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Interplay between substrate rigidity and tissue
fluidity regulates cell monolayer spreading†

Michael F. Staddon,abc Michael P. Murrell df and Shiladitya Banerjee *e

Coordinated and cooperative motion of cells is essential for embryonic development, tissue morpho-

genesis, wound healing and cancer invasion. A predictive understanding of the emergent mechanical

behaviors in collective cell motion is challenging due to the complex interplay between cell–cell interac-

tions, cell–matrix adhesions and active cell behaviors. To overcome this challenge, we develop a predic-

tive cellular vertex model that can delineate the relative roles of substrate rigidity, tissue mechanics and

active cell properties on the movement of cell collectives. We apply the model to the specific case of

collective motion in cell aggregates as they spread into a two-dimensional cell monolayer adherent to a

soft elastic matrix. Consistent with recent experiments, we find that substrate stiffness regulates the

driving forces for the spreading of cellular monolayer, which can be pressure-driven or crawling-based

depending on substrate rigidity. On soft substrates, cell monolayer spreading is driven by an active

pressure due to the influx of cells coming from the aggregate, whereas on stiff substrates, cell spreading

is driven primarily by active crawling forces. Our model predicts that cooperation of cell crawling and

tissue pressure drives faster spreading, while the spreading rate is sensitive to the mechanical properties

of the tissue. We find that solid tissues spread faster on stiff substrates, with spreading rate increasing

with tissue tension. By contrast, the spreading of fluid tissues is independent of substrate stiffness and is

slower than solid tissues. We compare our theoretical results with experimental results on traction force

generation and spreading kinetics of cell monolayers, and provide new predictions on the role of tissue

fluidity and substrate rigidity on collective cell motion.

Tissue spreading is a fundamental biological process under-
lying collective cell movement during development,1–4 cancer
invasion,5–8 and wound healing.9–12 The collective motion of
cells during tissue spreading is regulated by the interplay
between cell–cell and cell–matrix adhesions,13–15 as well as by
active processes such as lamellipodial cell crawling and acto-
myosin contractility that control the dynamic mechanical prop-
erties of individual cells and tissues.16,17 Many of the active
mechanical components of cells are mechanosensitive and
interact with each other via complex feedback networks,18–22

making it experimentally challenging to decipher the key
regulators of cellular mechanical behaviors.23,24

A common model system for studying the mechanics of
collective cell migration is the spreading of a three-dimensional
cell aggregate over a soft elastic substrate.25–30 When placed
onto an adhesive substrate, the aggregate spreads out in a
process similar to the wetting of liquid droplets, in which
differences in adhesion between cell–cell and cell–substrate
contacts drives the spreading of the fluid aggregate.26,27,31,32

However, the spreading dynamics of a living tissue is more
complex than the wetting of passive liquid droplets.
Recent work has demonstrated the importance of cellular
mechanics and intercellular adhesions in regulating the
spreading dynamics of tissues, whose mechanical properties
can range from fluids to glassy jammed solids.12,33–35 Both
tissue viscosity and cell–cell adhesion strengths are regulated
by E-cadherins.20,36,37 Upon reduction in E-cadherin expres-
sion, the spreading rate of the cell aggregate is elevated,25 while
increasing E-cadherin expression28 or substrate stiffness can
induce dewetting of already spread aggregates.38

The active, non-equilibrium behavior of cells is another key
regulator of collective cell spreading not accounted for in the
wetting model and remains poorly understood. However, recent
experiments have begun to uncover how cellular aggregates
adapt to the mechanics of the extracellular matrix in order to
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drive robust collective motion.29 Depending on matrix rigidity,
cells may polarize, generating active traction stresses to crawl
outwards. The stiffness of the substrate is important not only
for providing passive friction to cell motion, but can also
induce cell polarization.24,39 A recent study showed that cellular
aggregates can tune their mechanics and migratory behaviors
depending on matrix rigidity.29 On stiff substrates, traction
stresses are elevated at the tissue boundary, driving rapid
outward motion of cells. By contrast, on soft substrates, trac-
tion stresses are attenuated and cell spreading in driven by an
outward active pressure.

In this paper, we develop a cell-based active vertex model for
cellular monolayers to investigate the role of substrate stiffness
and tissue mechanics in monolayer spreading. A variety of
theoretical models and methods have been developed in recent
years to describe the collective motility of cells, including
continuum models,40–45 particle-based models,46,47 lattice-
based models,48,49 as well as vertex-based50–52 and voronoi
models.53 While continuum models of tissue spreading have
been successful in predicting traction force organization,45

wave-like dynamics41 and wetting transitions,25,28,44 these
models assume fixed constitutive relations for tissue materials
properties, and thus do not account for dynamic changes in
tissue mechanical properties due to single-cell level active
mechanical behaviors. On the other hand, discrete cell-based
models for tissues have not yet been implemented to study how
cellular aggregates adapt to substrate mechanical properties in
order to drive collective cell motion. We bridge this gap by
developing an active vertex model for cell aggregate spreading
that allow us to study the interplay between tissue mechanics,
substrate mechanics, as well as the role of active single-cell
behaviors in the collective motility of cell monolayers.

We model the collective motion of cells in a three-
dimensional aggregate as they spread into a two-dimensional
monolayer adherent to a flat substrate (Fig. 1a). The aggregate
acts as a reservoir of cells, feeding cells into the spreading
monolayer by a process called permeation26 (Fig. 1a). By devel-
oping an active vertex model for the monolayer, we study how
changes in substrate stiffness affects the speed and the modes
of monolayer spreading. Our model successfully captures the
experimental behaviour initially reported by ref. 29. We find
that monolayer spreading on soft substrates is driven by an
active pressure due to the influx of cells coming from the
aggregate. By contrast, on stiff substrates, monolayer spreading
is driven by active crawling of cells that generate elevated
traction forces at the monolayer boundary. To conceptually
understand the role of substrate stiffness in collective cell
motion, we develop a simple mechanical model of the mono-
layer as a viscoelastic material that spreads by active crawling as
well as due to growth in the preferred area of the material. This
model captures the key results from the vertex model, and
predicts that tissue stiffness governs the long term spreading
rate of the tissue. To test this prediction, we vary both
monolayer tension and substrate stiffness in the vertex model,
and find that tissues with increased tension display increased
sensitivity to substrate stiffness. Moreover, we find that

solid-like tissues spread faster than fluid-like tissues due to a
reduced bulk modulus of the tissue overall. These results
provide a theoretical understanding for the role of both tissue
fluidity and substrate rigidity, and their interplay, on the
spreading dynamics of multicellular aggregates.

1 Active vertex model for collective
cell spreading

To describe the dynamics of cell monolayer spreading, we
model the cell monolayer underneath the aggregate as a two-
dimensional tissue using the framework of the vertex
model.54–57 The aggregate generates a continuous flux of cells
into the monolayer uniformly within a central region that
marks the contact area of the aggregate (Fig. 1a). Cells in the
monolayer are able to actively crawl out into the free space
during spreading, while the cell influx from the aggregate,
modeled by stochastic insertion of new cells, increases the
number of cells in the monolayer over time (Fig. 1a and b).
Each cell in the monolayer is modeled by a two-dimensional
polygon, with edges representing the cell–cell junctions and the
vertices representing tri-cellular junctions (Fig. 1b and c). The
mechanical energy E of the monolayer is given by

Emech ¼
X
a

1

2
KðAa � A0Þ2 þ

X
a

1

2
GðPa � P0Þ2; (1)

Fig. 1 Mechanical forces driving the spreading of a multicellular aggre-
gate. (a) Schematic showing the side view of an aggregate spreading as a
monolayer over a soft adhesive substrate. Spreading is driven by the influx
of cells coming from the aggregate into the center of the monolayer, as
well as by active cell crawling that generate traction stresses on the
substrate. (b) Schematic showing the top view of the spreading monolayer
that is modeled using an active vertex model. (c) Schematic for an active
vertex model of a spreading monolayer. Blue arrows indicate the orienta-
tion of cell polarity, which indicates the direction of cell crawling. Cell
edges are under tension due to actomyosin contractility.
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where a indicates the cell number, and Aa and Pa are the area
and the perimeter of the ath cell, respectively. The first term
represents the area elasticity of the cell, describing in-plane
compressibility with elastic modulus K and preferred area A0.
The second term represents a balance between cytoskeletal
contractility, interfacial tension, and cell–cell adhesion, where
G is the contractility of the cell and P0 is the preferred perimeter
defined as P0 = �g/2G, with g the interfacial tension on cell
edges.56 Each cell contributes a resultant tension on each edge
equal to G(Pa � P0). The mechanical force acting on each vertex
is given by the energy gradient

Fi ¼ �
@Emech

@xi
(2)

where i indicates the vertex number, and xi is the vertex
position. In simulations, we non-dimensionalize force scales

by KA0

3
2 and length scales by A0

1
2 so that our non-dimensional

energy Ẽ becomes

~E ¼
X
a

1

2
ðaa � 1Þ2 þ

X
a

1

2
~Gðpa � p0Þ2; (3)

where aa = Aa/A0, pa = Pa/A0
1/2, p0 ¼ P0=

ffiffiffiffiffiffi
A0

p
, and �G = G/KA0.

To model active cell crawling, each cell is assigned a unit
polarity vector pa that defines the direction of cell crawling or
self-propulsion. Self-propulsion models for cell motility have
been extensively studied in the active matter literature, includ-
ing in particle-based models,58–60 active gel models,41,42,61

vertex models,51,52,62,63 and self-propelled voronoi models for
cell layers.53 These models implement various different rules
for cell polarity dynamics including random rotation,53,62 align-
ment with the polarity of cell neighbors,51,52,59,63 cell migration
direction51,58,60 or the total force acting on each cell.61 Here we
assume that cells on the boundary attempt to crawl into free
space, setting the polarity vector to be a unit vector perpendi-
cular to their free edge pointing outwards. Cells within the
monolayer then align their polarity vector with their neigh-
bours

dpa
dt
¼ kp

X
b

pb

nb
� pa

na

� �
(4)

where b labels the neighbouring cells of the cell a, kp is the
polarity alignment rate, na and nb are the number of neighbors
for cells a and b respectively. The resultant effect is a diffusive
relaxation of polarity from the edge to the center of the
monolayer, with cells near the center of the monolayer crawling
outwards but slower, consistent with experimental observations
of cell velocity distribution in spreading aggregates.29 We
expect using a model where polarity aligns with cell velocity61

would give similar results, as motion is mostly radially out-
wards due to outward crawling and pressure from the center,
and so polarity and motion are correlated. Assuming over-
damped motion, force balance at cell vertices is then given by

m
dxi

dt
¼ mv0hpaii þ Fi (5)

where m is the friction coefficient, v0 is the cell crawling speed,
and hpaii is the average polarity vector for cells containing
vertex i. The traction force generated on the substrate is then

given by m
dxi

dt
� v0hpaii

� �
¼ Fi.

For computational efficiency, we do not explicitly model the
substrate but assume an effective model that the cell–substrate
friction m increases monotonically with substrate elastic mod-
ulus E, such that m = m0E, where m0 is a constant. This result
follows from our previous work11,52 where we had shown that
cell–substrate friction increases with substrate stiffness by
explicitly modeling the substrate as an elastic network adherent
to a migrating cell collective. Furthermore, the linear relation-
ship between friction and substrate stiffness also follows from a
kinetic model of focal adhesion complexes,64 which predicts
that cell–substrate adhesive interactions provide a frictional
drag that increases with the elastic modulus of the substrate. At
high elastic modulus, the friction is likely to saturate. Cell
polarity and migration speeds are also substrate stiffness-
dependent. Experimentally it was observed that actin stress
fiber organization and directionality of cell movement is sub-
strate stiffness dependent, such that cell polarization increases
monotonically with substrate elastic modulus.23,29,65–67 While
single-cell migration speeds show biphasic stiffness dependence,68,69

the speed of collective cell migration increases monotonically
with substrate stiffness.70 Based on these observations, we
assume for simplicity that cell crawling speed in a tissue
increases linearly with substrate elastic modulus, v0 = c0E,
where c0 is a proportionality constant, although typically the
crawl speed would saturate at high rigidity.

The influx of cells from the aggregate into the monolayer is
modelled by stochastically inserting new cells into the 2D
monolayer, within a region that the aggregate occupies above
the monolayer29 (Fig. 1). When a new cell is added, an existing
cell within the aggregate area is randomly selected and sub-
divided into two, with the new cell initialized to have zero
polarity. The cell influx, or rate of cell additions, increases
with monolayer area, as the aggregate has more contact area to
add cells in, until the monolayer spreads outside of the
aggregate area. This results in a time-dependent cell flux J(t) =
Gmin(A(t),Aag)/a*, where G is the maximum flux, A(t) is the area
of the monolayer at time t, Aag is the contact area of the
aggregate at 901 contact angle, and a* is the area of a single
cell at the mechanical equilibrium. Thus, without cell crawling,
the monolayer area grows exponentially until it is larger than
the aggregate area, after which grows linearly. Without the
addition of cells from the aggregate, the monolayer exhibits
Kelvin–Voigt type viscoelasticity, in which the aggregate
increases in area up to a maximum value. However, at longer
timescales cells in the monolayer adapt their shape to stretch
and get thinner, or divide, giving a more fluid like behaviour of
the tissue which is often used to model monolayers.

The model is implemented in Surface Evolver71 and solved
numerically using the forward Euler method, with a timestep
dt = 0.05 min. At each time step, we update the vertex position
and then perform T1 transitions, or neighbour swaps, for edges
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that become lower than a length threshold L* = 0.05. To
implement cell influx from the aggregate we calculate the rate
of cell additions, J(t) = Gmin(A(t),Aag)/a*, where a* is the mean
area of a single cell at equilibrium. Then, with probability Jdt, a
random cell from the monolayer within the aggregate area is
subdivided into two cells by splitting the cell with a new edge.
The tissue mechanical parameters are taken from a previous
study on MDCK monolayers,11 while the cell flux rate and
crawling speeds are chosen to reproduce experimentally mea-
sured spreading rates of the monolayer29 (Table 1). To simulate
monolayer spreading, we begin with a monolayer of half the
contact area of the aggregate, located at the center of the
aggregate and beginning from a state of mechanical equili-
brium. The aggregate remains fixed in position as the mono-
layer spreads out, injecting cells into the monolayer over a
maximum contact area Aag.30 We then simulate cell spreading
including cell flux and crawling for 400 minutes, tracking the
monolayer area and traction forces at each cell vertex of the
tissue.

2 Substrate rigidity regulates the
driving forces for collective spreading

To understand how substrate rigidity regulates collective cell
spreading, we simulated the active vertex model of a spreading
monolayer at different values of substrate stiffness, E. Our
simulations reveal two distinct mechanisms of cell monolayer
spreading which are dependent on the substrate stiffness. On
soft substrates, cell spreading is driven by an active pressure
arising from the influx of cells from the aggregate into the
center of the monolayer (Fig. 2a, b and Movies 1, 2, ESI†). As
cells are added into the monolayer, pressure builds from the
newly incorporated compressed cells, producing radially out-
ward traction stresses localized around the center of the
monolayer that increase in magnitude over time (Fig. 2b and
Movie 2, ESI†). By contrast, monolayer spreading on stiff
substrates is driven primarily by cell crawling. This results in
faster spreading rates on stiff substrates as compared to
soft (Fig. 2c and Movie 3, ESI†), and radially inward traction
stresses accumulate on the border of the monolayer (Fig. 2d
and Movie 4, ESI†). While peripherally localized traction stres-
ses have been observed in experiments of spreading tissues
before,28,33,42 and reproduced in theoretical models,28,41–43

pressure-driven traction stresses at the center of the tissue have

been recently reported in experiments on cell aggregates
spreading on soft substrates.29

The dynamics of monolayer area depend on the mechanism
driving monolayer spreading. When cell monolayer spreading
is driven by the influx of cells from the aggregate, the mono-
layer area initially increases exponentially, as the cell influx rate
is proportional to the monolayer area (Fig. 3a). Once the
monolayer spread area is larger than the contact area of the
aggregate, cells are added at a constant rate, resulting in a
constant rate of monolayer area increase. On a soft substrate,
the radial traction stress (sr) takes positive values due to the
accumulation of compressed cells near the center of the
monolayer, before plateauing (Fig. 3b). As substrate stiffness
increases, there is a transition to crawling-driven spreading
resulting in negative (inward) traction stresses. At high sub-
strate stiffness, the monolayer area initially increases rapidly
due to border crawling forces until the cells are strained,
creating large inward traction stresses (Fig. 3a). The monolayer
area then increases linearly in time, at a faster rate than on soft
gels, with a gradual increase in the magnitude of traction
stresses (Fig. 3b).

Next, we investigate how the speed of cell crawling and the
rate of cell additions control the spreading rate and the pattern
of traction forces generated by the cell monolayer. At high cell

Table 1 List of default parameter values in the vertex model

Parameter Symbol Value

Contractility �G 0.166
Shape index p0 1.5
Crawl speed coefficient c0 = v0/E 1
Friction coefficient m0 = m/E 0.1 min
Polarity alignment rate kp 1 min
Aggregate flux rate G 22.5% hour�1

Aggregate area Aag 100

Fig. 2 Cell spreading dynamics and collective migration modes are
substrate rigidity-dependent. (a) Cell outlines, and (b) traction stress maps
of the cell monolayer during aggregate spreading on a soft gel (E = 5,
dimensionless units), at t = 50, 200, and 350 min. The pink shaded region
indicates the contact area of the aggregate above the monolayer, at 901
contact angle. See Movies 1 and 2 for a time-lapse video. (c) Cell outlines,
and (d) traction stress maps of cell monolayer spreading on a stiff gel
(E = 30), at t = 50, 200, and 350 min. See Movies 3 and 4 for a time-lapse
video. Scale bar represents 5 units of length.
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addition rate, cell motion is pressure-driven (outward traction
stresses), whereas at high crawling speeds, cell motion is
crawling-driven (inward traction stresses). The interplay
between pressure-driven and crawling-driven motion is regu-
lated by substrate stiffness, as discussed previously (Fig. 3a and
b). At a fixed (intermediate) value of substrate stiffness, we find
that the area growth rate, measured by the rate of area increase
as the monolayer doubles in size, increases with crawl speed,
but is limited by the rate of cell addition (Fig. 3c). When the
crawling speed is high but the cell addition rate is low, the
monolayer is unable to effectively spread. When we compute
the traction forces, we find large outward tractions when the
cell addition rate is high (compared to cell crawling speeds),
indicating pressure-driven spreading. In the limit where cells
are unable to crawl but the cell addition rate is high, spreading
rates still remain high, with crawling forces providing a small
boost to the overall spreading rate while reducing the magni-
tude of traction stresses (Fig. 3d). By contrast, large inward
traction forces are generated as cells stretch during spreading
driven primarily by crawling forces (Fig. 3d). In this case,
spreading rates are limited by the lower rate of stress relaxation
stemming from newly added cells.

3 Continuum model for collective cell
spreading reveals the relative roles of
substrate rigidity and tissue mechanics

While the vertex model simulations describe the role of sub-
strate rigidity and cell influx on traction force generation and
monolayer spreading rate, it does not immediately reveal an
intuitive understanding of the relative roles of substrate rigidity
and tissue mechanics on cell monolayer spreading. To this end,

we develop a continuum mean-field model for the spreading of
an elastic monolayer, neglecting spatial variations in dynamics
for simplicity. We consider a monolayer of N(t) cells of area ai(t)
each, where 1 r i r N(t). Each cell is self-propelled along their
polarity vector at a speed v0, and K is the area compressibility
modulus or a 2D bulk modulus of each cell. Total mechanical
energy of the cells in the monolayer is given by

Emech ¼
XNðtÞ
i¼1

K

2
ðaiðtÞ � a0Þ2 (6)

where a0 is the target area of each cell. During migration, the
mechanical force in each cell is balanced by active and dis-
sipative forces. In the linear response regime, the rate of energy
dissipated by monolayer spreading is given by

D ¼
XNðtÞ
i¼1

m
2h2

_aiðtÞ2; (7)

where m is the friction between the cell and the substrate, and h
is the average height of the cell monolayer. The rate of work
done by active forces is given by

_Wa ¼
XNðtÞ
i¼1

fc _ai cosðyiÞ=h; (8)

where fc = mv0 is the crawling force on each cell, yi is the angle
between cell polarity and motion for the ith cell. To derive the
equation governing changes in cell area, we use the Onsager’s
variational principle72–74 adapted for active systems,75–77 which
states that irreversible processes follow the dynamic path that
minimizes the Rayleighian R, given by the sum of the rate of
energy dissipated ðDÞ, rate of change in free energy of the
system (Ėmech) and the rate of work done by active forces (

:
Wa):

R ¼ Dþ _Emech � _Wa: (9)

The equation of motion for cell area follows from minimizing R

with respect to :
ai:

m :ai = mhv0cos(yi) � K(ai � a0)h2. (10)

Now, we define AðtÞ ¼
PNðtÞ
i¼1

aiðtÞ as the total spread area of the

monolayer, and A0(t) = a0N(t) as the total target area. Net self-

propulsion speed is given by v0
PNðtÞ
i¼1

cosðyiÞ � v0NðtÞ ¼

v0A0ðtÞ=a0; where we made a simple mean-field assumption
that cells are polarized in the direction of spreading, yiE0,
thereby neglecting spatial variations in cell polarity in the
spreading monolayer. Defining V0 = hv0/a0, we get the following
simple equation describing the dynamics of the spread area of
the monolayer:

:
A = V0A0(t) � k(A(t) � A0(t)), (11)

where k = Kh2/m is the stress relaxation rate of the cell mono-
layer. Both V0 and m are functions of the substrate stiffness E.
In this mean-field model, traction stress is simply given by
�K(A � A0). The above equation is supplemented by the
equation for cell insertion in the monolayer at a rate g:

Fig. 3 Cell monolayer spreading may be pressure-driven or crawling-
based depending on the rigidity of the substrate. (a) Monolayer area, and
(b) total radial traction stress over time for different values of substrate
stiffness. (c) Heatmap of monolayer area growth rate, (d) and total radial
traction stress for varying cell crawl speed and cell addition rate at an
intermediate value of substrate stiffness (E = 15).

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
7 

O
ct

ob
er

 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
/1

3/
20

26
 4

:5
0:

23
 A

M
. 

View Article Online

https://doi.org/10.1039/d2sm00757f


7882 |  Soft Matter, 2022, 18, 7877–7886 This journal is © The Royal Society of Chemistry 2022

:
A0 = gA0. (12)

The time-dependent solution for monolayer area is given by:

AðtÞ ¼ Að0Þ 1� V0 þ k

gþ k

� �
e�kt þ V0 þ k

gþ k
egt

� �
; (13)

which can be approximated at long times as A(t) E A(0)egt

(V0 + k)/(g + k). Since both cell crawling speed v0 and friction m
increases linearly with substrate stiffness E, we expect V0 p E
and k p 1/E. Therefore, on soft substrates k c V0, A(t) E
A(0)egt, such that monolayer spreading is solely governed by cell
addition rate g and is independent of tissue stiffness. On stiff
substrates and for stiff tissues, V0 c k, such that the spread
area A(t) E A(0)egtV0/g is regulated by cell crawling speed
independent of tissue mechanical properties. By contrast, soft
tissues spread to a larger area on stiff substrates as compared to
stiff tissues.

If instead, the monolayer reference area expands at a con-
stant rate due to a constant flux of cells from the aggregate, as
reported experimentally,29 we have

:
A0 = gA(0). (14)

This results in the following time-dependent solution for the
monolayer area:

AðtÞ ¼ Að0ÞðV0 þ kÞ

� k� g

k2
ð1� e�ktÞ þ 1

V0 þ k
e�kt þ g

k
t

� �
:

(15)

Under this model, we may approximate the monolayer area at
long time as AðtÞ ¼ Að0ÞgðV0 þ kÞt=k. Thus, at long times the
monolayer spread rate increases with the growth rate or crawl
speed, but decreases with tissue stiffness. Setting the cell crawl
speed and friction to increase with substrate stiffness, V0 p E
and k p 1/E, and fitting the remaining parameters to vertex
model simulations, we are able to recapitulate the trends in
spread rate and traction stress as substrate stiffness is varied
(Fig. 4a and b). On soft substrates, spreading is driven by
pressure from cell influx. Growth of newly added cells causes
an increases in the rest area of the monolayer, A0, resulting in
an exponential growth in monolayer area and positive traction
stress. As substrate stiffness increases, cell crawling regulates
tissue spreading with monolayer area increasing linearly, out-
pacing the influx of cells and generating negative traction
stresses. At long times, we observe a constant rate of area
increase that increases with substrate stiffness, consistent with
experimental data.29

4 Tissue fluidity impedes collective cell
spreading independent of substrate
rigidity

The continuum model for monolayer spreading predicts a
simple relationship between spreading rate, substrate rigidity
and tissue elasticity. This is evident from eqn (15), which leads
to the relation A(t) E A(0)g(1 + V0/k)t as t c k�1. As the tissue

stress relaxation rate k (or equivalently tissue bulk modulus K)
is reduced or if substrate rigidity E is increased, the model
predicts a faster rate of monolayer spreading (Fig. 4c). However,
this spreading rate also depends on the speed of cell crawling,
which in turn is regulated by substrate rigidity. If the crawling
speeds are low, as on soft substrates, then the monolayer
spreading is driven by cell influx and spreading rate is not
affected by the tissue elasticity (Fig. 4d). By contrast, if the
tissue has a higher relaxation rate k, then the spreading rate is
less sensitive to tissue and substrate mechanical properties, as
the effect of increase in crawl speed is counteracted by the
higher tissue bulk modulus (Fig. 4d).

To validate the predictions of our continuum model, we
sought to investigate how the mechanical properties of the cells
influence aggregate spreading, on soft to stiff substrates, using
our active vertex model. We vary the target shape index of the
cells, p0, to control tissue material properties. When p0 is low,
cells are under high tension and the tissue behaves like a
jammed solid. When p0 is above a critical value, p0 4 3.81 (in
the absence of activity), cells are under no tension and the
tissue is in a fluid state, in which the tissue has zero shear
modulus.78 In this state, the cells are able to flow around each
other and rearrange with no energy cost. We note that the
critical target shape index for rigidity transition depends on the
procedure used to generate polygonal tiling. In recent work79,80

it has been shown that the critical p0 can be larger than 3.81 in
the presence of vertices with coordination number greater than
or equal to four and with cells having five or less neighbors.
When we vary both the target shape index and the substrate
stiffness, we find that on soft substrates, changing p0 has little
impact on monolayer spreading rate (Fig. 5a). On soft sub-
strates, tissue spreading is pressure-driven (Fig. 5b), with the

Fig. 4 Predictions of the continuum model for spreading monolayers.
(a) Model results for the dynamics of monolayer area, and (b) total radial
traction stress over time for different values of substrate stiffness.
(c) Monolayer area over time for different values of tissue area elastic
modulus. (d) Heatmap showing the long-time spreading rates of the
aggregate for varying substrate stiffness and tissue elastic modulus.
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aggregate adding the same area of cells per unit time. Thus
monolayer spreading can only be slowed down by modulating
the friction with the substrate. Changing the fluidity or tension
of the tissue has little effect on the isotropic bulk pressure
driving monolayer spreading. However, when spreading occurs
on stiff substrates, we find that cells with a lower p0, and thus
higher tension, spread faster, with the monolayer spreading
twice as fast at p0 = 0.5 compared to p0 = 4.5 (Fig. 5c). Moreover,
the mechanosensitivity of monolayer spreading reduces as p0

increases. At high p0, changes in substrate stiffness have less
effect on the rate of spreading than for low p0.

Why do fluid tissues spread slower than solid tissues
(Fig. 5c)? While it is expected that cells in a fluidized tissue
move faster as they can rearrange more easily,12 monolayer
spreading is driven by a radially outward stress arising from
active cell crawling or isotropic pressure from cell influx, where
tissue shear modulus does not play a role. Fluid tissues have a
zero shear modulus,78 but can still maintain a finite bulk
modulus that can resist isotropic expansion of the tissue. To
determine the relationship between tissue fluidity and bulk
modulus, we computed cell area strain during spreading for a
range of p0 values. We find that cells are much more strained at
low p0, with cells area increasing by around 60% for p0 = 0.5,
compared to cells area maintained at p0 = 4.5 (Fig. 5d). When
we compute the energy cost per unit area for such bulk
deformations in the vertex model with perfectly hexagonal cells,
cells with a lower p0 require much less energy for deformation

than cells with a higher p0, despite low p0 cells being under
higher tension (Fig. 5e). These data suggest a counterintuitive
result that tissue bulk modulus increases with increasing p0 or
increasing tissue fluidity. Thus, on stiff gels where we have high
forces generated by active cell crawling, decreasing tissue
fluidity also reduces the bulk modulus, allows for a faster rate
of monolayer spreading.

To quantify the relationship between tissue bulk modulus
and target shape index, we calculate the bulk modulus K as the
second derivative of energy density with respect to the area
strain e, K = (1/a*)q2Ẽ/qe2, where a* is the area of the cell at
equilibrium, and Ẽ is given by eqn (3). We find that the bulk
modulus increases monotonically with p0 for p0 o phex E
3.722, where phex is the perimeter of a hexagon of unit area
(Fig. 5f). Interestingly, there is a discontinuity in bulk modulus
for p0 4 phex, beyond which the bulk modulus stays constant.
To gain a mechanistic understanding of these results, we note
that the cell area and perimeter can be written as a = a*(1 + e)
and p = p*(1 + e)1/2. As previously shown by Staple et al.,56 taking
the second derivative of Emech with respect to e and evaluating
the energy at e = 0 one obtains K = a* + Gp*p0/4a*. For p0 o phex,
a* p p0 and p* p a*1/2. The second term in K thus scales like
a*1/2, resulting in an increase in bulk modulus with increasing
cell area, which in turn increases with p0 (Fig. 5f). Since low p0

cells are under higher tension they are also smaller in size,
resulting in a lower bulk modulus (Fig. 5f). Having a low p0,
high tension cell corresponds to two springs in series that are

Fig. 5 Solid-like tissues spread faster than fluid-like tissues. (a) Area growth rate, and (b) the total radial traction stress for varying substrate stiffness and
target shape index p0. (c) Monolayer area over time for varying target shape index. (d) Mean cell area strain over time for varying target shape index. (e)
Change in mechanical energy of the tissue per unit area versus cell area strain for varying cell shape indices. (f) Bulk modulus of the tissue versus the
target shape index p0. The dashed vertical line indicates the perimeter of a hexagon, phex, with unit area.
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softer than a single spring: while the energy cost per unit area is
similar, the deformation is spread between more cells and so
we have a lower overall energy cost. However, for p0 4 phex, cells
adapt their perimeters to the target perimeter. As a result, the
perimeter term doesn’t contribute to energy in eqn (3), result-
ing in a discontinuity in the bulk modulus. Taken together, our
theory and simulations reveal the interdependence between
cell shape, tissue elasticity and substrate rigidity in the spread-
ing of cell monolayers on compliant substrates.

5 Discussion

In this study, we investigated how tissue mechanics and sub-
strate stiffness, and their interplay, regulate the dynamics of a
spreading cellular aggregate, using a combination of computa-
tional simulations and mathematical modeling. In particular,
we developed an active vertex model to simulate the spreading
of a cellular monolayer emanating from a three-dimensional
aggregate, which is undergoing active growth as well as driven
forward by cell crawling. Our simulations reveal two distinct
modes of cell monolayer spreading depending on substrate
rigidity. On soft substrates, cell monolayer spreading is
pressure-driven, exhibiting radially outward traction stresses
that originate from the influx of cells into the monolayer from
the aggregate. By contrast, on stiff substrates, cell crawling
forces drive monolayer expansion, generating inward traction
forces localized to the periphery of the cell monolayer. Despite
the different mechanisms for spreading, our simulation reveals
comparable spreading rates on substrates of varying rigidity,
consistent with experimental data.29 The rigidity-dependent
transition from pressure-based to traction-based spreading
arises in the model because of the cell–substrate coupling that
increases cell polarisation, crawl speed, and traction forces with
increased substrate rigidity.23,29,65–67

The modes of collective cell motion and the rate of spread-
ing is not only dependent on substrate rigidity but can also be
tuned by varying the rate of cell influx from the aggregate and
the speed of cell crawling. When the cell crawling speed is high
relative to the cell influx rate, crawling-driven spreading dom-
inates, with inward traction forces localized to the tissue
periphery. By contrast, when crawling speeds are lower com-
pared to cell influx rate, pressure-driven spreading drives
monolayer expansion with outward traction forces distributed
throughout the monolayer. However, we find that the cell
addition rate is the main regulator of spreading rates, with
crawling speeds only able to increase spread rates by 50%,
suggesting that the influx of new cells is the limiting factor for
spreading.

To further understand the cellular mechanisms controlling
spreading rates, we develop a simple continuum model of the
spreading tissue as an elastic medium with active growth and
cell crawling. We identify the tissue bulk modulus as another
important mechanical property governing the dynamics of
spreading. When the cells are very stiff with a high bulk elastic
modulus, our model predicts little variation of spread rates

with a change in substrate stiffness or crawl speed, with the rate
of cell addition governing the spreading rates. However, when
the cells are soft, traction forces generated by crawling cells
may produce larger strains on cells. This results in spreading
rates that are very sensitive to the mechanical stiffness of the
underlying substrate. To tests this prediction, we used our
active vertex model to simulate monolayer spreading by varying
cell stiffness through changes in the target shape index p0.
When the target shape index is low, cells are under high
tension but have a reduced bulk modulus. By contrast, cells
with a higher target shape index result in a fluid tissue that has
a high bulk modulus. As a result, cell monolayers with a lower
target shape index (and consequently lower bulk modulus)
spread faster on stiff substrates than on soft substrates.

Overall, these results capture previously reported data on the
spreading of cellular aggregates with increased spreading rates
on stiff substrates, and also explain the spatiotemporal patterns
in traction stresses on soft substrates driven by active pressure,
and on stiff substrates driven by active cell crawling. Moreover,
our theory and simulations provide new predictions on the role
of tissue mechanics on cell spreading, with fluid tissues being
less sensitive to substrate rigidity and spread slower than solid
tissues.
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