our ERT on
these 12 features extracted using factor_analyzer, and in this
manner, we are able to obtain a normalised error of 0.019, with
no notable underlying structure in the residuals as shown in
Fig. 4a and b.

We thus see that traditional ML models, specifically Decision
Tree-based ensemble models, are an effective approach to track
the vertical position of Janus particles and therefore capable
of 3D tracking. As a demonstration, we show some sample
3D trajectories that we obtain using our trained ERT model
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(see Fig. 4c–e). Specifically, we show the Z-tracking of a highly
chiral ‘‘looping’’ particle, whose motion would present signifi-
cant difficulty to track using conventional methods. We also
show the Z trajectory of a particle that moves in 2D, noting the
small length scales over which positional fluctuations occur in
the vertical direction.

3 Conclusions

Our findings demonstrate the applicability of simple ML tech-
niques to the 3D tracking of active Janus particles from 2D
slices of non-fluorescent wide-field microscopy videos. Rather
than simulating the optical configuration of a microscope, our
approach allows the training of ML models on Z-stacks taken
on a standard light microscope. Although this introduces some
uncertainty in the Z-position due to the vertical resolution of

the microscope, the performance we achieve using ML models is
high, and our method does not require specialised equipment as
for holographic microscopy. Furthermore, our approach is robust
to Janus microparticles with a high degree of optical asymmetry,
which is otherwise a challenge for other 3D tracking techniques.23

We also expect that higher accuracy could be reported if the
models were trained on particles adhered to the glass substrate,
however, we wished to replicate true experimental conditions as
closely as possible, in particular enabling the rotational diffusion
of particles, which exposes different asymmetries to the micro-
scope. Finally, additional benchmarking could be carried out by
trapping particles with optical tweezers and comparing the
Z-coordinates of the optical trap with the ones extracted by our
model,44 enabling the evaluation of programmed, ‘‘synthetic’’, 3-D
trajectories where the ground truth is known.

Under these conditions, we find that the trajectories of 2D
swimming particles are relatively noise-free in the Z direction,

Fig. 4 Tracking the 3D motion of SiO2–TiO2 microswimmers using an Extremely Randomised Decision Tree (ERT) model: (a) model predictions vs.
ground-truth values from labelled Z-slices (26 924 total observations, 5385 of which are in the Test set (20%)). (b) Residuals as a function of labelled Z-
slices. (c) Selected Z positions vs. time (different colours denote different microswimmers), comparing the out-of-plane motion of particles for different
chiral and non-chiral microswimmers. (d) Example trajectory of a microswimmer that remains mostly in-plane. (e) Example trajectory of a highly chiral
microswimmer that swims out-of-plane.
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removing most of the spurious displacements which were
occasionally present in previous attempts at 3D tracking of
Janus microswimmers with a wide-field microscope.25 We
nonetheless stress the importance of checking the model
predictions as outlier swimmers will possess noisy trajectories,
which should be removed from the analysis. The presence of
contamination on the glass slide, or even uneven illumination
fields, could all contribute to additional sources of noise in the
trajectories of swimming particles. It is also critical that the
trajectories analysed are limited to the bounds of the optical
configuration used (around 40 mm), and we strongly advise
against extrapolating to vertical positions beyond these values.
The Z-range over which particles can be tracked could be
extended by using objectives with a greater depth of field (lower
numerical aperture). However, this comes at the cost of a lower
lateral resolution, such that an optimal configuration needs to
be found for the specific system of interest.

We moreover find that traditional ML techniques are effec-
tive at tracking the vertical positions of two different Janus
particle systems, with videos taken using different optical
conditions. We find that Decision-Tree based ensemble models
are the most accurate type of traditional ML model for our
defined problem. The Extremely Randomised Decision Tree
model is the best stand-alone traditional ML technique for pre-
dicting the vertical positions of Janus particles, and combining its
predictions with those of a Hypothesis Boosting Gradient model in
a Voting Regressor may lead to a very slight improvement in overall
performance (see Fig. S5, ESI‡). We limit our discussion of
DL convolutional neural networks to the SI, but we note that these
models can accept particle masks directly, circumventing the time-
consuming process of feature extraction. Nevertheless, traditional
ML models provide better understanding and control over inputs,
and we favour the use of simpler models where possible.

Using the freely-available and well-documented Scikit-learn
packages, the training of ML models can be performed with a
few simple lines of code. Coupled with the extensive learning
resources widely available,45 this enables a low-barrier extension
of existing resources to new problems. We highly encourage
experimentalists in the active matter community to explore the
fascinating possibilities of ML by developing their own models.
If nothing else, it provides an engaging learning exercise in a
burgeoning field, but can likely help address experimental
challenges in a manner not possible by currently well-
established protocols for particle tracking.
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