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Microswimmers in vortices: dynamics
and trapping

Ivan Tanasijević * and Eric Lauga

Biological and artificial microswimmers often self-propel in external flows of vortical nature; relevant

examples include algae in small-scale ocean eddies, spermatozoa in uterine peristaltic flows and

bacteria in microfluidic devices. A recent experiment has shown that swimming bacteria in model

vortices are expelled from the vortex all the way to a well-defined depletion zone (A. Sokolov and I. S.

Aranson, Rapid expulsion of microswimmers by a vortical flow. Nat. Commun., 2016, 7, 11114). In this

paper, we propose a theoretical model to investigate the dynamics of elongated microswimmers in

elementary vortices, namely active particles in two- and three-dimensional rotlets. A deterministic

model first reveals the existence of bounded orbits near the centre of the vortex and unbounded orbits

elsewhere. We further discover a conserved quantity of motion that allows us to map the phase space

according to the type of the orbit (bounded vs unbounded). We next introduce translational and

rotational noise into the system. Using a Fokker–Planck formalism, we quantify the quality of trapping near

the centre of the vortex by examining the probability of escape and the mean time of escape from the

region of deterministically bounded orbits. We finally show how to use these findings to formulate a predic-

tion for the radius of the depletion zone, which compares favourably with the experiments (A. Sokolov and I.

S. Aranson, Rapid expulsion of microswimmers by a vortical flow. Nat. Commun., 2016, 7, 11114).

1 Introduction

Motile microorganisms, ubiquitous in nature, have been shown
to exploit a wide range of physical mechanisms to self propel
through their fluid environment.1,2 These swimming micro-
organisms must not only ensure successful propulsion but also
navigate against external flows.3–7 The novel dynamics that
arises from the interaction of motile microorganisms and
external flows is commonly known as the rheotaxis.

Perhaps the most famous example of rheotaxis is the hydro-
dynamic focusing of bottom-heavy algae in downward flows as
observed in both laboratory experiments and oceanic flows.8–12

This focusing results from a combination of hydrodynamic
interactions with external flows and the gravitational alignment
of the bottom-heavy algae with the vertical direction; as a result, it
is often known as gyrotaxis. Further examples of motile cells that
show a rheotactic response include bacteria13–17 and mammalian
spermatozoa.18–22 Unsurprisingly, bio-inspired artificial micro-
swimmers are faced with similar rheotactic challenges.23–28

To understand the essential physics of rheotaxis, minimal
mathematical models of motile cells in flows have recently been
proposed.29–32 In the simplest model, the swimmer is an active

particle of fixed shape advected by the flow while swimming with
a prescribed speed along a fixed direction in the swimmer’s
frame. The flow changes not only the location of the swimmer
(advection) but also its swimming direction (reorientation). For
spherical swimmers, the minimal model can have closed-form
solutions, as long as the swimmer is assumed to move through an
infinite fluid. Indeed, in that case the equations of motion are
exact, with interactions with the flow following from Faxén’s
laws.33 Fundamental solutions exist then for swimming in simple
linear flows such as the solid-body rotation, shear and extensional
flows.2,34 In the more complex case of swimming in a Poiseuille
flow, but perhaps one more relevant to applications, the dynamics
of a spherical swimmer cannot be exactly integrated but it was
shown to have an underlying Hamiltonian structure.35

A more realistic version of the minimal model consider
the swimmers to have the shapes of elongated spheroids. This
allows the model to capture phenomena arising from the
elongated form of real cells, as relevant for example for flagel-
lated bacteria and spermatozoa.2 In turn, this assumption
makes analytical predictions more complex unless additional
assumptions are made. Focusing on flows that have a typical
gradient length scale much larger than the size of the swimmer,
the equations of motion can be approximated using the classi-
cal Jeffery’s equations36 that exactly describe the behaviour of
passive spheroids in a shear flow. For example, eddies in the
ocean relevant for microorganisms have sizes on the order of
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millimetres, thus always much larger than the micro-algae that
populate them (tens of microns). The validity of Jeffery’s
equations as applied to elongated biological organisms has
been further verified using direct experiments with the bacterium
E. coli in microfluidic channels.13 Note that using Jeffery’s
equations, classical work has been carried out on the dynamics
of passive elongated particles in external flows37–39 as well as some
recent work on active elongated swimmers in linear40 and
pressure-driven flows.35,41 In a Poiseuille flow, and in contrast
to the case of a spherical swimmer, the equations of motion for an
elongated swimmer no longer have the Hamiltonian structure but
a conserved quantity still exists42 and two types of trajectories are
seen in this case: upstream swinging motion around the middle
of the channel or downstream tumbling closer to the channel
walls. Both types of trajectories were confirmed experimentally for
motile bacteria.43

In this work, we focus on the behaviour of elongated micro-
swimmers in elementary vortical flows. A well-known example
where biological microswimmers have to self-propel in vortices
are algae and bacteria swimming in small-scale ocean
eddies.44–47 Other relevant examples include spermatozoa
swimming in uterine peristaltic flows4 and recirculation flows
generically occurring in standard microfluidic devices.48,49

Motivated by this fundamental problem, a recent experimental
study on swimming bacteria reported the existence of a cell
depletion zone in a vortical flow created by an externally rotated
body.50 This depletion zone forms around the body after it is
forced into rotation in an otherwise uniform, dilute suspension
of swimming bacteria. In contrast, recent theoretical work
predicted a zone around the centre of a vortex with bounded
orbits.51

In this paper, we use a theoretical treatment to reconcile the
experimentally-observed depletion50 with the theoretically-
predicted trapping.51 Specifically, we consider the dynamics
of model swimmers in two- and three-dimensional rotlets, i.e.
the rotational flows that exactly represent the flow of rotating
bodies (cylinders and spheres) in a bulk fluid at low Reynolds
number33 (setup described in Section 2). We mathematically
determine the trapped orbits of swimmers in both types of
singular vortices, in the absence of any noise in the system
(spherical swimmers in Section 3 and elongated swimmers in
Section 4). Next, we include translation and rotation noise and
show how to quantify trapping in these vortices (Section 5).
Finally, we use our mathematical model to formulate a predic-
tion for the radius of the depletion zone, which we show
compares favourably with experimental observations in ref. 50
(Section 6).

2 Setup and deterministic model

In order to address the physical behaviour of swimming cells in
external flows, we consider the fundamental elongated ‘active
particle’ model. A swimming cell is modelled as a prolate
spheroid, of fixed aspect ratio a Z 1 and major axis d, which
is being advected and rotated by the steady external flow u(r).

In addition to the flow advection, the cell swims with velocity
V0p of fixed magnitude V0 in the direction of the major axis of
the spheroid (unit vector p in that direction). Using the afore-
mentioned Faxén’s laws and neglecting the size d of the
swimmer relative to the typical length scale characterising the
flow gradients,2 the position r(t) of the cell evolves in time as

:r = u(r) + V0p. (1)

Following the classical result of Jeffery,36 and using the same
assumption on the size of the swimmer, we may model the
rotation of the swimmer as that of a passive spheroid in a linear
flow, given by the equation

dp

dt
¼ 1

2
X� pþ BðI� ppÞ � E � p; (2)

where I is the identity tensor, E = (ru +ruT)/2 is the symmetric
rate of strain tensor of the external flow, X = r � u is its
vorticity and B = (a2 � 1)/(a2 + 1) A [0,1) is the swimmer’s shape
factor (B = 0 for a sphere and B - 1 for an elongated rod). Using
this fundamental active particle model, we investigate below
the dynamics of swimmers in external vortical flows.

3 Spherical swimmers in vortices

We start by the simplest case of spherical swimmers, i.e. with
B = 0 in eqn (2). We mathematically demonstrate the existence
of two classes of deterministic trajectories, bounded and
unbounded, using a theoretical approach that will be exploited
further in the case of elongated cells (B 4 0, Section 4). We
focus on the case where the flow is the three-dimensional (3D)
Stokes flow u created by a sphere of radius R rotating with
angular velocity x = oẑ, namely

u ¼ R3

r3
x� r; (3)

where r = |r|. This solution is also known at the 3D rotlet, i.e. the
flow created by a point torque L = 8pmR3x located at the origin. In
later sections of this paper, we will investigate the two-
dimensional (2D) version of this singular vortex flow, i.e. the 2D
rotlet. That flow can be realised as the Stokes flow around a
rotating, infinitely long cylinder. However, since the 2D rotlet has

Fig. 1 Illustration of the model swimmer in a 3D rotlet flow, i.e. the flow
outside a rotating sphere (A), and in a 2D rotlet flow outside a rotating
cylinder (B). The swimmer is sketched as a red spheroid and black lines
show the flow streamlines. (C) Notation used throughout this paper with
the location of the swimmer described using planar polar coordinates (r,f)
and its orientation using the angle c.
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no vorticity (see Section 4.2), it does not affect the dynamics of
spherical swimmers, hence our focus on the 3D case here.

We confine the swimmer to move in the sphere’s equatorial
plane (through its centre and perpendicular to ẑ, see illustration
in Fig. 1A). We describe the location of the swimmer in the plane
using the planar polar coordinates (r,f) and its orientation using
the angle c between its orientation vector p and the radial unit
vector r/r at its position (see Fig. 1C).

Using this notation, the equations of motion, eqn (1) and
(2), take the form

:
r = V0 cosc, (4a)

_f ¼ V0

r
sincþ oR3

r3
; (4b)

_c ¼ �3oR
3

2r3
� V0

r
sinc; (4c)

After nondimensionalising these equations using R as the
relevant length scale and o�1 as time scale, a straightforward
manipulation of eqn (4a) and (4c) show that there exists a constant
of motion in this dynamical system. Specifically, if we define

h9ar sinc� 3

2r
; (5)

where a = V0/oR is the non-dimensional swimming speed, we see
that

:
h = 0.

Next, using the fact that :r2 = a2(1 � sin2c) we can express
sinc(r) = h/ar + 3/2ar2 from eqn (5) to notice that

_r2

2
þ a2

2

h

a
þ 3

2ar2

� �2

�1
" #

¼ 0; (6)

and thus r behaves as if it was under the influence of an
effective potential

VðrÞ ¼ 1

2

h

r
þ 3

2r2

� �2

�a2
" #

; (7)

with an energy-like quantity E = :r2/2 + V(r) equal to 0 for
all times.

Since the effective potential V has limits V - �a2/2 as r -

N and V - +N as r - 0, the entrapment relies on the
existence of a local maximum of V(r) 4 0 to prevent the
swimmer from escaping to infinity. Taking the derivative, we see
that the condition dV/dr = 0 is equivalent to rh = �3/2 or rh = �3.
Clearly, if h Z 0, then the potential is monotonic and the swimmer
escapes. On the other hand, if h o 0, then we obtain that at r =
�3/2h we have a minimum of the potential, with Vmin = �a2/2
while at r = �3/h there is a local maximum Vmax = (h4 � 36a2)/72.
Thus, we predict theoretically that the swimmer will be trapped if

and only if r0 o �3/h and Vmax 4 0 so that ho �
ffiffiffiffiffi
6a
p

.
These theoretical predictions can be used to validate direct

finite-difference simulations of the equations of motion in
eqn (4a)–(4c); these simulations will then be used in the rest
of the paper when exact theoretical predictions are harder to
make. Results are shown in Fig. 2 and we obtain excellent
agreement between simulations and theoretical predictions.

Using the initial position and orientation of the swimmer
(r0,c0), we note that the theoretical conditions condense to a

single equation, r0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinc0

p
þ 1Þo ð3=2aÞ1=2; this is the

equation of the separatrix of this dynamical system, i.e. the
interface between the light yellow and dark green regions in
Fig. 2. An important feature of this phase map that we will use
later is the maximal radial distance r = rm for which a trapped
state exists, given by rm = (3/2a)1/2.

In a recent theoretical study,51 based on the same model
equations as the current work, it has been noted that in a
general axisymmetric flow of the form u(r)ef the equations of
motion for a spherical swimmer can be transformed to take a
Hamiltonian form. Indeed, under the transformation

X = x cosf + y sinf, (8a)

P = �x sinf + y cosf, (8b)

then eqn (4a) and (4b) become equivalent to a set of Hamilton’s
equations

_X ¼ @H
@P

; (9a)

_P ¼ �@H
@X

; (9b)

for the ‘‘position’’ X and the ‘‘momentum’’ P with the Hamil-
tonian H given by

H ¼ aPþ
ð
1

rs
2

2

d

ds

uðsÞ
s

� �
ds: (10)

Fig. 2 Trapping of a spherical swimmer in a 3D rotlet: a map of the
parameter space of the initial position (r0/R) and orientation angle (c0), in
the case a = 0.008. Yellow and green regions indicate theoretical predictions
of open and bounded orbits, respectively. Shaded and unshaded yellow
regions are only there to illustrate different theoretical conditions for escape,
namely ho �

ffiffiffiffiffi
6a
p

(shaded) and r0 o �3/h (unshaded). Square symbols
represent the outcomes of numerical simulations: red – bounded orbits;
blue – open orbits.
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Since the Hamiltonian H has no explicit time dependence, it is
a conserved quantity of motion and so we expect it to be a
function of the conserved quantity h derived above. For the case
of a 3D rotlet that we consider here, it is simple to integrate and
express H as a function of r and c only as

H ¼ ar sinc�
ð
1

rs
2

2

d

ds

1

s3

� �
ds ¼ ar sinc� 3

2r
: (11)

In other words, H = h, so the Hamiltonian is equal to the
conserved quantity found above in eqn (5).

4 Elongated swimmers in vortices

So far we only considered the case of spherical swimmers.
In contrast, most biological or artificial swimmers have aniso-
tropic shapes and are often elongated in the direction of
swimming. When in an external flow, spherical swimmers are
not influenced by the local rate of strain of the fluid flow, while
an elongated swimmer experiences an additional torque align-
ing it with the principal axes of the local rate of strain. Thus, the
rotational dynamics can be drastically different for elongated
swimmers, which could lead to qualitatively different behaviour
in external flows. Therefore, we now consider the case of
elongated swimmers in vortices. By deriving the conserved
quantity of motion for elongated swimmers in 3D and 2D rotlet
flows, we show the existence of a similar phase diagram as for
spherical swimmers, but with a different separatrix between the
region of trapped and unbounded orbits.

4.1 Prolate spheroid in the equatorial plane of a 3D rotlet

Let the swimmer be a prolate spheroid of aspect ratio a Z 1
swimming in the same external flow as above, i.e. u = x � rR3/
r3. Using same notation as above, the non-dimensional equa-
tions of motion become

:
r = a cosc, (12a)

_f ¼ a
r
sincþ 1

r3
; (12b)

_c ¼ � 3

2r3
ð1þ B cos 2cÞ � a

r
sinc; (12c)

where we recall that B = (a2 � 1)/(a2 + 1) A (0,1) is the shape
factor of the spheroid. If we introduce u = ar sinc we can
combine the radial and c equations of motion to obtain

_u ¼ � 3

2r2
_r 1þ B� 2B

u2

a2r2

� �
: (13)

By introducing x = Ba�2r�3 and solving for u(x), the equation
above becomes

du

dx
¼ �u2 þ bx�2=3; (14)

where b = (1 + B)a2/3B�1/3/2. This is a classical Riccati equation
and we can transform it to the modified Bessel equation by

first introducing s(x) such that uðxÞ ¼ ds

dx
=s, then defining

z = 3b1/2x3/2/2 and o(z) such that s(x) = z3/4o(z). This transfor-
mation leaves us with solving the modified Bessel equation

z2o00 + zo0 � (z2 + 9/16)o = 0, (15)

whose solutions are o(z) = c1I3/4(z) + c2K3/4(z), where I, K are the
modified Bessel functions of the first kind and c1 and c2 are
constants. Hence we obtain

sincðrÞ ¼ b1=2

ðaBÞ1=3
c1I�1=4ðzÞ � c2K�1=4ðzÞ
c1I3=4ðzÞ þ c2K3=4ðzÞ

; (16)

where z = 3b1/2B2/3a�4/3r�2/2. Then, h = c1/c2 is a conserved
quantity of the motion and it is expressed as

h ¼
gK�1=4ðzÞ þ sincK3=4ðzÞ
gI�1=4ðzÞ � sincI3=4ðzÞ

; (17)

where g = b1/2(aB)�1/3 = ((B + 1)/2B)1/2
Z 1. Note that g ¼

a=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

represents the inverse of the eccentricity of the
elliptical cross-section of the swimmer.

Finally, we may now investigate the conditions for entrapment
in case of a prolate swimmer in the equatorial plane of a 3D rotlet.
For comparison, we perform agent based simulations of swim-
mers starting from various initial conditions (r,c) (or equivalently
(r,h)) and plot the symbols in Fig. 3A according to the type of the
orbit that we find: blue empty circles represent unbounded orbits
while and red filled squares are used for bounded ones. As
opposed to the spherical case, it is less straightforward to examine
the features of the effective radial potential analytically, so we
introduce a different approach by considering orbits in the r�h
space. Swimmers will clearly be moving along the constant-h lines
but not all of the r�h space is physically feasible. Inspecting
eqn (17) we can see that for a given r (i.e. a given z), h can only vary
between hmin(r) and hmax(r), where

hminðrÞ ¼
gK�1=4ðzÞ � K3=4ðzÞ
gI�1=4ðzÞ þ I3=4ðzÞ

; (18a)

hmaxðrÞ ¼
gK�1=4ðzÞ þ K3=4ðzÞ
gI�1=4ðzÞ � I3=4ðzÞ

: (18b)

We claim that a swimmer is certain to be trapped if it starts from a
point in the r�h space such that its constant-h line has two
intersections with any of the h = hmin(r) or h = hmax(r) lines
(see illustration in Fig. 3A). Otherwise, it will escape due to
the fact that :r p cosc. Specifically, if the swimmer starts with
cosc 4 0 it will always advance in r since :

r p cosc and the
change in the sign of cosc can only happen when sinc = �1,
which are exactly the hmin and hmax lines that the swimmer cannot
approach. If initially cosc o 0, then the swimmer will certainly
reach the hmin or hmax line and the unboundedness of the orbit
will depend on whether the point of interception with these lines
is stationary and stable or not. In the dynamical system that we
consider here, there is only one stationary point on hmin and hmax

but it is unstable so the swimmer will turn around and escape.
As can be seen from Fig. 3A, the function hmax(r) is mono-

tonically increasing (this is easily verified analytically) but hmin

has a maximum, which we find occurs analytically at the
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remarkably simple expression rm = [3(1 � B)/2a]1/2. Thus, the
prolate swimmer will be trapped in a 3D rotlet vortex flow if and
only if both r0 o rm initially and h(r0,c0) o hmin(rm). Note that
in the limit of spherical swimmers B - 0 we have rm = (3/2a)1/2

which agrees with the result for a sphere in Section 3.

4.2 Prolate spheroid in a 2D rotlet

We now consider the case of a two-dimensional (2D) Stokes
flow created by the rotation of an infinitely long cylinder of
radius R and angular velocity (along its axis) o, i.e.

u ¼ x� r
R2

r2
� (19)

Interestingly, this flow has no vorticity so spherical swimmers
are not rotated by this flow. Thus, we focus on the prolate
swimmers with shape factor B 4 0 for which the non-
dimensional equations of motion are

:
r = a cosc, (20a)

_f ¼ a
r
sincþ 1

r2
; (20b)

_c ¼ �1

r2
ð1þ B cos 2cÞ � a

r
sinc; (20c)

with the same notation as above. Following a similar method to
that for the 3D rotlet we obtain a conserved quantity

h ¼ gK0ðzÞ þ sin cK1ðzÞ
gI0ðzÞ � sin cI1ðzÞ

; (21)

with b = (1 + B)/2, z ¼ 2
ffiffiffiffiffiffi
bx
p

¼ 2
ffiffiffiffiffiffi
bB
p

=ar and g = (b/B)1/2 = ((B +
1)/2B)1/2

Z 1. Using the same method as in case of a 3D rotlet
we come to a similar conclusion that a swimmer will be trapped in
a 2D rotlet if and only if initially r0 o rm = (1 � B)/a and h(r0,c0) o
hmin(rm). We compare in Fig. 3B this theoretical prediction with
numerical computations, and again obtain excellent agreement.

4.3 The trapping separatrix in the rod-like limit

In order to better understand the extent of trapping in vortical
flows, we next investigate the boundary between the regions of
bounded and unbounded orbits in the r � c space (i.e. the
separatrix). This separatrix can only be implicitly defined as
h(r,c) = h(rm,3p/2), since the bounded orbits are found in r o
rm,h o hmin(rm) = h(rm,c = 3p/2) part of the r�h space, as
argued above. This implicit definition can be turned into an
explicit one in the limit of swimmers with large aspect ratios,
a c 1. This rod-like limit is relevant not only for slender artificial
microswimmers25 but also for various types of bacteria.52

Focusing on the 3D rotlet (the calculation in the 2D rotlet
case is analogous), this implicit formulation takes the
following form

gK�1=4ðzmÞ � K3=4ðzmÞ
gI�1=4ðzmÞ þ I3=4ðzmÞ

¼
gK�1=4ðzÞ þ sin cK3=4ðzÞ
gI�1=4ðzÞ � sin cI3=4ðzÞ

; (22)

where z = 3gB/2ar2 and where zm = g/2(g2 � 1) is the corres-
ponding value of z for r = rm. Again, this equality is difficult to
invert into an explicit formula r(c); however, in the limit of the
swimmers that are very prolate (B - 1 i.e. g = [(B + 1)/2B]1/2 - 1), it
is possible to find an asymptotic expression for z(c). In this limit,
the maximal radius that the separatrix reaches is rm so the
minimal z is zm c 1. Thus we can assume z c 1 along the
separatrix and we can use the well-known asymptotic expansion of
the modified Bessel functions53

IaðzÞ �
ezffiffiffiffiffiffiffiffi
2pz
p 1� 4a2 � 1

8z
þ ð4a

2 � 1Þð4a2 � 9Þ
128z2

� �
; (23)

KaðzÞ �
ffiffiffiffiffi
p
2z

r
e�z 1þ 4a2 � 1

8z
þ ð4a

2 � 1Þð4a2 � 9Þ
128z2

� �
; (24)

to find an approximate explicit expression for the separatrix.
In the aforementioned limit, the expanded implicit formulation

Fig. 3 Trapping of elongated swimmers in a 3D rotlet flow (A) and a 2D rotlet (B). In both cases, we display a map in the r�h parameter space in the case
B = 0.5 (corresponding to a swimmer of aspect ratio a ¼

ffiffiffi
3
p
� 1:73) and a = 0.008. Scattered symbols represent the outcomes of numerical simulations;

red filled squares stand for bounded orbits and blue empty circles for unbounded ones. The dashed red and blue lines represent, respectively, the
functions hmax(r) and hmin(r) derived analytically; the dashed black line shows the location of r = rm while the dashed pink line shows h = hmin(rm).
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from eqn (22) takes the form

e�2ðz�zmÞ ¼ 2e2 þ Oðe3Þ
2þ OðeÞ (25)

� 1� sincþ eþ ð3þ 5 sincþ 3eÞð32zÞ�1 þ Oðz�2Þ
1þ sincþ eþ ð5 sinc� 3� 3eÞð32zÞ�1 þ Oðz�2Þ; (26)

with e = g � 1 { 1. As the balance of the dominant terms is
different depending on sinc, we further investigate each of these
cases separately. In the |sinc � 1| c e case, the balance of
dominant terms becomes

e2
1� sinc
1þ sinc

� e�2ðz�zmÞ; (27)

and thus we can approximate zðcÞ ¼ zm þ lnð1=eÞþ tanh �1

ðsincÞ þ OðeÞ. Now, if instead sinc = 1 � ez, with z B O(1), the
balance reads

e2
ð2þ zÞe

2
� e�2ðz�zmÞ; (28)

and the explicit formulation of the separatrix in this region is

asymptotically z ¼ zm þ 1:5 lnð1=eÞ � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z=2

p
þ OðeÞ. Finally,

if sinc = �1 + e2z, with z B O(1) we expect an O(1) correction of
the form z = zm + F(z) that must satisfy

2

2þ zþ 4FðzÞ � e�2FðzÞ: (29)

Solving this gives us 2F(z) = �1 � z/2 � W�1[�exp(�1 � z/2)],
where W�1 is a branch of the Lambert W function.

An important result of this calculation is the value of the
minimal radius that the separatrix reaches rmin, or equivalently,
the value zmax of the maximal z. It is attained for c = p/2, thus it
can be approximated as

zmax ¼ zm � 1:5 ln
affiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
p � 1

� �
þ OðeÞ: (30)

In Fig. 4 we show the results of numerical computations for the
value of zmax together with the theoretical predictions based on
eqn (30) for various values of the aspect ratio a of the swimmer.
We obtain excellent agreement across a large range of biologically
relevant aspect ratios.

5 Impact of noise on trapping

The deterministic calculations in the previous sections provided
insights into the behaviour of microswimmers in vortices.
However, the existence of bounded orbits seems to be at odds with
the depletion zones observed experimentally.50 In order to capture
this experimentally observed phenomena, we include in our model
the effects of Brownian (translational and rotational) noise.

5.1 Mathematical modelling

We add to our mathematical model delta-correlated white noise
with rotational and translational diffusion coefficients denoted
by Dr and Dt, respectively; in addition to thermal noise, this
allows us to also capture the effective impact of variability in the

translational velocity of biological swimmers. For simplicity, we
focus here on swimmers in the flow due to a rotating sphere (i.e.
the 3D rotlet) in the rest of this section; results follow similarly for
the 2D rotlet case.

The stochastic form of the dimensionless governing
eqn (12a)–(12c) now takes the following Langevin form

dr ¼ a cosc|fflfflffl{zfflfflffl}
mr

dtþ
ffiffiffi
2
p

Pet
�1
2dWt; (31a)

dc ¼ � 3

2r3
ð1þ B cos 2cÞ þ a

r
sinc

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mc

dt

þ
ffiffiffi
2
p

Per
�1
2dWr; (31b)

where Wt and Wr are two independent Wiener processes, Pet =
oR2/Dt is the translational Péclet number and Per = o/Dr is the
rotational Péclet number. The drifts mr and mc defined in these
equations represent the deterministic rates of change of r and
c, respectively. It should be noted that translational noise
impacts the evolution of c as well, since c changes as the
swimmer translates tangentially to the circles of constant r.
For a swimmer of typical size d, it holds that Per/Pet = Dt/R

2Dr =
(d/R)2 { 132 and hence we can neglect translational noise in the
dynamics of c relative to the rotational noise. It is known that
anisotropic particles, such as the prolate spheroids considered
here, experience anisotropic diffusion due to their different
hydrodynamic mobilities along and perpendicular to its axis of
symmetry.33 Since we only consider here a two-dimensional
geometry (i.e. the cells are restricted to move within a plane),
this impacts translational, but not rotational, diffusion.
The anisotropy in mobility means that, strictly speaking, the
translational Péclet number is a function of the cell orientation,
c (this is a weak dependance since the maximum ratio in

Fig. 4 Numerical verification of the asymptotic expression for zmax in a
3D rotlet flow. Solid, blue squares show a numerical approximation
obtained by inverting eqn (22) at c = p/2 for various values of the aspect
ratio of the swimmers a. The red, dashed line follows the theoretical
prediction based on eqn (30), while neglecting the O(e) terms.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
N

ov
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 7

/5
/2

02
5 

8:
44

:2
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sm00907b


This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 8931–8944 |  8937

mobilities is known to be two, obtained for slender shapes). For
simplicity, here we assume that the Péclet number remains a
constant, an assumption consistent with the fact that we obtain
no significant dependence of our results on its exact value.

5.2 Quantifying the quality of trapping

Since eqn (31a) and (31b) are coupled, it is difficult to extract
statistical properties, such as mean square displacement. However,
since noise is now included in the model, it is unlikely (i.e. of
probability zero) that swimmers starting on a bounded trajectory
will remain trapped indefinitely. In order to quantify the quality of
trapping, we thus focus our attention on finding the average time
swimmers take to escape.

This brings a few questions to consider. First, what does it
mean exactly for a swimmer to escape? A natural choice would
be to qualify the swimmers as escaped once they cross the
(implicit) separatrix that delineates the regions of bounded and
open orbits obtained above. However, as a swimmer gets
further from the rotating body, noise becomes dominant over
the effects of the flow and thus we expect swimmers to return
infinitely many times to the region of deterministically trapped
orbits. Having the separatrix as the classifying boundary has
therefore limited physical significance. Instead, since there are
no deterministically trapped orbits with r 4 rm, we set r = rm as
the qualifying boundary.

Another important point is what exactly happens once a
swimmer reaches the rotating body located at r = 1 (in dimen-
sionless units)? The exact physics of the encounter between a
microswimmer and a solid rotating body depends of course on
the microscopic details of both the swimmer and the surface.
In the specific case of bacteria Bacillus subtilis used in the
experiments in ref. 50, the cells have been observed to stick to
the surface of solid spheres. Thus, it is appropriate to treat r = 1
as an absorbing boundary.

For a swimmer that starts from (r,c) = (r0,c0) at time t = 0, we
thus aim to determine the mean time T(r0,c0) that it would take
to reach either r = rm (escape from the vortex from the outside)
or r = 1 (reaching the surface of the rotating body). While the
mean first passage time (MFPT) T(r0,c0) is a useful measure for
quantifying the quality of trapping, it does not allow us to
distinguish between the two types of escapes (away from the
body vs. sticking to it). Thus, we will also introduce the
probability P(r0,c0) the a swimmer will reach r = rm (and thus
escapes) before hitting the rotating body, as the second impor-
tant statistical property of the problem.

5.3 Fokker–Planck formalism

A common approach to solving such drift-diffusion problems is
to introduce the Fokker–Planck equation

@p

@t
¼ � @

@r
pmr �

@

@c
pmc þ Pet

�1 @
2

@r2
þ Per

�1 @
2

@c2

� �
p9Lp; (32)

that governs the evolution of the probability distribution
p(r,c,t|r0,c0) for a swimmer located at (r,c) at time t starting
from (r0,c0) at t = 0 (e.g. see ref. 54). To determine statistics of
the system, such as the MFPT or the escape probability, we

need to introduce the adjoint of the Fokker–Planck
equation.55,56 Using L to denote the Fokker–Planck operator
from eqn (32), its adjoint L† is defined on the space of the
initial conditions (r0,c0) as the unique operator satisfying

hLf,gi = h f,L†gi, (33)

for any two functions f and g, where h�,�i denotes the standard
integral inner product defined as

h f ; gi ¼
ð2p
0

ðrm
1

f �gdrdc; (34)

where f * is the complex conjugate of the function f. Following
standard algebra, we thus obtain L† as

Ly ¼ Pet
�1 @

2

@r02
þ Per

�1 @
2

@c0
2
þ mr

@

@r0
þ mc

@

@c0

: (35)

Using the adjoint operator, it is a classical results that the
mean first passage time T and the probability of escape are
known to satisfy the partial differential equations54

L†T = �1 with T = 0 at r0 = 1 and r0 = rm, (36)

L†P = 0 with P = 0 at r0 = 1 and P = 1 at r0 = rm. (37)

5.4 Solution of Fokker–Planck model and validation

We solve eqn (36) and (37) numerically using the open-source
FreeFem++57 solver, based on the finite element method. The
results for the mean first passage time T(r0,c0) are shown in
Fig. 5A (in units of o�1) while the probability of escape P(r0,c0)
is plotted in Fig. 5B. To verify the results of our numerical
integration, we also compare it with ensemble averages of a
large number of realisations of direct numerical time-stepping
of the Langevin model in eqn (31a) and (31b) using the Runge–
Kutta fourth-order method. These results are plotted in Fig. 5C
and D below the corresponding Fokker–Planck result, where we
obtain excellent quantitative agreement.

Apart from the obvious observations that MFPT is small next
to the boundaries and larger in between, we observe that the
region of high MFPT extends significantly close to the r = rm

boundary along a c B p direction (see Fig. 5A or C). Intuitively,
this can be explained by noting that c B p means that the
swimmer is directed towards the decreasing r direction; a
swimmer close to r = rm has therefore a high chance of escaping
through that boundary (see Fig. 5B or D) and will take a long
time to turn around and escape.

Following the same logic, one would expect a region of low
MFPT to extend from the r = 1 boundary along the c B p
direction. However, in that region, the flow vorticity is strong
and rotates the swimmers rapidly; the radial swimming
vanishes thus on average there and escape is instead domi-
nated by translational diffusion, which is independent of the
swimmers’ orientation. Based on the same arguments, we can
expect the probability of escape to be lower for c B p in the
region close to r = rm and independent of c close to r = 1, in
agreement with results in Fig. 5B and D.
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5.5 Parameter sweep

Next, we explore the phase space of the four dimensionless
parameters of the problem: (i) the relative swimming speed a,
(ii) the swimmer’s shape factor B and the two Péclet numbers
(iii) Pet and (iv) Per. In order to quantify the overall quality of
trapping as a function of the parameters, we consider some
scalar moments of the continuum solutions for the MFPT
T(r0,c0) and the probability of escape P(r0,c0). A natural first
choice is the average probability of escaping hPi, taken over the
range r A [1,rm]. Note that we want the swimmers to initially be
uniformly distributed in space i.e. according to a linear dis-
tribution in r, fU(r0,c0) = r0/p(rm

2 � 1) so that

hPi ¼
ð2p
0

ðrm
1

Pðr0;c0Þr0
pðrm2 � 1Þdr0dc0: (38)

Additionally, we measure the maximal MFPT, denoted by T̃,
which sets a timescale for the emergent dynamics of the
ensemble of swimmers.

In computations, we fix the ratio between the translational
Péclet number and the rotational one to Pet/Per = 4; the exact
value for this ratio turns out to not affect the qualitative
features of our results, as confirmed in our computations
(not shown). We then explore the rest of the parameter space
by fixing the shape parameter B and then sweeping among the
values for the pair (a,Per). In Fig. 6 we show results for two
limiting values of B: spherical swimmers with B = 0 (Fig. 6A and
B) and rod-like swimmers with B = 0.95 (Fig. 6C and D).

The maximal MFPT (T̃) behaves qualitatively as expected.
The faster the swimmers and the stronger the noise, the easier
it is to escape and thus T̃ takes smaller values. The difference in
maximal MFPT between the two values of the shape factor B can
be understood by realising that the trapping domain is differ-
ent for distinct values of B and a. Indeed, the trapping domain
is given by r A [1,rm] where rm = [3(1 � B)/2a]1/2 so it is
significantly smaller for rod-like swimmers (B - 1) than for
spherical ones (B = 0). The size of the trapping region indicates
that more elongated swimmers are more difficult to trap, which
is reflected in the fact that MFPT is shorter for elongated
swimmers.

Regarding the average probability of escape, we notice in
Fig. 6B and D that for strong noise (large Per

�1) the value of hPi
is decreasing with a. This is also due to the fact that the
decrease in a leads to an increase in rm i.e. the size of the
trapping domain. Recall that the swimmers are initially dis-
tributed uniformly in space, so they follow a linear distribution
in fU B r0 and the average probability of escape is weighted
towards larger values of the initial position r0 (see eqn (38)).
With strong noise, the increase in rm leads to even more weight
towards r0 = rm and a larger escape probability (this is also
captured by eqn (40b) below).

Interestingly, we note that in Fig. 6B and D, the value of
hPi appears to always be in the range 0.6–0.7 for small values of
the non-dimensional swimming speed a. To rationalise this
observation, we can use an analysis in the diffusion-dominated
regime. When locomotion is negligible (i.e. a { 1), the adjoint
system of equations, eqn (36) and (37), admits simple solutions

Fig. 5 Comparison between theory and simulations for the mean first passage time T(r0,c0) (A and C, in units of o�1) and probability of escape P(r0,c0) (B
and D). (A) and (B) are obtained by direct integration of the adjoint Fokker–Planck equations, eqn (36) and (37), while (C and D) are results of direct
numerical simulations of the Langevin swimming model in eqn (31a) and (31b). Results shown are for Pet

�1 = 0.045, Per
�1 = 0.05, B = 0 and a = 0.008.
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given by

TD ¼
Pet

2
ðr� 1Þðrm � rÞ; (39a)

PD ¼
r� 1

rm � 1
; (39b)

with the subscript D used to indicate this is the diffusion-
dominated solution. This in turn allows to compute the two
trapping measures as

~TD ¼
Pet

8
ðrm � 1Þ2; (40a)

hPDi ¼
2rm þ 1

3rm þ 3
: (40b)

Since rm = [3(1� B)/2a]1/2, small values of a correspond to rm c 1,
leading to the approximate solution hPDi E 2/3. The small-a
limits in Fig. 6B and D correspond therefore a constant prob-
ability of 2/3.

In Fig. 7 we further compare the computational results from
Fig. 6 with the diffusion-dominated predictions in eqn (40).
The dark blue regions are those for which the simulations
are in line with the no-swimming predictions, and we observe
a systematic agreement for small values of a. We also note
a significant deviation from these predictions around the

a B 0.1, Per
�1 B 0.01 region where the maximal MFPT can

become up to 10 times smaller than the pure diffusion value.
It is also notable that it takes a much stronger noise to over-
come swimming for spherical swimmers (Fig. 7A and B) than it
does for rod-like swimmers (Fig. 7C and D). Here again this is
due to the fact that the trapping region is smaller for more
elongated particles.

Importantly, the results in Fig. 7 indicate that the region
where the maximal MFPT T̃ is significantly less than T̃D coin-
cides roughly with the region where the average probability of
escape is significantly greater than the diffusion dominated
prediction, a result that appears to hold for both limiting values
of the shape factor B. Consequently, swimming not only
promotes faster migration from the trapping region but it does
so by increasing the chance of escape and not by making more
particles stick to the rotating body.

6 Depletion zone and comparison
with experiments

In this section, we show how the theoretical framework devel-
oped above can explain the formation of the depletion of
swimming bacteria around a rotating sphere reported in ref.
50; these experiments are reproduced in Fig. 8, with the initial
distribution of bacteria shown in Fig. 8A and the depletion

Fig. 6 (A and C) Maximal MFPT, T̃, and average probability of escape, hPi, for two different values of the shape parameter B = 0 (spherical limit; A and B)
and B = 0.95 (elongated swimmer; C and D), as a function of the dimensionless swimming speed, a, and the rotational Péclet number, Per.
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(shown in a lighter colour, corresponding to a lower concen-
tration) visualised in Fig. 8B.

The original study included a theoretical model, with bacteria
modelled as self-propelled rods (B = 1) swimming in a 2D rotlet
flow.50 The comparison with the experiments was then done by
performing the numerical integration of the Fokker–Plank equa-
tions with a reflecting boundary condition at the surface of the
rotating object. Although the agreement between the theoretical
predictions from ref. 50 and their experimental results appear
good, one assumption of their model disagrees qualitatively with
observations. It was noted that, experimentally, about 40% of
bacteria initially located in what becomes the depletion zone end
up stuck to the surface of the rotating body; this clearly contra-
dicts the assumption that the surface of the body is reflective.

Thus, to predict the experimental results, we propose here
that the more appropriate boundary condition at the surface of
the rotating body is for it to be absorbing. We also consider a
more realistic value of the shape factor (B o 1); the rest of the
model is similar to the one in ref. 50. Instead of solving the
Fokker–Plank equations, we estimate the concentration profile
by using a Monte Carlo method based on the agent based
simulations of the corresponding evolution equations.

To confirm that altering the boundary condition from
reflecting to absorbing does not prevent the depletion zone
from forming, we start by carrying out direct swimming

simulations on an ensemble of prolate swimmers by numeri-
cally time-stepping eqn (31a) and (31b). As a test case, we
choose a frequency of rotation of f = 20 Hz, cells of shape factor
B = 0.85 (corresponding to aspect ratio a E 3.51) and take the
values for the average swimming speed and diffusion coeffi-
cients from the data in ref. 50. Note that the particular value of
B was chosen to reflect the aspect ratio of bacteria used in ref.
50. However, additional simulations (not shown) reveal that
that the results are not particularly sensitive to the choice of B.
We initialise a uniform distribution of 3112 non-interacting
swimmers in the region 1 r r r L, where L c Rd with Rd being
the radius of the depletion zone reported experimentally for f =
20 Hz. Here the boundary at r = 1 (i.e. the rotating sphere) is set
to be absorbing while r = L is taken to be reflective. Note that a
spatially uniform distribution of bacteria implies a linear
distribution in r in the (r,c) space, i.e. a uniform distribution
fU(r,c) = rp�1(L2 � 1)�1.

We carry out these computations until a steady distribution
of swimmers is obtained, which in our simulations happens
before T = 8000 (in units of o�1), so this is when we stop our
computations. The resulting distribution, averaged over the
angle c, and denoted by fSS, is shown in Fig. 9A relative to a
uniform distribution fU. We see the clear emergence of a
depletion region at r o Rd where the concentration of cells is
significantly less than its initial value (recall that Rd is the

Fig. 7 Comparison between numerical results (from Fig. 6) for the maximal MFPT, T̃ (A and C), and the average probability of escape, hPi (B and D),
and the theoretical predictions in the diffusion dominated regime, T̃D and hPDi, eqn (40). (A and B) Spherical swimmers B = 0; (C and D) rod-like
swimmers B = 0.95.
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radius of the depletion zone from experiments). In Fig. 9B we
show snapshots of the particular realisation of the ensemble
simulations at times t = 0, T/2, T; here again the depletion zone
is apparent at t = T. Since all the parameters were taken from
the experiments, including the depletion radius Rd, we con-
clude that our Langevin approach correctly captures the steady-
state depletion of swimming bacteria in the experiments.

Using additional simulations (not shown), we have also
confirmed the emergence of the depletion zone for various
values of the probability pst of the swimmer sticking to the
rotating body after each encounter, from pst = 0 (perfectly
reflective surface) to pst = 1 (perfectly absorbing surface). We
have found that the size of the depletion zone varies weakly
with the value of pst. This result is consistent with the model in
ref. 50 that assumed a reflective surface and still recovered the
emergence of the depletion. The escape away from the rotating

body is therefore the critical component in the establishment of
the depletion zone.

With the emergence of the depletion zone confirmed quan-
titatively in the model, we can now compare our theoretical
predictions for Rd with the experimental measurements. To
estimate the value of Rd, we use the experimental observation
that roughly 40% of bacteria from the depletion zone get stuck
at the rotating body. Thus, we can use the probability of escape
P(r,c) described above to define the depletion zone radius Rd as
the solution ðRd

1

ð2p
0

rPðr;cÞ
pðRd

2 � 1Þdcdr ¼ 0:6; (41)

i.e. as the radius Rd such that the swimmers that start closer
than Rd to the rotating body have a 60% probability of escape, or
equivalently, 40% probability of getting stuck to the rotating body.

Fig. 9 Numerical verification of the emergence of the depletion zone in our theoretical model. (A) Steady-state distribution fSS of an ensemble of non-
interacting swimmers following the stochastic model in eqn (31a) and (31b), normalized to the uniform distribution and averaged over the angle c. (B)
Snapshots from the simulations used to obtain data for A; shown at the start (t = 0), midway through (t = T/2) and at the end of the simulation (t = T). The
ensemble contains 3112 swimmers and the total simulation time is T = 8000, in units of o�1.

Fig. 8 Formation of a depletion zone of swimming bacteria around a rotating sphere. (A) Initial distribution of bacteria. (B) Depletion zone formed
(lighter colour, lower concentration) after 50 s of rotation at 5 Hz. Adapted with permission from ref. 50, licenced under CC BY 4.0.
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With B = 0.85 and taking all parameters from the experiments,
we compare in Table 1 our prediction for the depletion radius Rd

(in units of the sphere radius R) with the experimentally measured
values in ref. 50 for four rotation frequencies of the sphere (from
10 Hz to 40 Hz). We obtain excellent quantitative agreement
between the experiments and our Fokker–Planck continuum
predictions in all cases.

Finally, by using the continuum model computations of
the first passage time and the probability of escape, as
described in the previous section, we may investigate how the
quality of trapping changes with the dimensional parameters of
the experiment, namely the frequency of rotation o and the
shape factor of the swimmers B. As opposed to the parameter
sweep done in Section 5.5, we vary here only these two para-
meters since: (i) the frequency o is the only directly controllable
parameter of the problem and (ii) B is an effective shape
parameter that is not easily measured for a population of
microorganisms. As argued above, the quality of trapping
is well described by the maximal MFPT and the average
probability of escape. In Fig. 10 we plot the relevant results as
derived from the data obtained by numerically solving the
Fokker–Planck model in eqn (36) and (37). The quality of
trapping is seen to increase with the frequency of rotation, with
the vortex flow able to overpower both swimming and noise.
However, trapping becomes more difficult as the swimmers
become more elongated (i.e. when B increases); this is due to
persistence in swimming orientation for elongated swimmers,
which promotes a faster escape. Note that the typical time-scale of
the maximal MFPT is predicted to be around 50 s, a value which
agrees with the observed time of formation of the depletion
zone.50

7 Conclusions

In this paper, we investigate the behaviour of microswimmers
in elementary vortices, namely in two- and three-dimensional
rotlet flows. In the absence of noise, a mathematical approach
reveals the existence of deterministically bounded orbits near
the centre of the vortex and unbounded ones further away. For
elongated microswimmers, we discover a conserved quantity of
motion that allows us to easily map the regions of phase space
according to the type of the orbit (bounded/unbounded).
Next, we introduce translational and rotational noise into the
system, modelling both thermal noise as well as active biologi-
cal fluctuations. We quantify the quality of trapping in the

deterministically bounded orbits near the centre of the vortex
by examining the probability of escape and mean escape time
of the swimmers starting on said deterministically bounded
orbits. We show how to use these findings to formulate a
prediction for the radius of the depletion zone (see Fig. 8),
which compares favourably with the experiments.50

In the case of spherical swimmers, the equations in our model
were found to have a Hamiltonian structure. The axial symmetry
of the flow also leads to a conserved quantity of motion for
elongated swimmers, even though the system is no longer
Hamiltonian. Interestingly, a similar behaviour was reported for
swimmers in Poiseuille flow,42 suggesting an underlying funda-
mental behaviour in the two-dimensional swimming of elongated
microswimmers in Stokes flows.

Throughout this paper, we have assumed the motion to
remain two-dimensional. This simplification is supported by
the experimental setup in ref. 50 in which bacteria are hydro-
dynamically attracted to, and thus gather on, a horizontal
surface below the rotating sphere. Allowing swimmers to
explore the third dimension in the model of the three-
dimensional rotlet, or performing similar experiments but in
bulk fluid, could potentially lead to new behaviour not seen

Table 1 Comparison of the experimental50 and theoretical results for the
radius of the depletion zone Rd in the units of the bead radius R.
Theoretical predictions are calculated under the assumption B = 0.85
(i.e. for a cell with effective aspect ratio a = 3.51)

Bead frequency [Hz] Experiments ref. 50 Theory

3.0 2.5 � 0.3 2.0
10 4.1 � 0.4 3.6
20 5.1 � 0.5 5.0
40 6.5 � 0.5 6.9

Fig. 10 Maximal MFPT (A) and average probability of escape (B) as a
function of the rotation frequency of the sphere, o, and of the shape
factor of the swimmer B. All parameters of the problem were fixed
according to experimental data from ref. 50 and the MFPT is given in units
of seconds [s].
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within the two-dimensional assumption. In this paper, we
demonstrated that the swimmers that are relatively close to
the rotating body would be deterministically trapped in the
plane orthogonal to the axis of rotation of the body. Allowing
motion in the third dimension would represent an important
extension of the current work as it could result in plumes of
swimmers escaping along the axis of rotation, and therefore an
interesting new instance of collective motion.
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