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Stability of the high-density Jagla liquid in 2D:
sensitivity to parameterisation

Livia B. Pártay *a and György Hantal b

We computed the pressure-temperature phase diagram of the hard-core two-scale ramp potential

in two-dimensions, with the parameterisation originally suggested by Jagla [E. A. Jagla, Phys. Rev. E, 63,

061501 (2001)], as well as with a series of systematically modified variants of the model to reveal the

sensitivity of the stability of phases. The nested sampling method was used to explore the potential

energy landscape, allowing the identification of thermodynamically relevant phases, such as low- and

high-density liquids and various crystalline forms, some of which have not been reported before.

We also proposed a smooth version of the potential, which is differentiable beyond the hard-core.

This potential reproduces the density anomaly, but forms a dodecahedral quasi-crystal structure at high

pressure. Our results allow to hypothesise on the necessary modifications of the original model in order

to improve the stability of the metastable high-density liquid phase in 3D.

I. Introduction

The development of simple isotropic interaction potentials are
largely motivated by the desire to construct analytically and com-
putationally tractable models of real materials, which retain quali-
tative features or key properties. The family of core-softened models
among these potentials has attracted particular attention, as they
can display unusually rich and varied behaviour: anomalous
thermodynamical and structural features, polymorphism, liquid-
liquid transitions, or allegedly multiple critical points.1

Core-softened models are characterised by a harder repulsive
core, and a softer region (often described by a ramp or shoulder),
giving rise to two different characteristic lengths scales in the
system: one at a shorter distance representing the core, and the
other one at an intermediate distance corresponding to the
penetrable softer shell. This gives the system the ability to form
a variety of structures characterized by different competing inter-
particle distances and local arrangements. These characteristics
can be achieved by a range of different potential functional forms:
the hard sphere model with an added repulsive ramp,2,3 step,4 or
well,5–7 the smooth and continuous version of these models,8–14

as well as more complex functions constructed via e.g. sums of
Gaussians combined with the Lennard-Jones model.15–19 For an
excellent review on the properties of core softened models, we
recommend the work of Ryzhov et al.1

Within the family of core softened models, particular attention
has been given to those that can potentially form distinct liquid
phases of different densities.14,20 While this phenomenon is well
known for systems with directional interaction potentials, such as
water21 or patchy particles,22 this is less obvious in the absence of
directionality, that is, when the particles interact through a purely
isotropic potential. In such cases, this can be achieved by using
specific functional forms: e.g. the collapsing hard-spheres23 or the
double-step well potential,6 which can yet lead to qualitatively very
different phase diagrams. Special attention has been given to
potentials showing a critical point at the end of the liquid-liquid
phase boundary, (the liquid-liquid critical point, or LLCP), as it
has been speculated to be the source of the anomalous beha-
viour observed in some materials, such as in case of water or
silicon.21,24 However, for most of these potentials the liquid-liquid
transition is known to be metastable with respect to a crystalline
solid phase, hence the LLCP is also in the metastable region of the
phase diagram making its direct studying challenging. A notable
example which had been thought to be an exception until
recently,25 is the spherically symmetric hard-core double-ramp
model. This potential was first studied by Hemmer and Stell,
revealing the existence of a second critical point in case of the
one-dimensional fluid.2 Jagla showed in 2001 that this critical point
manifests in the liquid region of the phase diagram both in the 2D
and 3D cases.3 Since then, the double-ramp model (often referred
to as the ‘Jagla model’) has attracted considerable interest.26–31

While the liquid phases of this model have been extensively
studied, its solid phases (apart from the detailed work of Lomba
et al.,32 who determined the melting line accurately), and in
particular, the question of solid polymorphism has received little
attention. This is partly due to challenges related to equilibrating
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the simulations and observing crystallisation via simple gradual
cooling of the liquid. On the other hand, relevant high temperature
crystalline phases are usually not ground state structures, hence
they are difficult to identify by global optimisation techniques. As
we have shown in our recent work, this led to missing crucial
features of the Jagla phase diagram.25 We performed an exhaustive
unbiased search of the potential energy surface with the nested
sampling method at multiple pressures, revealing the existence of a
complex high-temperature and high-pressure phase, which is more
stable than the high-density liquid (HDLiq) phase. Thus, this does
not only show that the crystalline phases of the Jagla model are
more complex than described before, but more importantly, that
the high-density liquid is metastable.

In the current work we employ the same sampling technique as
in our previous study, nested sampling,33 to compute the phase
diagram of the Jagla model in two dimensions, where the LLCP is
known to be in the stable liquid region of the phase diagram.
Furthermore, we also explore the parameter space by varying the
three potential parameters of the model (the slope of the linear
ramps and the location of the potential minimum), in order
to study their effect on the phase diagram. Understanding how
these parameters affect phase stability – particularly that of the
high-density liquid – is an important step towards creating a
parameterisation in the future, which has a thermodynamically
stable liquid-liquid transition in 3D. Finally, we propose a
smoothed and hence differentiable (beyond the hard sphere core)
version of the Jagla model, highlighting that small changes to the
shape of the particle interactions can induce qualitative changes in
the macroscopic behaviour of the model material.

II. The 2D Jagla model
A. Potential functions and parameterisations

The Jagla model is the combination of a hard-sphere core and two
linear functions accounting for the repulsive and the attractive
ramps. The potential can be defined in different, but mathemati-
cally equivalent forms.29 Eqn (1) describes the definition we adapt
in our work, and eqn (2) shows our suggested smoothed version of
the potential function.

UðrÞ ¼

1; if r � r0

WR � ðWR �WAÞðr� r0Þ=ðb� r0Þ; if r0 o r � b

WA �WAðr� bÞ=ðc� bÞ; if bo r � c

0; if r4 c

8>>>>><
>>>>>:

(1)

In the current work we started with the original parameters
presented in Jagla’s publication. The hard sphere radius, r0,
determines the length unit, and the depth of the potential well,
U0, determines the energy unit of the model. In the 2D case, the
remaining parameters are set as b = 1.72r0 (the minimum
energy distance), c = 4.8r0 (where the potential goes to zero),
WR = 3.336WA (the height of the repulsive ramp) and WA = �U0

(the depth of the potential energy well).3 The pressure and the
temperature of the system can be conveniently given in units of
U0/r0

2 and U0/kB, respectively. In order to explore the sensitivity
of the phase behaviour to the potential parameters, we repeated
our calculations with six further variants of the model, in each
case changing one of the three parameters, WR, b or c, both
to a slightly lower and a slightly higher value than in the
original model.

In order to allow continuous differentiation of the potential,
and thus the calculation of forces, smoothed versions of the
ramp and double-well type potentials have been employed
before.12,14 These modifications, however, often result in qua-
litatively different behaviours.10,18 To examine this effect, we
propose a smoothed version of the model beyond the hard-core
component. Since the customarily used spline functions
require the introduction of new fitting constants, we decided
to use a combination of two sigmoidal smooth step-functions
(presented in eqn (2)), which preserves the physical meaning of
the original characteristic potential parameters and closely
follows the original shape. Fig. 1 shows the potential with the
original parameterisation, together with the modifications
indicated by coloured dashed lines, as well as our proposed
smoothed version of the potential.

B. Known phases

Despite their apparent simplicity, even one-component systems
interacting through non-directional potentials can show very
complex phase behaviour in 2D: they can exhibit multiple
critical points, anomalous properties,34 several stable crystal-
line polymorphs,1,35–39 as well as intriguing melting scenarios
that can involve two continuous transitions with a new quasi-
long-range orientationally ordered intermediate phase, the
hexatic phase.1,40,41

The closest possible packing of monodisperse discs is the
hexagonal packing, where each disc has six nearest neighbours.
This structure is often the lowest energy configuration, how-
ever, it has been shown in several cases that depending on the
details of the potential model, a wide range of exotic struc-
tures can be stabilised thermodynamically.1,35–38 To aid our

UðrÞ ¼

1; if r � r0

WA þ 2ðWR �WAÞ 3
b� r

2ðb� r0Þ

� �2

�2 b� r

2ðb� r0Þ

� �3
" #

; if r0 o r � b

WA þWA 3
r� b

c� b

� �2

�2 r� b

c� b

� �3
" #

; if bo r � c

0; if r4 c

8>>>>>>>>>>><
>>>>>>>>>>>:

(2)
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discussion of the different solid phases, we will refer to the
hexagonal lattice as the triangular phase, reflecting its trian-
gular packing,36,42 and reserve the name hexagonal phase,
where the particle positions represent tiling of the plane by
regular hexagons. Having more than one characteristic distance
of the potential can lead to the formation of isocrystalline
structures: having the same spatial arrangement of particles,
but with different lattice constants.35,36 To distinguish such
phases, we will refer to them as low-density and high-density
structures, e.g. LD triangular phase and HD triangular phase,
the latter being the global minimum of the studied system.

III. Simulation details

The configuration space of the Jagla model was explored using
the nested sampling (NS) method. NS is a Bayesian inference
method developed by Skilling43,44 that has been adapted to
sample the potential energy landscape of atomistic systems.33,45–47

NS is a ‘‘top-down’’ approach, starting from randomly generated
configurations representing the high enthalpy region (or the high
energy in case of the canonical ensemble) of the phase-space,
propagating towards the global minimum through a series of
iterative steps which shrink the available phase space by a
constant fraction. During the iterative step, the highest enthalpy
configuration is substituted with a new lower enthalpy one,
generated from a randomly chosen existing configuration
through a series of uniform changes to atomic positions and
simulation cell dimensions. One of the greatest advantages of
the method is that this process allows the calculation of the
partition function and hence gives access to thermodynamic
properties, moreover, this can be achieved without any prior
knowledge of the structure of relevant phases. The powerfulness
of NS in calculating structural and thermodynamic properties
under a wide range of conditions has been demonstrated in
case of a range of bulk materials45,48–53 and clusters.46,54–56

For a detailed review of materials application of NS we recom-
mend ref. 33.

NS calculations were performed using the pymatnest pro-
gram package57 and configurations were sampled by utilising
single-atom MC moves, and changing the volume and shape of
the simulation cell. The studied pressure range was chosen in
every case such that it spans the entire HDLiq-LDLiq phase
boundary with additional pressure values above the LLCP. The
simulation cell contained in most cases 120 particles, however,
calculations with certain parameter sets were repeated using
60, 144 and 240 atoms in order to evaluate finite size effects and
allow the formation of crystalline structures with potentially
different unit cell symmetry. In all cases these extra runs
identified the same stable phases, including the crystalline
structures, as the original calculations, suggesting that we have
not missed any thermodynamically relevant structures due to
unit cell incommensurability. Using systems of 60–100 particles
usually causes the melting temperature to be overestimated
with NS by 5–8%.33,47 Our observation that increasing the
system size from 120 to 240 particles decreased the melting
temperature by 4% suggests that our results are only marginally
affected by finite size effects.

There are two parameters controlling the convergence of NS
calculations. The number of configurations constituting the
live set, K, determines the resolution of the energy landscape,
and the length of the random walk used to generate the new
sample configurations, L. Our calculations showed that using
K = 560 walkers and L = 1200 MC sweeps per iterations result in
good convergence, with peaks of the heat capacity to vary less
than 0.005U0/kB.

To evaluate the expected value of an observable at a given
temperature, we can calculate its weighted average over all the
generated samples:33,46

Aðb; pÞ ¼ 1

Zðb; pÞ
X
i

AiGi�ðiþ1Þ expð�bHiÞ; (3)

where Ai is the value of observable A at the i-th iteration, H is the
enthalpy, b = 1/(kBT) is the thermodynamic temperature, p is
the pressure and Z is the partition function calculated from NS
the following way:

Zðb; pÞ ¼
X
i

Gi�ðiþ1Þ expð�bHiÞ; (4)

where Gi is the nested sampling weight associated with the
phase space volume at a given enthalpy level, Gi�(i+1) =
[K/(K + 1)]i � [K/(K + 1)]i+1. In our study we use this to charac-
terise structures typical at a given temperature, e.g. calcu-
late the weighted average of the radial distribution function
of all the configurations generated during a single nested
sampling run.

IV. Results and discussion
A. Original parameterisation

The overall phase diagram calculated by NS is compared to that
published in the original work of Jagla in Fig. 2. Samplings at

Fig. 1 Spherically symmetric Jagla ramp model, with the original para-
meters used in 2D3 (green), and our smoothed version (purple). Coloured
dashed lines represent the variation of the potential parameters we
explored.
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lower pressures explored the low-density liquid phase (LDLiq),
showing the density anomaly observed before. Upon freezing of
the LDLiq, the low-density ‘‘triangular’’ solid is formed, with
the nearest neighbour particles being at the distance corres-
ponding to the location of the potential minimum, b, as seen in
Fig. 3(a). In further agreement to previous results, the melting
line has a negative slope as the pressure increases. At p =
0.26U0/r0

2 the observed behaviour changes significantly, with
two additional peaks appearing on the heat capacity curve,
where the peak at the higher temperature is associated with a
significant increase in density. In order to aid the identification
of the phases, we calculated the weighted average of the radial
distribution function at a series of temperatures, which are
shown in Fig. 4 for two different pressures along with the heat
capacity and density curves. The high-temperature peak of
the heat capacity corresponds to the transition from the low-
density liquid to the high-density liquid as the temperature
decreases (two example snapshots are shown in Fig. 3(b) and (c)).
As the pressure increases, the HDLiq-LDLiq transition shifts to
higher temperature while the heat capacity peak gradually
broadens and then disappears suggesting that this transition
ends in a critical point (see Fig. 4b). To locate the critical point
we drew on the results of Bruce and Wilding:58 at the tempera-
ture corresponding to the maximum of the heat capacity peak at
a given pressure, the density distribution appears bimodal below
the critical point and unimodal above it for finite systems.
Hence, by calculating the density distribution we can determine
whether the peak represents a first order phase transition, or the
shallower and broader peak of the heat capacity corresponds to
crossing the respective Widom-line (shown by open symbols in

Fig. 2), providing an upper and lower estimate of the critical
pressure. This analysis confirms that the LLCP is in the range of
pc = 0.3 � 0.35U0/r0

2 and Tc = 0.42 � 0.45U0/kB, while the liquid-
vapour critical point is in the range of pc = 0.06 � 0.1U0/r0

2 and
Tc = 1.51 � 1.71U0/kB.

The two other peaks in the heat capacity (see Fig. 4a)
correspond to two phase transitions: first the high-density
liquid phase freezes into a distorted hexagonal structure, which
then undergoes a phase transformation to a regular hexagonal
arrangement. In the distorted phase, the hexagons formed by
the particles have two B140 degree angles at opposite vertices,
with the nearest neighbour particles being at the hard sphere
distance, r0. The distortion also causes the second nearest
neighbour distances to split, resulting in two distinct peaks
around 2r0, as can be seen in the radial distribution functions
in Fig. 4. This structure has been known to be a ground state of
repulsive ramp models at medium pressures36,39 and for the
double-step potentials as a medium-pressure high-temperature
phase.59

As the sampling progresses, and the lower energy part of the
phase space is explored, we found this distorted structure to
transform to regular hexagons at around T = 0.2, but found the
transition temperature varying more in independent runs,
suggesting that this transition is more challenging to converge.
Characteristic structures of the solid phases are shown in Fig. 5.

While we identified the boundaries of two new solid phases
at higher pressures, the rest of the phase diagram agrees

Fig. 2 Temperature-pressure phase diagram of the 2D Jagla model.
Black line represent data from literature,3 coloured symbols are nested
sampling results of the current work. Error bars represent the temperature
range within which the heat capacity peaks were located. Open circles and
square show where peaks on the heat capacity were found to be above the
liquid-liquid and liquid-vapour critical point, respectively, corresponding
to the respective Widom-lines. The dashed black line and smaller light-
blue symbols correspond to the temperature of the maximum density line.
Grey vertical arrows point to the two pressures where the radial distribu-
tion functions shown on Fig. 4 were calculated.

Fig. 3 Example configurations of typical structures taken from the nested
sampling runs. Particles are represented with spheres of the hard-sphere
diameter, and bonds are drawn if they are closer than 1.3r0.
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excellently with Jagla’s published work.3 The only difference
appears in the temperature of the maximum densities at a
given pressure. In order to examine this discrepancy, we
performed a series of constant pressure Monte Carlo simula-
tions of 400 Jagla particles using the HOOMD package.60,61 The
equilibrium density of these NPT simulations agreed with our
NS results perfectly. One also has to note that the ground state
structure is the close-packed high-density triangular phase,
with nearest neighbour distances at r0. This structure has not
been explored by nested sampling at the current resolution,
due to its anticipated very small phase space volume at the
melting temperature, hence we do not provide an estimate for
this solid–solid transition.

B. Varied parameterisation

Our recent calculations on the 3D system have shown that the
most widely used parameterisation of the Jagla potential dis-
plays, contrary to the earlier consensus, the LLCP in a region
where the liquid phases are metastable with respect to a newly
identified solid phase.25 Hence, the question naturally arises: is
it possible to find a parameter set where the HDLiq phase
becomes thermodynamically stable? Motivated by this ques-
tion, we use the 2D system to explore the sensitivity of the
phase behaviour to changes of the potential parameters: 2D

systems are inherently simpler, with fewer crystalline structures
emerging, moreover, the HDLiq appears to be a thermodyna-
mically stable phase of the 2D Jagla model. In this section, we
change each potential parameter independently, then calculate
and compare the resulting phase diagrams. In the following,
the results are discussed primarily from the point of view of the
stability range of the HDLiq phase.

Fig. 6 shows the phase diagrams of the six variants of the
potential model. The main qualitative features of the phase
diagram are not affected by the small parameter variations: the
melting line of the low-density solid has a negative slope, both
liquid phases are thermodynamically stable in certain regions,
and all systems show density anomaly. The significant shift of
the phase boundaries to larger pressure is due to making the
overall potential more repulsive (either by increasing the slope
of the repulsive ramp, such as increasing WR, or shortening the
attractive region, i.e. decreasing c).

Increasing WR causes the melting and solid–solid transi-
tions to shift slightly towards higher temperatures, but as the
LDLiq–HDLiq phase boundary does not change significantly,
this only causes a minor change in the temperature range
where the HDLiq phase is stable (see Fig. 6a). In contrast,
varying the location of the potential minimum has a more
complex and stronger effect. Changing the b parameter alters
the steepness of both the repulsive and the attractive ramps, as
well as the proportion of neighbour shells corresponding to
these, hence also the number of particles contributing with
forces of opposite signs. Therefore, it is expected that not only
the phase boundaries will be shifted, but the stability of the
solid phases might change as well, with potentially new structures
emerging or disappearing form the phase diagram.

While the increase in the b parameter shifts the freezing of
the LDLiq to lower temperatures, the effect is the opposite on

Fig. 5 Characteristic solid structures. Black circle represent the hard
sphere core, r0, the blue shaded crown showing the penetrable repulsive
region, with diameter b. (a) LD triangular arrangement at low pressure (b)
close packed hexagonal packing, second nearest neighbours are at a
distance h ¼

ffiffiffi
3
p

r0 (c) distorted hexagonal packing showing the two par-
ticles at the opposite vertices being at distance b from each other.

Fig. 4 Heat capacity (left panels), density (middle panels) and the
weighted average (see eqn (3)) of the radial distribution function (RDF) at
different temperatures (right panels), calculated by nested sampling, using
the original parameterisation. RDFs are shifted vertically, such that their
baseline matches the corresponding temperature. Panel (a) shows results
below the liquid-liquid critical point at p = 0.26U0/r0

2, the black arrow
points to the temperature of the maximum density (TMD), panel (b) shows
results above the liquid-liquid critical point at p = 0.4U0/r0

2, where the
transition from LDLiq to HDLiq is continuous. These two pressures are
highlighted by grey arrows on the phase diagram shown in Fig. 2.
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the solid–HDLiq phase transition temperature. As is seen in
Fig. 6b, at b = 1.76r0 (that is, at the increased b value) the

melting temperature of both the HDLiq and the LDLiq phases
are almost the same, but they are becoming increasingly
different as b decreases. Decreasing the b parameter shifts
the stability region of HDLiq to higher pressures and lower
temperatures. Furthermore, varying parameter b causes the
disappearance of one of the solid phases. With b = 1.68r0 the
liquid freezes into the distorted hexagonal structure, where
the distance of the opposite vertices is exactly the modified
minimum energy distance (1.68r0), with no evidence of further
transition to regular hexagonal structure at lower temperatures.
However, using b = 1.76r0 causes the liquid to freeze straight
into the regular hexagonal structure. This might be explained
by the fact that this minimum location is larger than the
second neighbour distance (i.e. the height) of a regular hexa-

gon, h ¼
ffiffi
ð

p
3Þ, and hence the distorted structure does not have

an energetic advantage any more.
Increasing the value of parameter c shifts both the solid–

solid and the LDLiq–HDLiq phase transitions to higher
temperatures (as illustrated in Fig. 6c), while the melting
temperature seems to be insensitive to these changes. As a
consequence, the stability range of the HDLiq phase changes
drastically upon variation of c. Decreasing c shrinks the stability
region of HDLiq significantly, while increasing it widens the
temperature range where HDLiq is stable.

C. Smoothed version of the potential

In the low-pressure region, the phase behaviour of the
smoothed potential is very similar to that of the original linear
ramp model (see Fig. 7). The low-density liquid forms the LD
triangular phase upon freezing, the slope of the melting line is
negative and displays the density maximum anomaly, although
both are shifted to lower temperatures. Interestingly, however,
the high pressure behaviour is markedly different. The simu-
lations do not show a clear transition to another liquid of

Fig. 6 Temperature-pressure phase diagram of the 2D Jagla model, with
varying potential parameters. Panel (a) variation of the slope of the
repulsive ramp (parameter WR), panel (b) variation of the location of the
minimum (parameter b), panel (c) variation of the length of the attractive
ramp (parameter c) Black lines represent the phase boundaries of the
original parameterisation, blue and red filled circles show phase transitions
in the modified potential, where open circles represent peaks on the heat
capacity above the LLCP, corresponding to the Widom-line. Lines are only
guides to the eye. Dotted lines and smaller symbols show the temperature
of maximum density line. Error bars show the widths at half maximum of
the heat capacity peaks. Fig. 7 Temperature-pressure phase diagram of the smoothed version of

the 2D Jagla model (red symbols) compared to results obtained with the
original linear ramp model (black lines). Lines are only guides to the eye.
Dotted lines with smaller symbols show the temperature of maximum
density line. The grey vertical arrow points to the pressure where the radial
distribution functions shown on Fig. 8 were calculated.
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different density at higher pressure, but the continuous
increase in density is accompanied by the formation of ortho-
gonal structural units. As Fig. 8 demonstrates, as more particles
move closer to the hard-core radius upon increasing the
pressure, the characteristic angle between three nearest neigh-
bours becomes 901, but only a shoulder appears on the heat
capacity curve, suggesting this transition is not of first-order.
As the temperature decreases, a sharp peak marks the transi-
tion to a solid of a different angular order: characteristic angles
become approximately 451, 901 and 1081, as the explored
structures are built up by regular pentagons surrounded by
distorted pentagons, squares and right-angled triangles to form
larger 12-membered rings (see Fig. 9). However, the relative
orientation and packing of these motifs were different among
different walkers, with a lack of obvious long-range periodicity
except what is enforced by the periodic boundary conditions,
hence we refer to this phase as quasi-crystalline. Similar
structures have been described for hard-core shoulder62,63

and soft shoulder potentials,39 if the ratio of the two charac-
teristic lengths scales of the model is around 1.4. This ratio is
larger in our system, b/r0 = 1.72, since our smoothed Jagla
potential also has an attractive interaction range. Interestingly,
Pattabhiraman et al. has also found the quasicrystalline phase
to be preceded by a liquid phase dominated by orthogonal

motifs.63 This can originate from the thermodynamic competi-
tion between the tiling polygons: the square arrangement
becomes less favourable at higher density.

In order to examine the stability of both the liquid with ortho-
gonal motifs and the quasi-crystalline phases, we performed a
series of Monte Carlo simulations at p = 0.5U0/r0

2 using the
HOOMD package with 400 particles interacting through the
smoothed potential. In the temperature range 0.18–0.24 the ortho-
gonal motifs are formed, but even starting from a perfect square
lattice of various densities results in a partially disordered phase,
suggesting that under these conditions the perfect square-lattice
crystal structure is indeed unstable. Finding the quasi-crystal
structure via cooling proved to be more challenging, with the
simulation getting easily trapped in the LD triangular packing
if the initial conditions were unfavourable. This highlights the
powerfulness of phase space exploration methods, such as NS,
which uses independent sample configurations to explore the phase
space, unbiased by our intuition. However, when getting trapped in
the triangular phase was avoided, the obtained structures showed
great structural similarity with configurations sampled by NS,
without any apparent periodicity in the simulation cell.

V. Conclusions

With the nested sampling technique, we performed an exten-
sive exploration of the potential energy surface of the original
two-dimensional hard-core double ramp model used by Jagla3

Fig. 8 Heat capacity, radial distribution functions, and angular distribution
functions of nearest neighbours computed with the smoothed version of
the 2D Jagla model, at p = 0.5U0/r0

2 (highlighted by a grey arrow in Fig. 7).
Heat capacity is shown on the left of both panels, while the top panel (a)
displays the weighted average of the radial distribution function (RDF) at
different temperatures, and the bottom panel (b) shows the weighted
average of the angular distribution function of nearest neighbours at
different temperatures, computed on configurations sampled by NS, using
eqn (3). Distributions are vertically shifted such that the baseline matches
the corresponding temperature on the heat capacity.

Fig. 9 Snapshots taken from the NS sampling performed with the
smoothed version of the model and 240 atoms at p = 0.5U0/r0

2.
(a) Configuration from the temperature range 0.2–0.21 U0/kB, showing
the local orthogonal arrangement, (b) final configuration of the quasi-
crystal structure. Atoms are connected if closer than 1.3r0, which is the
location of the first minimum on the RDF. The dodecagonal motif is
highlighted with orange shade.
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as well as a series of modified versions of it, and computed their
pressure-temperature phase diagram. Our calculations using
Jagla’s original parameterisation reproduced the known phase
diagram. We extended our phase space exploration to higher
pressures which allowed to identify two new solid phases of
hexagonal arrangement.

We examined the impact of small modifications to the
different potential parameters, to reveal their effect on the stability
of different phases, with particular focus on the stability of the
high-density liquid.

Decreasing WR, the slope of the short range repulsive ramp
causes the closer neighbour shells to have a reduced repulsive
contribution, which widens the stability region of the HDLiq
phase. Increasing c, the length of the attractive ramp results in
taking into account more neighbour shells, all with a negative
contribution to the energy. This has a stronger effect, with the
temperature range in which the HDLiq is stable being more
sensitive to changes to c than to that of the WR parameter.
Changing b, the location of the potential minimum has a more
complex consequence. It not only changes the slope of both ramps,
but the most favourable neighbour distance as well, which signifi-
cantly alters the stability of different crystalline configurations
leading eventually to the disappearance of one of the solid phases.

Based on these results we hypothesise that making the
potential more attractive by increasing the length of the attrac-
tive ramp or (to a lesser extent) decreasing the height of the
repulsive ramp in 3D might increase the stability of the HDLiq
phase. This could bring the LLCP of the 3D model to the stable
liquid range. Indeed, increasing c extends the range of particles
that have a favourable energetic contribution, which is expected
to be more pronounced in the high-density phases. However, if
the potential parameters are changed, the appearance of novel
crystalline phases should be anticipated (this is in particular
true in 3D), which could still render the HDLiq metastable.

We also proposed a continuously differentiable (beyond the
hard-core) version of the Jagla model, which preserves its
characteristic parameters. Similar smoothed potentials are
often used as substitutes to discreet step or well potentials, to
allow the easier use of molecular dynamics. While the proposed
smooth model shows similar behaviour to the ramp model at
low pressures, the high pressure behaviour is markedly differ-
ent, with a quasi-crystal structure emerging. This highlights,
that small changes to the potential function can result in a
qualitatively different phase behaviour. Consequently, a full
exploration of the phase space becomes necessary every time an
interaction potential is modified even to the slightest extent.
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2010, 114, 10502–10512.
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N. Bernstein, G. Csànyi and G. L. W. Hart, Machine-learned
interatomic potentials for alloys and alloy phase diagrams,
npj Comput. Mater., 2021, 7, 24.
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