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Controllable particle migration in liquid crystal
flows†

Magdalena Lesniewska,a Nigel Mottram b and Oliver Henrich *a

We observe novel positional control of a colloidal particle in microchannel flow of a nematic liquid

crystal. Lattice Boltzmann simulations show multiple equilibrium particle positions, the existence and

position of which are tunable using the driving pressure, in direct contrast to the classical Segré–Silber-

berg effect in isotropic liquids. In addition, particle migration in nematic flow occurs an order of magni-

tude faster. These new equilibria are determined through a balance of elastic forces, hydrodynamic lift

and drag as well as order-flow interactions through the defect structure around the particle.

1 Introduction

Particle-laden flows are at the heart of many scientific and
engineering applications, ranging from the dispersion of pol-
lutants and rain formation in the atmosphere to pharmaceu-
tical aerosols and industrial spray applications to geological
sedimentation and combustion processes, and even planetary
formation. Such flows consist of a continuous liquid host phase
and dispersed particles.

At low particle concentrations these systems are generally
modelled by the Navier–Stokes equations, with suitable mod-
ifications to account for the momentum exchange between the
host liquid and dispersed particles.1 In spite of their relative
simplicity, particle-laden flows show non-trivial behaviour,
such as the preferential migration of the particles to specific
regions. Segré and Silberberg2,3 were among the first to report
this phenomenon. In capillary flow of isotropic fluids, they
observed that neutrally buoyant dispersed particles migrate to a
single radial position approximately 0.6 radii from the capillary
axis, while being advected downstream. This effect is generally
attributed to a balance between a shear-induced inertial
lift force that drives the particles towards the walls and regions
of higher velocity gradient, and a pressure-induced force
that increases as the particles move closer to the walls and acts
in the opposite direction. A qualitative explanation,4,5 a sub-
sequent quantitative analysis6,7 and then an experimental
extension to higher Reynolds numbers8 and different tube
geometries9 have already been provided.

Much less is known about the dynamics and migration of
particles in liquid crystalline host phases, whose internal
structure offers additional possibilities in terms of elastic
and order-driven control. Theoretical studies have considered
the Stokes drag of a particle in a nematic host10 or particle
aggregates,11,12 and simulation studies have investigated flow-
order tensor interactions around colloidal particles13 for fixed
or simply advected particles. Experimental studies of nematics
in microfluidic geometries have been concerned with pure
phases.14–21 However, recent experimental research has also
considered particle-laden nematic flows which contain defects
and/or obstacles,22 or include electro-hydrodynamic23 or
electro-osmotic flow effects.24–26 Further studies investigated
the microfluidic flow of liquid crystals in more exotic settings,
for instance the sedimentation of discoidal particles in choles-
teric finger textures27 or modified free energy landscapes with
alternating splay and bend distortions that were introduced
through wavy walls.28 More recently, active nematics were
studied in a network of connected annular microfluidic
channels.29

Here, we report results of 3D simulations that demonstrate
novel positional control of a colloidal particle in microchannel
flow of a nematic liquid crystal, which serves as a prototype for
anisotropic fluids with internal order structure. As well as
multistability, we show that the equilibrium particle position
in the dynamic system with respect to the channel centre or
walls is tunable through the applied pressure gradient.

2 Theory
2.1 Landau–de Gennes free energy

The local order of the liquid crystal is described by a traceless
and symmetric second-order tensor Q(r,t). Its largest eigenvalue
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q o 2/3 is referred to as the scalar order parameter and
provides a measure of the liquid crystalline order at a certain
position and time. The eigenvector, d, associated with q is
called the director and describes the average orientation of the
liquid crystal molecules at a certain position and time.

In equilibrium, the liquid crystal order is determined
through minimisation of its free energy, commonly described
by the Landau–de Gennes free energy functional

F ¼
ð
V

f dV þ
ð
S

fSdS; (1)

which includes the volume contribution f = fb + fg, that itself
consists of a bulk contribution fb and a gradient contribution fg,
and a surface contribution fs. The bulk free energy density is
given by

fbðQÞ ¼
A0

2
1� g

3

� �
Qab

2 � A0

3
gQabQbpQpa þ

A0

4
g Qab

2
� �2

; (2)

where we use the Einstein summation convention, which
implies that Greek indices that appear twice are summed over.
A0 is a constant that sets the overall energy scale and the
parameter g controls the temperature difference from the
isotropic–nematic transition, and is related to a reduced tem-
perature t by

t ¼ 27

g
1� g

3

� �
: (3)

For g 4 3 the ordered, nematic state is the equilibrium
phase, whereas for 2.7 r gr 3 the nematic state is metastable.
For g o 2.7 the isotropic state is the equilibrium phase.

The gradient free energy density fg contains the contribu-
tions of splay, bend, splay and twist deformations of the
director field,

fgðQÞ ¼
1

2
k0 @aQab
� �2þ1

2
k1 eamn@mQnb
� �2

; (4)

where qa = q/qxa and eamn is the Levi–Civita symbol in three
dimensions. In principle, the elastic constants k0, for splay and
bend deformations, and k1, for twist deformations, can be
different. However, in our simulations we use the one elastic
constant approximation k0 = k1.

The director is assumed to have a preferred normal orienta-
tion to the wall surfaces and to the surface of the colloidal
particle, known as a homeotropic weak anchoring, and is
described using a surface free energy term

fsðQÞ ¼
1

2
w Qab �Q0

ab

� �2
; (5)

where w is the surface anchoring strength with values wwall and
wpart at the wall and particle surfaces, respectively, and the
preferred orientation Q0

ab is assumed uniaxial and is given by

Q0
ab ¼

1

2
S0 3nanb � dab
� �

; (6)

where n is the surface unit normal, dab is the Kronecker delta

and S0 is the preferred surface scalar order parameter given by

S0 ¼
2

3

1

4
þ 3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3g

s !
: (7)

2.2 Beris–Edwards model

The time evolution of Qab is governed by the Beris–Edwards
equation30

qtQab + qg(ugQab) + Sab(W,Q) = GHab, (8)

where qt = q/qt, u is the flow velocity, H is the molecular field, G
is a mobility parameter, and S(W,Q) denotes the response to
shear and W is the velocity gradient tensor. The shear term is
given by

Sab W ;Qð Þ ¼ xDap þ Oapð Þ Qpb þ
1

3
dpb

� �

þ Qap þ
1

3
dap

� �
xDpb � Opb
� �

� 2x Qab þ
1

3
dab

� �
QpsWsp

(9)

where Dab ¼
1

2
Wab þWba
� �

and Oab ¼
1

2
Wab �Wba
� �

are the
symmetric and antisymmetric contributions to the velocity
gradient tensor, respectively, and x is the so-called flow-
alignment parameter, a material constant representing an
effective molecular aspect ratio which determines whether the
liquid crystal molecules are in a flow-aligned state at the Leslie
angle or tumbling state. The molecular field H is defined as a
functional derivative of the free energy functional with respect
to the order parameter,

Hab ¼ �
dF
dQab

þ dab
3
Tr

dF
dQab

: (10)

The second term in eqn (10) involving the trace ensures
tracelessness of the tensor order parameter as it evolves obey-
ing eqn (8). This leads to the following molecular field:

Hab ¼ � A0 1� g
3

� �
Qab þ A0g QamQmb �

1

3
Qmn

2dab

� �

� A0gQmn
2Qab þ k0@a@mQmb þ k1@m @mQab � @aQmb

� �
(11)

The governing equations of hydrodynamic motion are the
equation of mass conservation, also known as the continuity
equation, and the Navier–Stokes equation that describes the
conservation of linear momentum. In tensor notation they read

qtr + qa(rua) = 0 (12)

and

qt(rua) = qbP
(LC)
ab + qbP

(HD)
ab , (13)

respectively. Eqn (12) relates the local rate of change of
the density r to the advection of mass by the fluid velocity
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ua. Eqn (13) is Newton’s second law of momentum change
for the fluid and involves the thermotropic stress tensor
P(LC)

ab and the hydrodynamic stress tensor P(HD)
ab . The

thermotropic stress arises due to the liquid crystal and is
given by

PðLCÞab ¼ sab þ tab � @aQmn
dF

d@bQmn
: (14)

In eqn (14), sab and tab are the symmetric and antisymmetric
stress contributions, respectively, defined as

sab ¼ � p0dab � xHam Qmb þ
1

3
dmb

� �
� x Qam þ

1

3
dam

� �
Hmb

þ 2x Qab þ
1

3
dab

� �
QmnHmn ;

(15)

where p0 ¼ � @F=@Vð ÞT¼ �f is the isotropic pressure, and

tab = QamHmb � HamQmb. (16)

The final term in eqn (14) is expanded as

@aQmn
dF

d@bQmn
¼ � k0@aQmb@nQmn � k1@aQmn @bQmn � @mQnb

� �
:

(17)

The hydrodynamic stress tensor is defined as

P(HD)
ab = �pdab � ruaub + Z(qbua + qaub) + z@mumdab,

(18)

where Z and z are the dynamic and bulk viscosity, respec-
tively. The pressure p is related to the density via an ideal gas
equation of state as p = cs

2r with cs as lattice speed of sound
as is standard in lattice Boltzmann. The last term vanishes
in incompressible fluids as eqn (12) becomes @aua = 0. No-
slip and no-penetration boundary conditions are applied
on the walls and particle surfaces, and the boundary condi-
tions for Q are found from the minimisation of the free
energy31

ng
@f

@Qab;g
þ @fs
@Qab

¼ 0; (19)

where Qab,g = qQab/qxg.
The total force on the particle consists of a thermotropic

contribution F(LC) and a hydrodynamic contribution F(HD). The
thermotropic contribution is the integral of the gradient of the
stress tensor P(LC) in eqn (14) over the surface S of the particle.
This can be separated into contributions from the bulk and
gradient free energy:

F ðLCÞa ¼
ð
S

@bPabdS

¼
ð
S

@b PðbÞab þPðgÞab

� �
dS

¼ F ðbÞa þ F ðgÞa

(20)

Splitting the molecular field H in eqn (11) into terms that
contain only bulk and gradient contributions,

H
ðbÞ
ab ¼ �A0 1� g

3

� �
Qab þ A0g QamQmb �

1

3
Qmn

2dab

� �
;

�A0gQmn
2Qab

(21)

H(g)
ab = k0qaqmQmb + k1qm(qmQab � qaQmb), (22)

we obtain together with eqn (15)–(17) for the bulk contribution

PðbÞab ¼ fb � xHðbÞam Qmb þ
1

3
dmb

� �
� x Qam þ

1

3
dam

� �
H
ðbÞ
mb

þ 2x Qab þ
1

3
dab

� �
QmnH

ðbÞ
mn þQamH

ðbÞ
mb �HðbÞam Qmb

(23)

and for the gradient contribution

PðgÞab ¼ fg � xHðgÞam Qmb þ
1

3
dmb

� �
� x Qam þ

1

3
dam

� �
H
ðgÞ
mb

þ 2x Qab þ
1

3
dab

� �
QmnH

ðgÞ
mn þQamH

ðgÞ
mb �HðgÞam Qmb

þ k0@aQmb@nQmn þ k1@aQmn @bQmn � @mQnb
� �

:

(24)

The hydrodynamic contribution to the force on the particle
is also given through the surface integral of the gradient of the
hydrodynamic stress tensor P(HD) over the particle surface S as

F ðHDÞ
a ¼

ð
S

@bP
ðHDÞ
ab dS: (25)

See the following Section 3 on how these forces are
evaluated.

3 Simulation method
3.1 Simulation setup

Fig. 1 shows a sketch of the three dimensional computational
geometry, which consists of a channel of dimensions Lx � Ly �
Lz = 128 � 64 � 256 lattice sites.

We used a hybrid lattice Boltzmann scheme32 that treats the
dynamics of the Q-tensor order parameter with a finite-
difference scheme and applies the lattice Boltzmann method
to the hydrodynamic variables. Parallel, solid walls are posi-
tioned at x = 0 and x = Lx, whereas periodic boundary conditions
are applied in y- and z-direction with the z-boundaries acting as
inlet and outlet of the microchannel. The pressure gradient C =
Dp/Lz is applied in z-direction as body force density that acts on
all fluid sites besides the forces that arise from the thermo-
tropic and hydrodynamic stresses in eqn (14) and (18), respec-
tively. Our approach uses Guo forcing33,34 to apply all forces on
the fluid, which removes undesirable artefacts that may enter
the continuity and momentum equation due to the time
discretisation.
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The colloidal particles are discretised as solid, mobile par-
ticles with a radius of R = 7.2 or 9.6 lattice sites. All of our
results use the radius R = 9.6 apart from those presented in
Fig. 10. As mentioned above, on the walls and particle surfaces
no-slip and no-penetration boundary conditions are imposed
through the bounce-back on links scheme.34,35 The surface free
energy in eqn (5) invokes a weak homeotropic anchoring
condition with a preferred orientation of the director normal
to the surfaces. The thermotropic force on the particle F(LC) in
eqn (20) is integrated using a finite-difference scheme in Q and
its gradients. The hydrodynamic force F(HD) in eqn (25) is
integrated in a similar way using the hydrodynamic stress
tensor P(HD), which is directly accessible in the lattice Boltz-
mann method through second order moments of the non-
equilibrium distributions. The total force F = F(LC) + F(HD) is
fed into a molecular dynamics algorithm to integrate the
motion of the particles.

Several technical limitations of our model should be noted.
While the centre of mass of the particle is integrated off-grid
according to Newton’s equation, the particle itself is discretised
using a stair-case geometry. This requires remapping of the
particle onto the lattice as the particle moves. Consequently,
this can entail spikes in the force at single iteration steps,
although these quickly average out over a few iteration steps
with no detrimental effect on the trajectories. The pressure
obeys an ideal gas equation of state and is directly related to the
density via p = cs

2r, while the effect of the constant pressure
gradient is modelled through an additional body force density
on the fluid. Both treatments are common in the lattice
Boltzmann methodology and allow for an accurate modelling
of a weakly compressible fluid, but the assumption of a con-
stant pressure gradient represents obviously a simplification
over the real situation. Thermal fluctuation have not been
included as our simulations were carried out at a point in the
phase diagram that is deep in the ordered state well away
from the isotropic–nematic transition line where elastic
forces from the anchoring of the liquid crystal dominate over
thermal forces by orders of magnitude. Our approach uses the

one-constant approximation to simplify elasticity where the
elastic constants for splay, bend and twist deformations carry
the same value. This approximation is commonly used as
first approach and does not compromise our results qualita-
tively. However, relaxing this approximation could lead
to quantitative differences, and potentially also richer phe-
nomenology. The Beris–Edwards model uses a simplified
approach to viscosities compared to the Ericksen–Leslie
theory, which has six viscosity coefficients a1,. . .,a6

36 (only
five are independent as the Parodi relation applies37). The
viscosities in the Beris–Edwards model are implicitly given
through the isotropic dynamic shear viscosities Z, the rota-
tional diffusion constant G, the flow alignment parameter x
and the scalar order parameter S0. They can be directly
related to the Ericksen–Leslie viscosities a1,. . .,a6,32 but para-
meterise only a subset of possible values.

All simulations were run with Ludwig, our lattice Boltzmann
code for complex fluids, version 0.15.0. Typical simulations ran
for 8 � 105 iteration steps at various pressure gradients, each of
which took approximately 16 hours to complete using a hybrid
Message Passing Interface/OpenMP parallelisation with 4 MPI-
tasks each running on 20 OpenMP threads. Model parameters
used for the simulations is provided in Table 1. More informa-
tion about the specific implementation used in this work can
be also found in the Ludwig code repository38 and related
literature.39,40

3.2 Parameter mapping to physical units

In order to map our simulation units to physical units we need
to calibrate the units of length, time and pressure. To this end,
we relate the lattice spacing Dx, the algorithmic time step Dt
and the reference pressure p*, which are all unity in lattice
Boltzmann units (LBU), to their values in SI units.

The calibration of the length scale is straightforward as it is
simply set by considering the diameter D of the colloidal
particle. Assuming the largest radius particle that we consider
corresponds to a relatively small diameter of D = 0.2 mm in SI
units, results in a LBU of length Dx 8 10�8 m = 10 nm in SI
units. This length scale allows for an accurate resolution of the
liquid-crystalline order structure and flow field around the
particle, while keeping the necessary computational resource
relatively low.

To obtain a pressure scale, we use the measurements of the
Landau–de Gennes parameters41 (see Appendix D therein),

Table 1 Overview of simulation parameters

Bulk energy scale A0 0.01
Inverse temperature g 3.1
Elastic constants k0, k1 0.01
Wall anchoring strength wwall 0.02
Particle anchoring strength wpart 0.01
Flow alignment parameter x 0.7
Mobility parameter G 0.5
Density r 1.0
Dynamic viscosity Z 5/6
Bulk viscosity z 5/6
Particle radius R 7.2, 9.6

Fig. 1 Sketch of the computational geometry: we apply no-slip boundary
conditions and homeotropic anchoring conditions at the walls in
x-direction and periodic boundary conditions at the y- and z-boundaries.
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which suggest

27

2A0g
’ 5� 10�6 J�1 m3 ¼ 5� 10�6 Pa�1

for some liquid crystals. Using A0 = 0.01 and g = 3.1 in our
simulations leads to a reference pressure of p* = 1 LBU 8 108 Pa
in SI units.

For the timescale calibration we use the following formula,
which relates the rotational viscosity g1 of the director, to the
equilibrium scalar order parameter q and the order parameter
mobility G:

g1 ¼
2q2

G

We use G = 0.5 and bulk energy density parameters that give
q E 0.5 since it is assumed that the system is well within the
nematic phase. Therefore, the rotational viscosity g1 = 1 LBU.
Typical values for liquid crystals in SI units are g1 = 0.1 Pa s.36

Together with 1 Pa equating to a pressure of 10�8 in LBU, we
obtain for the algorithmic time step Dt 8 10�9 s = 1 ns.

The Reynolds number gives the ratio of inertial to viscous
forces, and in our approach this can be estimated on the basis
of typical velocities of colloidal particles as they are advected
with the flow. For instance, in a later simulation (Fig. 6) with
C = 9.6 � 10�6 and R = 9.6, we observe that a colloidal particle
that migrates preferentially to the attractor region at x C 47
travels around 1.6 � 104Dx in the z-direction during the 8 �
105Dt (all simulations in Fig. 3, 6 and 10 were run for 8 �
105 algorithmic steps). This leads to a velocity v C 0.02 in LBU.
With the values for density r and dynamic viscosity Z as
specified in Table 1 and a diameter of a colloidal particle D =
20Dx as typical length scale L, this results in a Reynolds
number

Re ¼ rvL
Z
’ 0:48

for this pressure difference, and indicates a flow regime where
viscous forces are larger than, but comparable to inertial forces.

The Ericksen number gives a ratio of viscous to elastic forces
and, with the above values of the flow velocity v, dynamic
viscosity Z, characteristic length scale L and either elastic
constant k0 or k1 (see Table 1), we obtain

Er ¼ ZvL
k
’ 33:33;

which defines a flow regime where the director field is strongly
influenced by the flow.

4 Results and discussion

Before addressing preferential particle migration in nematic
host phases, we begin with presenting some general results for
contextualisation and later reference.

In the quiescent state the homeotropic wall anchoring
induces a nematic order with a director orientation parallel to
the wall normals (z-direction in Fig. 1). When the flow is

switched on, flow-alignment of the director to the appropriate
Leslie angle takes place. The nematic liquid crystal can adopt
two possible conformations, bend or splay, as shown in Fig. 2.

In both states the director flow-aligns to a positive Leslie
angle in the lower half of the channel (where there is positive
shear) and to a negative Leslie angle in the upper half of the
channel (where there is negative shear). The bend state (some-
times called the H-state) and splay state (sometimes called the
V-state) differ in how the director rotates between the positive
and negative Leslie angles at the centre of the channel. In the
bend state the director at the centre is perpendicular to the
walls and in the splay state the director at the centre is parallel
to the walls.

In the absence of any liquid crystalline order, i.e. either in a
classical Newtonian fluid or in a liquid crystal host phase at
temperatures above the isotropic–nematic transition point,
preferential migration of colloidal particles occurs to an
x-position between the centre and wall of the channel. This is

Fig. 2 Bend or H-state (left) and splay or V-state (right) at the centre of
the channel.

Fig. 3 Particle migration in an isotropic fluid due to the Segré–Silberberg
effect. Shown are particle position x, across the channel gap, versus the
particle position z, along the channel, for a variety of starting positions
(color coded) and pressure gradients in the range 1.25 � 10�6 r C r
1.75 � 10�5. All quantities are given in LBU.
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referred to as the Segré–Silberberg effect and shown in Fig. 3
through trajectories for all starting positions xs at all applied
pressure gradients C. Two aspects of the Segré–Silberberg
effect are important to understand when comparing to our
results further below. Firstly, except for particles that start
exactly at the centre of the channel, migration is to a single
equilibrium x-position over time. Secondly, the value of x does
not vary significantly at low Reynolds numbers. As seen in
Fig. 3, in simulations we see exactly these aspects of the Segré–
Silberberg effect: all particles migrate to an equilibrium at
x-position of approximately 38 regardless of their starting
position or applied pressure.

It should be noted that the Segré–Silberberg equilibrium
position seen in Fig. 3 is not at the well-known 0.6 tube radii (or
channel half-widths in the planar case) from the centre line, but
at approximately 0.4 channel half-widths. This shift of the
equilibrium position towards the channel centre has been
observed before in simulations42,43 and can be attributed to
our particle confinement ratio of R/Lx = 19.2/128 = 0.15. In
contrast, the analytical results6,7 were obtained for zero con-
finement ratio, i.e. for particles that are negligibly small com-
pared to the tube diameter or gap width. Our study uses
Reynolds numbers that are around two orders of magnitude
smaller than those in previous simulation studies,42,43 which is
known to result in equilibrium positions that are again closer
to the channel centre.

Using the model described in Section 2 we studied the
migration behaviour of a single particle at different pressure
gradients C (= Dp/Lz) and start positions xs.

Fig. 4 shows particle trajectories x(z) for starting positions in
the lower portion of the channel (the channel centre is at x =
64). For low pressure gradients C = 7.5 � 10�6 (red lines in
Fig. 4) the particle migrates either to the channel walls (for
starting position xs r 40) or towards the centre of the channel
(for xs Z 44). Particles that start at the centre stay in that

position, while those inserted further away from the centre
show a tendency to overshoot and remain in an off-centre
position. At slightly larger pressure gradients C = 8.125 �
10�6, 8.75 � 10�6 (blue and green lines in Fig. 4, respectively),
this bi-stability remains, but with the division between migra-
tion towards the wall or centre now at around xs C 38. Some
trajectories exhibit the onset of a pull-back behaviour from
overshot off-centre positions towards the centre, in particular
for the larger pressure gradient of C = 8.75 � 10�6. It should be
noted that for low pressure gradients, C r 5 � 10�6, we also
observe off-centre equilibrium positions in form of a weak
attractor that moves to the channel centre with increasing
pressure gradient.

A further increase in the pressure gradient leads to a sudden
onset of a new type of preferential migration behaviour. In
Fig. 5 we see for C = 9.125 � 10�6 that a pronounced trajectory
kink emerges at x C 50–53, the precursor of which is also
visible for lower pressure gradients in Fig. 4. For the pressure
gradients C = 9.6 � 10�6 (blue lines in Fig. 5) this kink
transitions into a third, emergent particle attractor, in addition
to the channel centre and wall. At C = 9.6 � 10�6 this emergent
attractor is located at x C 48 and trajectories with initial
positions 40 o xs o 50 migrate towards the attractor. Increas-
ing the pressure gradient further, leads to a movement of the
emergent attractor towards the wall, and for C = 1.125 � 10�5

the attractor position is x C 40.
Fig. 6 shows the complete set of trajectories for a particle

with radius R = 9.6 and pressure gradients ranging from C =
1.25 � 10�6 to 1.75 � 10�5. The first row of Fig. 6 shows results
for low pressure gradients C = 1.25 � 10�6, 2.5 � 10�6,
5 � 10�6, indicating typical behaviour at low pressure gradients
of migration toward the wall or toward the weak attractor
region that moves closer to the channel centre with increasing

Fig. 4 Particle trajectories for particle radius R = 9.6 at sub-critical
pressure gradients C = 7.5 � 10�6, 8.125 � 10�6, 8.75 � 10�6, showing
particle x-positions across the channel gap versus the z-distance travelled
in the flow direction for various initial positions xs. The particle Ericksen
numbers Er (particle Reynolds numbers Re) are from front to back Er =
25.62 (Re = 0.37), Er = 27.91 (Re = 0.40), Er = 30.20 (Re = 0.43). All
quantities are given in LBU.

Fig. 5 Particle trajectories for particle radius R = 9.6 at pressure gradients
C = 9.125 � 10�6, 9.6 � 10�6, 1.125 � 10�5, showing particle x-positions
across the channel gap versus the z-distance travelled in the flow direction
for various initial positions xs. The emergence of the particle attractor is
shown for C = 9.6 � 10�6, 1.125 � 10�5. The particle Ericksen numbers Er
(particle Reynolds numbers Re) are from front to back Er = 31.58 (Re =
0.45), Er = 33.33 (Re = 0.48), Er = 39.57 (Re = 0.57). All quantities are given
in LBU.
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pressure gradient. In all cases the director remains in the bend
state, as indicated by blue lines. The second row of Fig. 6 shows
trajectories for intermediate pressure gradients C = 7.5 � 10�6,
8.75 � 10�6, 9.125 � 10�6, for which we can observe trajectories
with overshooting and pull-back behaviour as well as a transi-
tion from the bend (blue lines) to the splay (red lines) state,
through an intermediate state (black lines). For the lowest of
these intermediate pressure gradients, C = 7.5 � 10�6, over-
shooting can be seen.

Overshooting followed by pull-back to the centre is seen for
C = 8.75 � 10�6, but the overshoot has disappeared at the

higher pressure gradient of C = 9.125 � 10�6. In all cases of
overshoot and pull-back there is a bend to splay transition. The
precursor of the emergent attractor is clearly seen in the
trajectories for the 9.125 � 10�6 case, the right most image of
the second row of Fig. 6. For the highest intermediate pressure
gradient, C = 9.6 � 10�6, the third attractor state emerges. The
last two rows of Fig. 6 cover the higher range of pressure
gradients, for which the emergent attractor state is possible,
albeit for sufficiently high pressure gradients. It is clear that
the position of the emergent attractor state moves towards the
wall with increasing pressure gradient. To further check the

Fig. 6 Particle trajectories in a nematic liquid crystal host phase for particle size of R = 9.6 and applied pressure gradients ranging from C = 1.25 � 10�6

to 1.75 � 10�5. Blue lines indicate that the director structure is in a bend state, whereas red lines indicate that the director has transitioned to the splay
state. Black lines mark a transition state between bend and splay. The particle Ericksen numbers Er and particle Reynolds numbers Re are given in each
sub-plot. All quantities are given in LBU.
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consistency of our findings, we also ran a number of additional
simulations with R = 9.6 at a lower shear and bulk viscosity
Z = z = 1/6, which led to the same equilibrium position and
confirmed these results.

The main plot in Fig. 7 summaries these results, depicting a
phase diagram of the equilibrium position as a function of the
starting position xs and the applied pressure gradient C. For
particles initially close to the walls, migration towards the walls
occurs for all pressure gradients. Similarly, particles initially
close to the centre of the channel migrate to the centre of the
channel. Initial particle positions that are around one or two
particle radii away from the centre give rise to a much more
complicated behaviour: at low pressure gradients the particle
migrates to an off-centre weak attractor position; for a narrow
range of pressure gradients around C C 9 � 10�6 centre
positions are again favoured; and above a critical pressure
gradient C C 9.5 � 10�6 the phase diagram is increasingly
dominated by the emergent attractor states.

Also shown in Fig. 7, through the subplots (a)–(e), are the
director and scalar order parameter structures within the
channel. Previous theoretical and experimental work has
shown that the director structure within channel flow of a

nematic can exhibit either predominately bend or splay
deformation17,19 for low and high flow speeds, respectively.
Both states are observed in our simulations, and both exhibit
flow alignment at the appropriate Leslie angle, positive (nega-
tive) angles in the lower (upper) half of the channel where the
shear gradient is positive (negative). As mentioned above, the
states differ in their transition between positive and negative
Leslie angle at the centre of the channel, with the bend state
exhibiting director alignment along x at the centre of the
channel (for instance in Fig. 7(a)), and the splay state exhibiting
director alignment along z at the centre (Fig. 7(d)). For the
pressure gradients we consider here, the bend state would nor-
mally be maintained. However, we observe a novel particle-
induced mechanism for switching from the bend to splay state
(see Fig. 2) with the migration of the particle to the centre being
the initiating event for a range of pressure gradients (see Fig. 7,
indicated by crosses, and ESI† Movies 4 and 5).

For wall equilibrium positions a bend state occurs with a
tilted, but otherwise regular, Saturn ring defect around the
particle (see Fig. 7(b)). For centre equilibrium positions a bend
state occurs for C o 1.2 � 10�5 and a splay state for C 4 1.2 �
10�5. For an initial particle position away from the centre, the

Fig. 7 Phase diagram of the preferential migration of the colloidal particle in a nematic host phase. Coloured regions show the equilibrium particle
position (wall, weak attractor, emergent attractor, centre) as a function of the initial x-position of the particle and the applied pressure gradient C.
Equilibrium director bend states are marked with dots, whereas equilibrium splay states are shown with crosses. Subplots (a)–(e) show the scalar order
parameter (green isosurface showing the low order region) and director field (short coloured lines) around the particle for typical equilibrium states: (a)
bend state, centre position; (b) bend state, wall position; (c) bend state, emergent attractor position; (d) splay state, centre position; (e) splay state, weak
attractor position. The centre of the channel is marked by the horizontal blue line. See also Movies 1–5 in the ESI† for the dynamic evolution to the steady
states (a), (b), (c), (d) and (e), respectively.
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bend state occurs for the weak attractor, centre and emergent
attractor equilibrium positions, for both low and high pressure
gradients. However, at intermediate pressure gradients 6 �
10�6 r C r 8.5 � 10�6 we observe a transition to the splay
state (Fig. 7(d) and (e)). We note that the transition from the
bend to the splay state does not have a determining effect on
whether the particles migrate to centre or off-centre positions
as we see the same behaviour for initial positions close by and/
or at lower pressure gradients. However, it affects the nature of
the Saturn ring defect around the particle: for bend equilibrium
states the Saturn ring defect is approximately horizontal
(Fig. 7(a) and (c)) and for splay equilibrium states the Saturn
ring defect is approximately vertical (Fig. 7(d) and (e)). For bend
equilibrium states, the defect structure also develops a pro-
nounced lip- or cap-shaped region of low liquid-crystalline
order at the bow of the particle (Fig. 7(a) and (c)).

In comparison to the Segré–Silberberg effect in isotropic
fluids (Fig. 3) we notice several fundamental differences.
Firstly, in isotropic fluids, particles migrate to a single equili-
brium position, whereas in nematic host phases migration to
one of multiple equilibrium positions can occur, depending on
particle starting positions and the applied pressure gradient.
Secondly, while for the Segré–Silberberg effect the location of
the attractor state between the wall and centre depends only
weakly on the flow velocity3,7 (in fact our simulations with an
isotropic host phase, see Fig. 3, show no appreciable change in
equilibrium position over the entire range of applied pressure
gradients), the position of the emergent attractor state in the
nematic system depends much more sensitively on the
imposed pressure gradient, and therefore on the Reynolds
number. For instance, the Reynolds numbers for which there
are emergent attractor states in Fig. 5 are Re C 0.48 and Re C
0.57 and, even with this small increase in Re, the attractor
position moves by almost one particle radius. Finally, the
preferential migration in a nematic host phase happens more
than an order of magnitude faster than in isotropic fluids. For
instance, for a pressure gradient C = 1.125 � 10�5 (Fig. 5, green
lines), where the position of the emergent attractor in the
nematic host phase and the Segré–Silberberg equilibrium
position in the isotropic host phase almost coincide, particles
in a nematic host reach their equilibrium positions by the time
they have travelled around z C 5 � 103 along the channel, and
in an isotropic host phase (see Fig. 3) take, depending on the
start positions xs, at least an order of magnitude longer (in time
or distance along the channel).

With regard to Ericksen numbers Er, our results indicate
that the observed pattern of preferrential migration occurs in a
regime where viscous forces are larger than elastic forces, and
where consequently the director field is strongly affected by the
flow field. At the lower end of this regime, for 3.43 r Er r
16.55, the weak attractor state exists, as shown in the top row of
the Fig. 6. The emergent attractor state occurs for Er C 30 and
above. With increasing Er, viscous forces begin to dominate
over elastic forces. This means the flow behaviour at higher
Ericksen numbers is more akin to that of an isotropic fluid,
which shows the classical Segré–Silberberg effect. However, the

fact that a strongly flow-aligned liquid crystal forms the host
phase leads always to certain qualitative differences. For
instance, the trajectories shown in the two bottom rows of
Fig. 6 feature the emergent attractor state at 33.33 r Er r
62.12, do show some similarities to the classic Segré–Silberberg
effect. However, the movement of the emergent attractor region
towards the walls with increasing Ericksen number, the attrac-
tion to the walls, or the existence of stable trajectories at the
channel centre are all features that arise due to the anisotropic
nature of the host phase and the interaction of flow-aligned

Fig. 8 Total force and the contributions to the total force on the particle
in the steady state for particles that have equilibrated to lie at (a) the centre
with asymmetric defect, (b) at the wall, (c) at the emergent attractor, (d) at
the centre with symmetric defect, and (e) at the weak off-centre attractor,
for particle radius R = 9.6. The error bars indicate one standard deviation of
the force data during a run over 104 algorithmic steps. All quantities are
given in LBU.

Fig. 9 Time evolution of force contributions in the emergent attractor
state with pressure gradient C = 1.125 � 10�5. Trajectories for three
starting positions are shown, for x = 34.5 (light grey), x = 39.5 (medium
grey) and x = 59.5 (dark grey). Also shown are the contributions to the total
force on the particle which arise from gradient (red), bulk (purple) and
hydrodynamic (blue) terms with the hue (light, medium, dark) corres-
ponding to the equivalent starting position (light grey, medium grey, dark
grey). All quantities are given in LBU.
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director field with the defect structure around the particle, as is
visible in the snapshots shown in Fig. 7(a)–(e).

In order to investigate the presence of this emergent attrac-
tor, we consider the total force and the contributions to the
total force on the particle in the steady state for particles that
have equilibrated (see Fig. 8). An analysis of the individual force
contributions shows that, for a centre equilibrium position as
in Fig. 7(d) all three force components vanish, as expected from
symmetry, and for a wall equilibrium position as in Fig. 7(b) all
three force components are negative, forcing the particle to
remain at the wall. For particle migration to an emergent
attractor state as in Fig. 7(c), our simulation show that the
particle feels a force towards the channel centre from the
gradient, i.e. elastic, terms and forces towards the wall from
both the bulk term and the hydrodynamic force component.
This is also the case for particle migration to the centre with an
asymmetric defect as in Fig. 7(a) and for particle migration to
the weak attractor as in Fig. 7(e), although the individual force
contributions are significantly smaller. Therefore, a delicate
force balance exists between these relatively large contributions
leading to a zero total force at equilibrium.

Fig. 9 shows the time evolution of the different contribu-
tions to the force on the particle during its approach to an
emergent attractor state, for pressure gradient C = 1.125 � 10�5

and particle radius R = 9.6. For these values of C and R the
attractor state is located, approximately, at the Segré–Silberberg
equilibrium x-position (namely that seen in Fig. 3). Trajectories
for three starting positions are shown, for x = 34.5 (light grey),
x = 39.5 (medium grey) and x = 59.5 (dark grey), which cover a
range of migration patterns to the attractor from below and
above. Also shown are the contributions to the total force on the
particle which arise from gradient (red), bulk (purple) and
hydrodynamic (blue) terms with the hue (light, medium, dark)
corresponding to the equivalent starting position (light grey,
medium grey, dark grey).

From Fig. 9 we observe initial transient behaviour before the
particle reaches the same equilibrium position for all three
starting positions. For all starting positions and for all time, the
gradient contribution is positive, so that the elastic forces
always act to move the particle towards the channel centre.
For both bulk and hydrodynamic force contributions are nega-
tive for all starting positions and (almost all) time, so that they

Fig. 10 Particle trajectories in a nematic liquid crystal host phase for particle size R = 7.2 and various applied pressure gradients from. Blue lines indicate
that the director structure is in a bend state, red lines indicate the splay state and black sections denote the transition. The particle Ericksen numbers Er
and particle Reynolds numbers Re are given in each sub-plot. All quantities are given in LBU.
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act to move the particle towards the wall. The exception is that
for starting position x = 34.5 the bulk force contribution is
positive for a very short initial period, i.e. for very small
z-displacements of the particle from the initial position. Inter-
estingly, all three force contributions are almost balanced, with
a total force of zero, for all time. Variations in the total force are
indiscernible on the same force scale used in Fig. 9.

This situation is in contrast to the Segré–Silberberg effect, in
which the inertial component of the hydrodynamic force acts to
move the particle across the shear gradient towards the wall,
while the increased pressure caused by the particle moving
towards the wall leads to a force acting to move the particle
towards the centre of the channel. At the Segré–Silberberg
equilibrium position, the total hydrodynamic force vanishes.
In a nematic host material, the gradient terms act with the
inertial hydrodynamic forces to move the particle towards
the wall, allowing much faster migration of the particle and
the appearance of an attractor state at a much smaller Reynolds
number.

The presence of a particle also leads to a distorted director
structure, rather than a uniform director at the Leslie angle and
so increased pressure gradients (equivalent to an increased
Reynolds number) can align the director around the particle
more closely to the Leslie angle, thus adapting the elastic force
on the particle, and therefore control of the attractor equili-
brium x-position through changes in pressure gradient is
possible.

Additional results for smaller particles with R = 7.2 show a
similar pattern of preferential migration, and are depicted
Fig. 10 as trajectories. There are quantitative differences, for
instance overshooting off-centre trajectories or trajectories with
overshooting and pull-back to the channel centre are much less
pronounced compared to larger particles with R = 9.6. This can
be attributed to smaller inertia and reduced anchoring forces,
which scale down with the surface area of the particle. For
smaller particles the attractor state emerges at slightly larger
pressure gradient around C = 1.125� 10�5, but shows the same
characteristics, in particular the fast migration of the particle to
the equilibrium regions, as well as the movement of the
emergent attractor position towards the walls and its promi-
nence in the phase diagram with increasing pressure gradient.
These results suggest that this new effect depends to a certain
extent also on particle size, and therefore on inertia. For higher
inertia we expect the emergent attractor region in the phase
diagram Fig. 7 and states as in Fig. 7(c) to extend towards lower
pressure gradients. The middle regions with states as in
Fig. 7(d) and (e) are also likely to appear at lower pressure
gradients and to grow in size. This would occur at the cost of
the region with wall attraction and states as in Fig. 7(b), which
is likely to have a smaller extent.

5 Conclusions

In summary, we observe multiple equilibrium particle posi-
tions and a new pressure-controllable particle attractor state for

a colloidal particle with nematic liquid crystalline host phase.
At low pressure gradients particles migrate either to the chan-
nel centre or the walls but at higher pressure gradients a third
attractor state emerges spontaneously, whose position in the
channel depends sensitively on the pressure gradient. These
results are in striking contrast to the classical Segré–Silberberg
effect in isotropic fluids, where the equilibrium position is also
reached more slowly. The discovery of these new and control-
lable attractor positions opens up interesting routes for tailored
particle separation. While our results were obtained in
pressure-driven flow, we expect them to hold as well in flux-
driven flow as long as there is no significant drag between
particle and fluid. However, it is likely that, as well as particle
size, the confinement ratio and anchoring type and strength
offer additional mechanisms to control the particle migration.
These points will be addressed in future studies.
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