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Recent advances in the functional material and biomedical applications of nanorods call for a
fundamental understanding of the active motion of nanorods in a viscoelastic medium. Molecular
dynamics simulations are performed to investigate a model system consisting of force-driven active thin
nanorods in a melt of unentangled polymers. The activeness of a thin nanorod arises from a constant
external force applied uniformly along the rod. The simulations demonstrate that the active force
overcomes the randomness of the diffusive motion and results in a ballistic motion along the direction
of the applied force at long timescales. The constant speed of the force-driven ballistic motion is
determined by the balance of the active force and the friction from the coupling of the nanorod with
the polymer viscosity. The friction coefficient, which is computed as the ratio of the active force and the
speed, decreases as the active force increases. The origin of the reduction in the friction coefficient is
the high speed that allows the nanorod to renew its local environment faster than the relaxation time of
melt chains. A scaling theory is developed to quantify the dependence of the friction coefficient on the
strength of the active force. The simulations also demonstrate that the force-driven ballistic motion
suppresses the rotational diffusion of the rod and cuts off the de-correlation of the rod axis with time.
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DOI: 10.1039/d2sm00731b On the scaling level, the long-time trajectory of a force-driven active nanorod piercing through

unentangled polymers may be described as a stretched array of “active blobs”, where the short-time
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1 Introduction

The dynamics of nanorods in a viscoelastic medium are critical
to many applications of nanorods. The fabrication and proces-
sing of nanorod-containing polymer composites, which possess
tunable mechanical,"™ optical,>” and electrical® > properties,
are affected by the dynamics of nanorods. The uses of nanorods
as diagnostic probes in bio-imaging’**® and as drug delivery
vehicles in bio-medicine'”?° rely on the dynamics of nanorods
in a complex environment of biological molecules.”” With
thermal agitation, the dynamics of nanorods are passive and
coupled with the viscoelasticity of surrounding molecules,
exhibiting the random nature of Brownian motion.*®**> Going
beyond the randomness of passive dynamics, the active
dynamics of nanorods may be induced either by an external
field such as a magnetic field,'®*® an electric field,** near-
infrared light'® and ultra sound®**** or by a chemistry-based
mechanism of self-propulsion.””?*>° A fundamental under-
standing of the active motion of nanorods in a viscoelastic
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random-walk trajectory within an active blob is unperturbed by the active force.

medium will benefit further advances in the material and
biomedical applications of nanorods.

The passive dynamics of thin nanorods in viscoelastic poly-
mers are characterized by a length-scale- and shape-dependent
breakdown of the Stokes-Einstein relation in the continuum
theory.*® The diffusion coefficients for different modes of the
nanorod dynamics, including the translational motion along
and normal to the rod axis, the overall translational motion,
and the rotational motion of the rod axis, are all related to the
bulk viscosity of surrounding molecules in the Stokes-Einstein
relation.*>*> Nevertheless, recent experiments**>° and computer
simulations®**"** have revealed the coupling of a nanorod only
to a fraction of the bulk viscosity, indicating the breakdown of
the Stokes-Einstein relation. Molecular dynamics simulations of
monomerically thin nanorods in unentangled polymer melts*?
have shown the anisotropy in the translational diffusion along
and normal to the rod axis. The parallel diffusion in the body
frame of the thin nanorod is coupled to the local viscosity on the
monomer length scale, which is independent of the rod length I.
The coupling to the local monomeric viscosity reflects a full
screening of the hydrodynamic interactions. By contrast, the
normal diffusion is coupled with an effective viscosity that
depends on [ with respect to the polymer chain size, corres-
ponding to unscreened hydrodynamic interactions. The same
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effective viscosity for the normal diffusion also dictates the
rotational diffusion of the rod axis. For the overall translational
diffusion in the lab frame, the effective viscosity corresponds to a
partial screening of the hydrodynamic interactions, as both the
parallel and normal components contribute to the overall
diffusion.

Activeness is anticipated to alter the interplay between the
nanorods and the viscoelasticity of the surrounding medium,
as the ballistic motion induced by the activeness has been
shown to enhance the mobility of nanoscale objects in
experiments®” and computer simulations.**> To investigate
the active dynamics of nanorods in a viscoelastic medium, we
perform molecular dynamics simulations and scaling analysis
of a model system consisting of force-driven active thin nano-
rods in a melt of unentangled polymers. The thickness of the
nanorod is comparable to the monomer size, and the aspect
ratio of the nanorod is >4. The unentangled polymer chains
represent a viscoelastic medium with internal chain relaxation
dynamics. The activeness of a thin nanorod is introduced by
applying an active force uniformly along the initial rod axis,
which facilitates the arrival of the steady state in the simulations.
We find that the active force overcomes the randomness of the
diffusive motion and results in a ballistic motion of the thin
nanorod along the force direction at long timescales. The con-
stant speed of the force-driven ballistic motion is determined by
the balance of the active force and the friction from the coupling
of the nanorod with the polymer melt. The friction coefficient
decreases as the strength of the active force increases. We
determine the origin of the reduction in the friction coefficient
is the fact that the high speed renews the local environment of
the nanorod faster than the relaxation time of polymer chains.
We develop a scaling theory that successfully describes the
dependence of the friction coefficient on the strength of the
active force as well as the onset of the reduction in the friction
coefficient in the simulations. We also find that the active force
suppresses the rotational diffusion of the rod and cuts off the
de-correlation of the rod axis with time.

2 Models and methods

We simulate the polymers using the canonical bead-spring
model.**™*® Monomers of size ¢ and mass m interact via the
Lennard-Jones (L]) potential with an interaction strength ¢, cut-off

distance 7. = 2.57, and unit time t = ¢+/m/e. Polymer chains of N
monomers each are connected by the finitely extensible nonlinear
elastic (FENE) bonds. We simulate the thin nanorods as rigid
bodies made of beads identical to the monomers. To create a thin
nanorod of length [, I/c beads are placed along a straight line with
regular spacing ¢ and grouped into a rigid body. The interaction
between a bead of a nanorod and a surrounding monomer is the
weakly attractive L] potential with r. = 2.5¢, which promotes the
dispersion of nanorods in the melt. The interaction between two
beads from two different nanorods is the purely repulsive LJ
potential with 7. = 2"°c, which prevents the aggregation of the
nanorods.
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Nanorods and polymers were placed in a cubic box with side
length L and periodic boundary conditions in all three directions.
Each sample was equilibrated at temperature 7 = 1.0¢/kg and
pressure P = 0. The equilibration was performed with a Nosé-
Hoover thermostat/barostat applied to the polymer chains. A
Nosé-Hoover thermostat was applied to both the translational
and rotational degrees of freedom of the rigid nanorods. The
characteristic damping time of the thermostat was 107, and that
of the barostat was 100t. The equilibration run lasted for a time
that is much longer than the diffusion time of the polymer chains.
There are two sets of simulation samples. In one set, the polymer
chain length N = 16, and the rod length [ = 40, 80, 160, and 32¢.
In the other set, N = 64, while [ = 40, and 8¢. The first set
corresponds to ! comparable to and larger than the root-mean-
squared end-to-end size of the polymer chain, R = 4.70. The
second set corresponds to [ < R = 10.1¢. In all samples, the
number of nanorods is N, = 27, while the number of polymer
chains N, varies. Multiple nanorods are simulated simultaneously
for a better statistical average of the dynamics data. As shown in
Table 1, the volume fraction of the nanorods ¢, = N,lo*/L? is less
than 0.07%, and the volume fraction of the excluded volume ¢, =
N/Pa/L? is less than 2.1% in all samples. Recently, it has been
shown that the organization of nanorods in polymer nanocom-
posites depends on the details of the nanorod model.**® For the
specific models of nanorods and polymers used here and the low
volume fraction of nanorods in the simulations, we have con-
firmed that the nanorods are well dispersed without any aggrega-
tion in all samples.*® Additionally, because of the low volume
fraction of nanorods in the simulations and the lack of a theory
for the long-range correlation of nanorod pairs, we do not attempt
to quantify and correct for the effects of any long-range pair
correlation on the dynamics of individual nanorods.

The dynamics of nanorods in polymer melts were simulated
at a fixed volume and a constant temperature T = 1.0¢/kg. The
temperature of polymer chains was controlled using a Nosé-
Hoover thermostat with a characteristic damping time of 10t.
The activeness of a nanorod was modeled by applying a con-
stant active force along the initial rod axis such that the driven
motion of the nanorod along the active force direction is
commensurate with the preferential thermal diffusion of the
nanorod along the rod axis,*’ facilitating the arrival of the steady
state in the simulations. The active force is uniformly distributed
along the rod with each bead subjecting to an active force f3u(0),
where u(0) is the unit vector along the initial rod axis. Fig. 1

Table 1 Parameters for the simulations of force-driven active thin nano-
rods in unentangled polymer melts

Box Nanorod Excluded

Chain  Num. of size length/ Num. of Vol. fraction vol. fraction
length N chains N, L (o) (o) rods N; ¢, (%) Gext (%)

16 73818 110.5 4 27 0.008 0.032

16 73818 110.5 8 27 0.016 0.128

16 73818 110.5 16 27 0.032 0.512

16 73818 110.5 32 27 0.064 2.048

32 36909 110.2 4 27 0.032 0.516

32 36909 110.2 8 27 0.065 2.065
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Fig. 1 Schematic illustration of a force-driven active thin nanorod (a rigid
body of blue spheres) in a melt of unentangled polymers (yellow spheres
connected by black lines). The monomer size b, rod length [, and melt
chain size R are indicated. The active force is applied uniformly along the
rod with a magnitude of f3 per monomer length. The active force is along
the initial rod axis with unit vector u (0), while the orientation of the rod axis
changes over time with a time-dependent unit vector u.

illustrates a force-driven active thin nanorod in an unentangled
polymer melt. f§ varied from 0 to 2.0¢/. To enable the active-
ness, no thermostat was applied to the thin nanorods. The time
step for integrating the equations of motion was 0.01t. The net
linear momentum and net angular momentum of the polymer
melt were zeroed after each step of integration, so there was no
drift or rotation of the melt. All simulations were performed
using the LAMMPS simulation package.>'**

3 Results and discussion

Representative trajectories for the dynamics of active nanorods
in the simulations are shown in Fig. 2. The dynamics of an
active nanorod is quantified by the mean-square displacement
(MSD) (Ar*(£)) = {[Feom(t) — Feom(0)]?) of the center of mass of the
nanorod as a function of time ¢ in the polymer melts. Fig. 3
shows (Ar*(¢)) for the nanorods of [ = 32¢ in the polymers of
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Fig. 3 MSD(Ar2(t)) of the force-driven active thin nanorods with length
[ = 32¢ and indicated active force per monomer f3 in a melt of polymer
chains with N = 16 monomers per chain. f§ = O corresponds to the passive
dynamics of thin nanorods with no activeness. Dashed line indicates t =
107 that separates two independent computations of MSDs for t < 10t and
10 < t < 10%.

N = 16 with increasing fZ. (Ar*(¢)) for t < 10t and 10t < ¢ <
10%r are computed separately. Depending on the strength of the
active force, the production run for MSD in the time window
10t < t < 10%t lasted from 4 x 10"t to 6 x 10°1. Coordinates
were dumped every 107. For the earlier time window 0.01t <
t < 107, the production run lasted for 1007, and coordinates
were dumped every 0.01t in all cases. In the calculations of
MSD, the average was taken over different nanorods and
different time periods of the same length in the steady state.
The scenario with f§ = 0 corresponds to the passive dynamics
of nanorods. The corresponding MSD exhibits a crossover from
the initial thermal ballistic motion with o = d log(Ar*(¢))/d log
t = 2 to the sub-diffusive motion with o < 1 at intermediate
timescales and eventually to the terminal diffusion with « = 1,
in agreement with the previous simulation result.** For f§ > 0,

55 - 0.5 0./ 4 80

54 60

20 70
X Y

Fig. 2 (a) Molecular dynamics trajectories of force-driven active thin nanorods of length [ = 324 in polymer melts of chain length N = 16 at indicated
magnitudes of active force. Three trajectories in (a) are enlarged and shown in (b). For the trajectory at the strongest active force f§ = 2¢/a, only the part

comparable to the rod length is shown.
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the MSD is characterized by the new force-driven ballistic
regime with o = 2 at long timescales. The overlap of the MSD
for the active nanorods prior to the force-driven ballistic regime
with the MSD for the passive dynamics of nanorods indicates
that the active force is not sufficiently strong such that the
nanorod dynamics are dictated by the thermal motion at short
timescales. With increasing fg, the force-driven ballistic regime
begins at a shorter time. Eventually, for the largest f§ = 2¢/0, the
force-driven ballistic regime covers the entire range of time-
scales explored in the simulations.

For the simulation samples in Fig. 3, we further decomposed
the overall MSD into two components that are parallel and
normal to the direction of the applied force, respectively. Note
that the direction of the force, which is aligned with the initial
rod axis, is fixed in the lab frame. The results from the
decomposition are presented as ESIL.{ The parallel component
is almost identical to the overall MSD in the force-driven
ballistic regime, indicating the force-driven ballistic motion is
along the force direction. The normal component exhibits rich
time-dependent features that need further study, but its con-
tribution to the overall MSD in the force-driven ballistic regime
is very minor. See ESIf for a more detailed discussion.

In all cases, the force-driven ballistic motion is quantified by
a constant speed v?, which is computed from the long-time

value of \/(Ar?(z))/#*. The increase of v* with increasing f§ for
the samples in Fig. 3 is shown in Fig. 4. v® for f§ = 2¢/o is slightly
above the thermal speed of the nanorod with 32 beads of mass
m, which is vhermal = /3kpT/30m = 031g/7. v* > ypthermal
indicates that the ballistic motion dominates the thermal
motion at all timescales, as the displacement vt from the
active motion is sufficiently large that it surpasses the displace-
ment v"™ from the undamped thermal ballistic motion.
The increase of v* with increasing f; can also be observed in the
representative trajectories of active nanorods in Fig. 2, where
the displacement over the same time of 2007 increases with
increasing f3.

Gler/o?)

I L

02 03 05 1 2

file/o]
Fig. 4 The speed v* for the force-driven ballistic motion (right axis) and
the monomeric friction coefficient {3 = f3/v? (left axis) as functions of the
active force per monomer f3 for the same systems in Fig. 3.
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As the speed v increases with the strength of the active
force, the friction coefficient for the force-driven ballistic
motion of an active nanorod decreases. In the force-driven
ballistic regime, there is a balance between the active force f3
(I/o) and the frictional force (*v?*, where (* is the friction
coefficient. From f3(//o) = {(*v*, the monomeric friction coeffi-
cient {§ = (*/(l/o) = foV*. The dependence of (§ on f; for the
simulation samples in Fig. 3 is shown in Fig. 4. In the limit of
vanishing f3, {§ approaches a plateau that corresponds to the
passive dynamics of the nanorod, for which the monomeric
friction coefficient is {o = 22.5¢7/6>.** As f3 increases, (§ deviates
from (, and decreases as the force-driven ballistic motion
dominates over the thermal motion at decreasing timescale.

To understand the dynamics of an active nanorod in unen-
tangled polymers, we develop a scaling theory. Consider a
nanorod of length ! and thickness comparable to the Kuhn
monomer size b in a polymer melt. Each polymer consists of N
monomers, and the polymer chains are unentangled. The
active force along the initial rod axis is f§ per monomer. Refer
to Fig. 1 for a schematic illustration of the force-driven nanorod
in polymer chains.

We first review the scaling description of the passive
dynamics of the nanorods with f§ = 0 in unentangled polymers.
The nanorod in diffusion experiences an effective viscosity #egr
that is comparable to the geometric mean of the viscosity 1, on
the monomer length scale and the maximum viscosity #y,ax that
the rod can experience. The scaling relation 7. = (110;1,113)()1/2
corresponds to a partial screening of the hydrodynamic inter-
actions in the coupling between the nanorod and the melt.
Note that if 7. & 1o and Hegr & Nmax, there is a full screening
and no screening of the hydrodynamic interactions beyond the
monomer length scale, respectively. When [ is larger than the
average size R &~ N*?b of the melt chain in the random-walk
conformation, #max for unscreened hydrodynamic interactions is
comparable to the melt viscosity #mee & 7oN. However, when [ <
R, Nmax is instead only comparable to the viscosity 1y ~ 10g =
1o(P’/b*) of local chain segments, which contain g monomers in
each segment and have an average chain size g*?h ~ L

A length-scale dependent #.¢ has been used to describe the
diffusion of spherical nanoparticles in various polymer
systems,*®**77 and it is consistent with the length-scale depen-
dent nanoparticle dynamics in alternative theoretical
approach.’®®® For nanorods, the rule of geometric mean
reflects the additional effects of the anisotropic particle shape
on 7. While the diffusion along the rod axis is determined by
the monomeric viscosity #,, the diffusion normal to the rod axis
is determined by nmax. Such a difference between the parallel
and normal components with respect to the rod axis, i.e., in the
body frame, has been shown by the recent simulations on the
diffusion of nanorods.*’ The rule of geometric mean compo-
sites the viscosity for the diffusion parallel and normal to the
rod axis to obtain 7. for the diffusion in the lab frame. The rule
was first used by Aponte-Rivera and Rubinstein® in the scaling
theory for the dynamical coupling in oppositely charged poly-
electrolytes, where #.¢ for the polyanion correlation segments is
the geometric mean of the values for the full screening and no

Soft Matter, 2022, 18, 6582-6591 | 6585
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screening of the hydrodynamic interactions. Note that in the
theoretical description throughout the paper, & indicates the
equation is on the scaling level with an order-of-unity coeffi-
cient dropped.

The friction coefficient for the passive dynamics of a
nanorod { = 7#.gl, and the diffusion coefficient D = kgT/(,
according to the Stokes law and Einstein relation, respectively.
As a result, the MSD is (Ar’(t)) ~ Dt =~ (kgT/negl)t in the
terminal diffusive regime. If [ > R, the time scale 74 at which
the terminal diffusion begins is comparable to the relaxation
time of the melt 7,,¢. Using the N-dependence of the relaxation
time in the Rouse dynamics model,*" 1, & 1,N°, where 1, is
the monomeric time scale. If [ < R, t4 is comparable to the
Rouse time of the g-monomer segments, 7, ~ Tog” < Tmele-

For a force-driven active nanorod, the friction coefficient {*
is comparable to { in the limit of vanishing f§, as shown by the
simulation result in Fig. 4. The force-driven ballistic motion of
an active nanorod with a small speed v* begins at a time scale
Thallistic > Td, Where the motion of a passive nanorod with fi = 0
is already in the terminal diffusive regime. The ballistic motion
with T8anistic > Tq renews the local environment of the nanorod
sufficiently slow such that the relaxation dynamics that deter-
mine the thermal diffusion of the passive nanorod is complete.
As a result, the same friction that affects the thermal diffusion
resists the force-driven ballistic motion, ie., {* ~ {. An example
of this scenario in the simulations is the active dynamics with
the smallest f§ = 0.05¢/0 in Fig. 3.

The reduction of {* with respect to { results from the strong
activeness that makes the force-driven ballistic motion begins
at Thanistic < Tq- The ballistic motion with {,pistic < Tq renews
the local environment of the nanorod at a rate that only allows
the relaxation dynamics of chain segments with g monomers
each to be complete, i.e.

Thatlisic ¥ Tg & To(g)’ 1)

where the monomeric time scale

U0b3
N — 2
O T 2)

The MSD of a force-driven active nanorod at th,yjistic 1S compar-
able to the MSD of a passive nanorod at 5. For ¢ > Thaistic & Tgy
the MSD due to the force-driven ballistic motion is above the
MSD for the passive thermal motion, allowing the active
nanorod to escape the effects of the relaxation dynamics of
chain segments longer than g®. As a result, for the force-driven
active nanorod, the maximum viscosity corresponding to
unscreened hydrodynamic interactions is

Mimax = Mog" (3)
The effective viscosity using the rule of geometric mean is
née ~ (oina)’ = no(g)"? (4)

The friction coefficient is

0t = négl (5)
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which is smaller than { for the passive dynamics. A typical
example of this scenario is the active dynamics with f§ = 0.3¢/0
in Fig. 3.

For a large f§ that makes thanistic & Ty < Tq, We calculate
the friction coefficient {* of a force-driven active nanorod by match-
ing the MSDs for the active and passive motion at Thauisic & Tg.
The constant speed of the force-driven ballistic motion

a

r=5(;) o)

The MSD for the ballistic motion at ¢ & Thanisic & Ty iS
(Ar 2(T§)>§allistic r (varé)z (8)

The MSD for the passive thermal motion at ¢t ~ g is

<Ar2 (ri) >‘hermal ~ (k;T) Ty 9)

where kzT/(? is the diffusion coefficient. From (Arz(rg))ﬁamsﬁc ~
(Ar?(z3)) ™™ we obtain the number of monomers per segment
for the chain segments that affect the force-driven ballistic
motion of the nanorod is

a N\ —4/3
g~ (jm) (10)

. (ksTug\'*  [kgT\ (1\"?
F ~ ( — 2 ~ — _
F ( - b b (11)

As a result, the effective viscosity for the force-driven active
nanorod is

(6)

where

where

. ay1/2 A\
Ner 2 1Mo(8") "~ 1o (ﬁ) (12)

The corresponding friction coefficient is

. ) / a ~2/3
Canipl={ (E) (%) (13)

where the monomeric friction coefficient for the passive dynamics
Co & nob (14)

Finally, the friction coefficient per monomer for the force-
driven active nanorod is

/ AN —2/3 an —2/3
Grr(g)~a(h) ~a(L) (15)

s=7/(5) (16)

Matching the two MSDs at t; corresponds to the work
performed by the active force f* at a speed v* over a time of
Tg is comparable to the thermal energy kg7, ie.,

where

N

This journal is © The Royal Society of Chemistry 2022
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W' x Vg R keT (17)

which one can verify using eqn (1), (6), (10), (11), (13), and (14).
Therefore, 3 is the time scale above which the energy from the
active force outcompetes the thermal energy kg7. Recall that
Einstein relation D = kgzT/{ shows the diffusion coefficient for
the passive dynamics is dictated by the thermal energy kgT.
Therefore, w* > kgT for t > 13 is consistent with the fact that
the long-time ballistic motion of the force-driven nanorod is
not affected by the thermal agitation. Likewise, the force #*°
satisfies

‘ F
Wazfa"Varoz?a(—l)roszT (18)
Mo

Eqn (18) means that %, is a strong force at which the rod is
coupled only to the monomer viscosity 1, with friction coeffi-
cient & =~ nol, and the work #™ performed by #, at the
constant speed ¥ ~ F?/% over the monomer time scale 7, is
already comparable to the thermal energy kpT.

The regime with the reduced friction coefficient (§ in
eqn (15) occurs only when f3 is above the threshold fg‘, at which
the number of monomers per segment for the chain segments
that affect the nanorod dynamics is

g~

{ (I/b)?, ifI<R
(19)

N, ifI>R
where R ~ N'?b is the average size of melt chains. Using

eqn(10) for g, eqn (11) for #?, we obtain the active force at the
threshold

_ (AR <R
A (20)
FANTE~ (1/b) PN i 1> R
a 35 v !
30 F - - ]
25} g 6 ‘ v | 1
2 F s ’ . - 1
Y o
- ¢
% ol [ ] ]
g [ J
g 3
10 + : ::;3 = 1
¢ si6
Vv 864
o '
101 1(;0 10

file/o]
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As a result, the active force per monomer at the threshold
Fa(1/B) 2 ~ (1/b)72, if <R

fo = (21)
FANT4 ~ (1/b)~ 1PN if 1> R

where eqn (16) for # is used. Eqn (21) shows that as the rod
length increases, there is a crossover from /& ~ /=2 to f& ~ 7'/,

The scaling theory is compared with the simulation data for
the systems with varying [/ and N. As shown in Fig. 5a, the
plateau of (§ and the decrease of (§ with increasing f; are
observed in different simulation samples. The results for
different [ and N can be collapsed to a master curve

a a 2ﬁ/3 - /ﬁ
C—O =1+ f% (22)
Co 5

that goes from the plateau regime {5/, = 1 for £ <f~0a to the

N\ -2/3 ~
power-law regime (j/{, = (fo“/fo‘"*) for fi > f§' with § quan-

tifying the shape of the curve at f§ = fNOd The exponent —2/3 in
the power-law regime is the result of the scaling theory
(eqn (15)). Fig. 5b shows the collapse of all simulation data
points to the master curve. To obtain the master curve, (§/{, for
different systems are simultaneously fit to eqn (22). The fitting
result of f§ is 2.9 £ 0.6, and the best fit is used to construct the
master curve (thick dashed line in Fig. 5b). The best-fit results

of‘fg‘ for different samples are shown in the inset to Fig. 5b and
used to rescale the corresponding f§ to the master curve. The
successful collapse of the data points in Fig. 5b validates the
scaling theory for the power-law reduction of the friction
coefficient with increasing strength of activeness (eqn (15)).
As shown in the inset to Fig. 5b, the I-dependence offN(;“ for
the force-driven active nanorods in the polymer melt of N = 16

exhibits a crossover from ]%a ~ 172 to ‘}75‘ ~ [71/2 as [ increases
from [ = 40 slightly below R =~ 4.7¢ to [ = 326 > R. For the
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Fig. 5 (a) The monomeric friction coefficient {3 for the force-driven ballistic motion of an active thin nanorod in an unentangled polymer melt as a
function of the active force per monomer 3. The rod length [ and the polymer melt chain length N are indicated in the format { — N. (b) Rescaling of {3 by
the plateau value (o and f3 by f&, which is threshold active force for the reduction in (3, results in the collapse of the data points in (a) to a master curve.

The thick dashed line indicates the master curve (egn (22)). The inset showsf(;a as a function of { for the nanorods in the melts of N = 16 and N = 64. The

dashed lines in the inset indicate two scaling regimes in the theory.
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Fig. 6 Rotational trajectories of the unit vector u) along the rod axis for the force-driven active nanorods of [ = 32¢ in polymer melts of N = 16.

nanorods in the other polymer melt of N=64, /=40 and [ = 8¢
are both smaller than R = 10.10, and the /-dependence of fg‘ is

close to the scaling relation fg’ ~ [72. These results agree with
the scaling theory for the onset of the reduction in the friction
coefficient (eqn (21)), further validating the theory.

Along with the decrease of {j, there is a suppression of the
rotation of the rod. We track the unit vector u(t) along the rod
axis as a function of time, as visualized in Fig. 6. The range
spanned by the tip of u(t) on the unit sphere decreases with
increasing strength of the active force. The time-correlation
function of the unit vector along the rod axis (u(t)-u(0)) is
computed. The results for the simulation samples in Fig. 6
are shown in Fig. 7. Here, as in the calculation of MSD (Fig. 3),
the average is taken over different rods as well as different time
periods of the same length in the steady state. For vanishing f3,
the correlation function approaches 0 over a time scale compar-
able to the rotational relaxation time 7, = 7.4 x 10*c for
the passive thermal motion, which was obtained by fitting the
decay of (u(t)u(0)) to exp(—t/t;or)-*> This indicates that the
strength of the active force is weak and cannot keep the rod
axis around its initial orientation or equivalently the force
direction. As f§ increases, the correlation function levels off at
a finite value up to the longest time scale in the simulations,
indicating a stronger active force that suppresses the rotational
diffusion of the rod axis. For the largest active force with f§ = 2¢/a,

fg [elo]
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Fig. 7 Time-correlation function of the unit vector u along the rod axis
for the same systems in Fig. 6.
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the correlation function levels off at 0.93, indicating a much
reduced rotational diffusion of the nanorod. The suppression
of the rotational diffusion and the cutting off of the de-
correlation of rod axis with time are consistent with the force-
driven nanorod being coupled to local chain segments rather
than entire polymer chains.

The reduction in rotational diffusion originates from the
active force being in a fixed direction. If a self-propelled active
force fSu(t) were applied instead, the force would change its
direction at timescales above the rotational relaxation time of
the rod axis 7,or. As a result, one would expect the terminal
dynamics of the self-propelled active nanorod to be different
from that with a constant driving force fgu(0). Recent Brownian
dynamics simulations of self-propelled active filaments**
showed that the force-driven ballistic motion only persists to
the timescale of 7.4, after which the rotational diffusion of the
filament randomizes the direction of self-propulsion, leading to
a diffusive translational motion again.

4 Concluding remarks

By combining molecular dynamics simulations and scaling
theory analysis, we demonstrate the competition between the
activeness induced by a constant external force and the passive
thermal motion of the nanorod that is coupled to the viscosity
of an unentangled polymer melt. The activeness outcompetes
the thermal motion and results in a force-driven ballistic
motion with a constant speed v in the force direction for the
timescales above Tpanistic (see Fig. 3). On the scaling level,
Thallistic 1S the timescale where the work performed by the active
force w® is comparable to the thermal energy ksT (eqn (17)).
With increasing strength of the active force, tpapisic decreases
below the terminal relaxation time Tt Of entire polymer
chains, allowing only the local viscosity of the chain segments
with g* monomers each and relaxation time 13 ~ Tpanistic <
Tmelr to affect the force-driven active dynamics. As a result, the
friction coefficient for the friction that balances the active force
decreases with increasing strength of the active force (see
Fig. 4). For sufficiently strong active force, the terminal speed
v? is above the thermal speed of the nanorod, and therefore the
force-driven ballistic motion dominates all relevant time scales.
Accompanying the reduction in the friction coefficient, the
increase of the active force also leads to the suppression of

This journal is © The Royal Society of Chemistry 2022
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Fig. 8 Schematic illustration of the center-of-mass trajectories of thin
nanorods (black lines) in unentangled polymer melts. The trajectory under
an active force is a stretched array of active blobs (circles), which are
segments of the trajectory over the time scale tj4yistic. Colors of increasing
wavelength (from violet to red) are used to indicate the time order of the
active blobs. The blobs of different colors overlap along the trajectory for
the passive dynamics, indicating the randomness of the thermal diffusive
motion. The arrow indicates the unit vector u (0) along the initial rod axis or
equivalently the direction of the applied force.

the rotational diffusion of the rod and a strong correlation of
the rod axis over time (see Fig. 6 and 7).

Regarding the connections to experiments,****®? the model
of thin nanorods in the present work captures the effects of the
anisotropic particle shape. Nevertheless, the model has yet to
be extended to cover more aspects such as the rod thickness,
which may be larger than the monomer length scale b, as well
as the boundary conditions at the nanorod and polymer inter-
face, which may involve attractive interactions between the rod
and surrounding polymers and a grafted polymer brush layer
that prevents the aggregation of nanorods. The steady-state
motion of an active nanorod under constant external force as in
the simulated model may be realized by the implementation of
a nanorod with a uniformly distributed charge under an
external electric field. Another way to extend the present
computational and theoretical work to connect to a broader
range of experiments is to include more disparate polymer
matrices, such as entangled polymer melts, polymer solutions,
and hydrogels.

Conceptually, the effect of the active force on the center-of-
mass trajectory of a thin nanorod in an unentangled polymer
melt may be compared with the effect of an external force on
the conformation of a polymer chain. For a polymer chain with
force of magnitude f applying at both chain ends, the random-
walk conformation of an unperturbed chain is replaced by an
extended array of tension blobs.®* Each tension blob contains g
monomers and the blob size ¢ ~ bg'’? is the threshold length
scale that chain segments are able to adopt the random-walk
conformation without being perturbed by the external tensile
force. The tension blob size is determined by f& ~ kT, reflecting
the competition between the external perturbation and the
thermal energy. Similarly, for a thin nanorod under the active
force of magnitude f, the center-of-mass random-walk trajec-
tory in the time domain for the passive dynamics of the
nanorod is replaced by an extended array of “active blobs”, as
illustrated in Fig. 8. Each active blob corresponds to a time

a

scale Thamistie = Tg (eqn (1)) and a length scale that is

This journal is © The Royal Society of Chemistry 2022
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comparable to the MSD(Ar?(tg))fanistic = (V*1)° (eqn (8)). The
random-walk trajectory at time scales below 73 is not perturbed
by the active force and follows the MSD for the thermal motion
of the nanorod. 7§ and hence (Ar*(t3))Sanistic are determined by
w* & f'; ~ kgT (eqn (17)), which is a balance between the
external perturbation and the thermal energy. Note that the
random-walk trajectories for the passive dynamics and for
the force-driven active dynamics at timescales below tayistic
are not ideal 3-dimensional random walks, as the translational
diffusion along the rod axis is faster than that normal to the rod
axis.*® The description of the active dynamics trajectories using
the language of blobs in polymer physics, as illustrated in
Fig. 8, may provide a new perspective on the theory of active
particles and active polymers.®*

The microscopic insights provided by the molecular simula-
tions and scaling theory may aid in the control of nanorods in
functional nanorod-polymer composites using external force
fields®® and the manipulation of the trajectories of one-
dimensional nanomotors in the applications of bio-imaging
and drug delivery.”” Additionally, the microscopic insights may
also help understand the active filaments propelled by motor
proteins in the cytoskeleton, RNA and DNA molecules in the
transcription process within a cell, and also rod-like bacteria
and viruses in biological settings.®*°®%”
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