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Emergent collective dynamics of pusher and
puller squirmer rods: swarming, clustering,
and turbulence†

Arne W. Zantop * and Holger Stark *

We study the interplay of steric and hydrodynamic interactions in suspensions of elongated micro-

swimmers by simulating the full hydrodynamics of squirmer rods in the quasi two-dimensional geometry

of a Hele-Shaw cell. To create pusher or puller-type squirmer rods, we concentrate the surface

slip-velocity field more to the back or to the front of the rod and thereby are able to tune the rod’s

force-dipole strength. We study a wide range of aspect ratios and area fractions and provide

corresponding state diagrams. The flow field of pusher-type squirmer rods destabilizes ordered

structures and favors the disordered state at small area fractions and aspect ratios. Only when steric

interactions become relevant, we observe a turbulent and dynamic cluster state, while for large aspect

ratios a single swarm and jammed cluster occurs. The power spectrum of the turbulent state shows two

distinct energy cascades at small and large wave numbers with power-law scaling and non-universal

exponents. Pullers show a strong tendency to form swarms instead of the disordered state found for

neutral and pusher rods. At large area fractions a dynamic cluster is observed and at larger aspect ratio a

single swarm or jammed cluster occurs.

1 Introduction

Microscopic unicellular organisms make up a major fraction of
all life forms on our planet. They are involved in important
natural processes such as photosynthesis1–3 or industrial pro-
cesses such as the production of enzymes4,5 or biofuels,6–8 or
the recycling of wastewater.9,10 Especially in photosynthesis,
commonly viewed as the basis of life, unicellular phytoplankton
accomplish about half of the worldwide natural turnover.2,3

However, still many aspects of the behavior of unicellular
organisms is not completely understood. In fact, many of these
life forms are self-propelling microswimmers,11–13 as, for exam-
ple, the algae C. reinhardtii14,15 or the bacterium E. coli.16–18

From the perspective of physicists, their active motion gives rise
to very interesting new collective phenomena. In this article we
study the rich emergent collective dynamics of rod-shaped
model microswimmers, which we can tune between the pusher
and puller type.

Active motion is always performed in non-equilibrium and,
therefore, gives rise to new and interesting phenomena. For
example, specially designed boundaries can rectify the random
motion of active particles,19–23 or under gravity active particles
develop polar order and even show inverted sedimentation
profiles when they are bottom-heavy.24,25 In addition, micro-
swimmer suspensions are subject to long-range hydrodynamic
interactions with characteristic power-law decay.13,26,27 But also
short-range steric interactions play an important role, in parti-
cular, for elongated particles, which align along each other.12

The combination of these interactions gives rise to numerous
interesting dynamic patterns. Common examples are the for-
mation of swarms or flocks,28–32 convection rolls and plumes,25

fluid pumps,33,34 vortices,35–38 active nematic patterns,39–41 and
the emergence of the so-called active turbulence,42,43 termed in
analogy to classical inertial turbulence.44,45 However, contrary to
classical turbulence, where fluid flow is driven on the macroscopic
scale, active turbulence is generated at the microscopic scale of
the self-propelled particles and then energy is dissipated on larger
scales. This mechanism causes a characteristic length scale for
the formation of vortices and patterns, which is in contrast to
the scale invariance of classical turbulence.46–48 In particular, the
specific model parameters now determine the scaling of the
velocity power spectrum, which is no longer universal.48–50 Active
turbulence is found for microswimmers,51,52 active bio-filaments,
which exist in the cytoplasm,39,53 and in growing tissue.54,55
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On the theoretical side, the dynamics of active particles has
been investigated at different levels of description. While the
celebrated Vicsek model56–58 uses coarse-grained alignment
rules, also models with explicit steric interactions exist.42,51,59–64

These models have also been generalized to active filaments31,65,66

and models, which implicitly include hydrodynamic inter-
actions.67,68 Models, which directly simulate fluid flow and
thereby explicitly include hydrodynamic interactions, use the
method of multi-particle collision dynamics (MPCD)25,30,32,69–79

or the lattice-Boltzmann method.80–83 Continuum models
combine elements of the Toner-Tu84 and Swift-Hohenberg85

equations to generate hydrodynamic equations for active
suspensions.46,86,87 Microswimmers are also distinguished by
their swimming mechanisms and the flow field, they generate
in the surrounding fluid.11,13 While some microorganisms
propel with cilia located all over their surface, common bacteria
and algae propel with flagella that extent from the front or back
of the cell body. In the first case, the flow field of a source
dipole is realized, which decays as r�3, while bacteria and algae
are termed pusher or puller-type swimmers that generate a
long-range force-dipole flow field, which decays as r�2.13,27 The
specific form of these hydrodynamic multipole flow fields deter-
mines the collective dynamics of the microswimmers.32,69,74,88–90

In this context, we proposed in ref. 76 the squirmer rod as
a realistic microscopic model for elongated microswimmers.
It consists of overlapping squirmers and thereby extends the
well-known spherical squirmer model for ciliary propulsion26,91

and its implementation in MPCD.92 Restricting the surface slip-
velocity to the front or the back of the squirmer rod, puller and
pusher-type squirmer rods can be realized, respectively. The
hydrodynamic flow field is simulated using an efficient imple-
mentation of MPCD with a reduced compressibility such that
also collective dynamics in large and dense systems can be
studied.93 Most recently, we presented the state diagram of
neutral squirmer rods and identified with increasing area
fraction and depending on the aspect ratio of the rods the
disordered state, dynamic swarms, a single swarm, and ultimately
a jammed cluster.94

In this article we generalize the squirmer-rod model to
pushers and pullers with tunable force-dipole strength in the
flow field. Compared to spheroidal squirmers it has the advan-
tage that it better approximates real rodlike microswimmers
such as E. coli. Using this model, we provide a comprehensive
study of the state diagram for hydrodynamically interacting
microswimmers over a wide range of aspect ratios, densities,
and force-dipole strengths as the state diagrams in Fig. 3(a),
7(a) and 9(a) show. Hereby, we go well beyond previous works,
which focused mainly on more dilute systems95,96 or a single
aspect ratio.97 Thus, our work provides an overall view how
hydrodynamics and shape determine the dynamic states of
microswimmers. For example, our particle-based model nicely
illustrates that the active turbulent state occurs as a compro-
mise between the disordering hydrodynamic pusher–pusher
interactions and aligning steric interactions. We also demon-
strate that the two distinct energy cascades at low and large
wave numbers in the power spectral density of velocity

fluctuations exhibits non-universal exponents. Moreover, we
find a dynamic cluster state at large densities. Besides this
state all other states are also found in dry active rods.98 But, in
our case, they have a specific contribution from hydrodynamics
as, for example, the turbulent and swarming states show. The
overall appearance of the states in our state diagrams can be
summarized as follows. For pushers we observe that the swarm-
ing states of neutral squirmer rods are destabilized. Instead, for
smaller aspect ratio between the disordered and dynamic
cluster state, we observe the turbulent state as already men-
tioned. At high aspect ratios, where steric interactions become
more relevant, we recover the single swarm and jammed cluster
state of neutral squirmer rods. For pullers, hydrodynamic
interactions stabilize the swarming state even for our smallest
area fraction. Thus, compared to neutral squirmer rods, states
are shifted towards lower densities. Variation of the force-dipole
strength at constant aspect ratio supports all these findings.

The article is organized as follows. In Section 2 we give a
brief overview of the methods used in this paper. Section 3
provides a detailed study of the different dynamic states of the
squirmer rods as a function of their area fraction, aspect ratio,
and force-dipole strength. We end with a summary and con-
clusions in Section 4.

2 System and methods

We first introduce the squirmer-rod model and then summarize
some details of the method of multi-particle collision dynamics,
which we use to simulate the flow fields generated by the
squirmer rods.

2.1 Model of the squirmer rod

To model shape-anisotropic microswimmers, we employ the
squirmer rod model as introduced in our previous work.76

Squirmer rods consist of Nsq overlapping spherical squirmers
of radius Rsq, arranged on a line to form a single rigid body [see
Fig. 1(a)]. By varying the distance d between neighboring
squirmers, we can tune the aspect ratio of the squirmer rod,
a = lS/2R, where lS is the rod length. However, we do not exceed
a distance of d E 0.8R so that the surface of the rod is
sufficiently smooth. With a number of Nsq = 10 squirmers in
this work, this amounts to a maximum aspect ratio of a E 5,
which closely resembles the aspect ratio of bacteria such as
E. coli or B. subtilis.

The squirmer rods propel through the axisymmetric and
tangential slip velocity field at the surface of individual sphe-
rical squirmers,

vs = Bs
1[(ê�x̂s)x̂s � ê], (1)

which is imposed on the surrounding fluid.26,92 Here, ê is the
rod axis and x̂s the unit vector pointing from the center of a
squirmer to a point on the squirmer surface. This generates a
source-dipole flow field, which is a higher-order singular
solution of the Stokes equations Zr2v = rp together with the
incompressibility condition r�v = 0, that govern fluid flow at
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the microscale. Here, v and p are the respective fluid velocity
and pressure fields, and Z is the dynamic shear viscosity. The
strength Bs

1 controls the swimming velocity v0 = 2/3Bs
1 of the

spherical squirmer and hence of the squirmer rod. In ref. 76
we showed that the swimming velocity of the squirmer rods
v E 1.2v0 slightly exceeds the velocity of a single spherical
squirmer. Additionally, the velocity of the rods varies by 10% in
the range of aspect ratios used in this article. Although the
increased velocity at the larger aspect ratios might augment
clustering, we assume the effect to be negligible.

As described so far, the surface slip velocity of the squirmer
rod resembles ciliated microorganisms such as Paramecium.
In this realization, the profile of the slip velocity generates a
flow field in the surrounding fluid, the far field of which can be
described by a source dipole and an additional force quadru-
pole singularity, which both decay with |usd|, |ufq| B r�3, as we
show in ref. 76.

However, other prominent microswimmers such as E. coli
bacteria or Chlamydomonas algae propel by rotating or beating
flagella that extent from the back or the front of their bodies,
respectively. These modes of propulsion create a pair of oppos-
ing forces that generate the more long-ranged force-dipole flow
field |ufd| B r�2. To generalise the squirmer rod model to these
pusher and puller-type microswimmers, we concentrate the
surface slip velocity either to the back or the front of the
squirmer rod [see Fig. 1(a)]. This is done by multiplying

the surface flow field with the envelope function

f ðx�s � ê; wÞ ¼ 1þ w tanhð10x�s � ê=lSÞ; (2)

where x�s points from the rod center to a location on the rod
surface. The parameter w A [�1, 1] determines the swimmer
type and force-dipole strength, such that for w o 0 a pusher-
type swimmer is realised and likewise a puller-type swimmer
for w 4 0. For either w = �1 or w = 1 this modification leads to a
completely passive half of the rods [see Fig. 1(a)], while for
intermediate values the relative contributions of the source
dipole and force dipole to the flow field vary. For w = 0, the
model again resembles the neutral squirmer rod.

In the present work, we consider the collective dynamics of
squirmer rods confined between two parallel walls. In this
so-called Hele-Shaw cell the radial decays of hydrodynamic
multipoles are modified compared to the bulk fluid, such that
the confined source dipole and force dipole decay as |ũsd| B r�2

and |ũfd| B r�3, respectively, where r is the polar distance76,99 (see
appendix of ref. 99). As a consequence, the source dipole has the
longest range in the flow field and ultimately dominates the far
field. However, already in our previous work we realized that a
distance of Dz = 6R between the walls, which we will use in our
simulations, alters the relative strength of the source and force
dipoles.76 As a consequence, the force dipole dominates the flow
field at short and medium distance as we will demonstrate in
Section 3.2.

2.2 Method of multi-particle collision dynamics

To model the fluid flow in our simulations, we employ the
meso-scale simulation technique of multi-particle collision
dynamics (MPCD).100–102 The MPCD method is particularly
suited for solving the Navier–Stokes equations at the micro-
scale, because it includes thermal fluctuations and is straight-
forward to implement boundary conditions for complex
geometries.

The MPCD method uses a sequence of streaming and
collision steps of the point-like fluid particles. In the streaming
step the fluid particles move ballistically with their velocities
during time step Dt. Then, the simulation box is divided into
cubic cells with edge length a0 and the velocities of the fluid
particles in one cell are modified randomly but keeping the
mean velocity or linear momentum fixed. In this work, we use a
collision rule optimized to achieve a low compressibility of the
fluid.93 As in other MPCD methods, it includes angular
momentum conservation and a thermostat. By choosing the
MPCD fluid density n0 = 20/a0

3, i.e., on average 20 fluid particles

per cell, and the time step Dt ¼ 0:005a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=kBT0

p
, we obtain a

fluid viscosity of Z ¼ 16:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0kBT0

p
=a0

2, which is comparable
to previous work.74,76,96 Here, m0 is the mass of one fluid
particle.

The immersed squirmer rods are modeled with the mass
density of the fluid r0 = m0n0. The radius of the constituting
squirmers is chosen as Rsq = 3a0 and the strength of the surface slip
velocity as Bs

1 = 0.1, which results in a Péclet number of Pe E 350.94

Steric repulsion is realized with a Weeks–Chandler–Andersen

Fig. 1 (a) Sketch of the surface slip velocity of three squirmer rods with
respective swimmer-type parameters w = �1, 0, and 1 (from left to right).
The arrows within the squirmer rods indicate the swimming direction ê.
The parameter w A {�1, 1} can be used to smoothly vary the type of the
squirmer rod from pusher to neutral to puller. (b) Force-dipole coefficient
A2(w) (blue) and active velocity v(w)/v(0) (red) as a function of the swimmer
parameter w. (c) Schematic state diagram for neutral squirmer rods adapted
from ref. 94.
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potential103 that acts between two squirmers of different rods.
To ensure that there is no significant overlap between two
squirmer rods, we choose a strong force constant eWCA E 104kBT.

The squirmer rods move because they acquire momentum
from the surrounding fluid. In the MPCD streaming step, linear
and angular momentum is transferred to the squirmer rod by
collisions with the fluid particles. We achieve this by applying
the so-called bounce back rule, which we also modify accord-
ingly to implement the slip velocity in eqn (1) on the surface of
the squirmer rods.100,101 Squirmer rods also contain so-called
‘‘ghost’’ particles, which improve the implementation of no-slip
boundary conditions.101 During the MPCD collision step, they
exchange momentum with the fluid, which is ascribed to the
squirmer rod. Lastly, the equations of motion for the squirmer
rods are integrated with a refined time step of dtMD = Dt/3
using a symplectic splitting algorithm for rigid body molecular
dynamics.104

For our simulations we use two different geometries.
To determine how the force dipole strength A2 depends on
the swimmer-type parameter w, we use a cubic box of linear size
L = 100a0 with periodic boundary conditions along all spatial
directions. In this case we use the time 104Dt to equilibrate the
MPCD fluid flow fields and then average the fluctuating flow
fields over additional 5 � 105Dt time steps during simulations.

To simulate the collective dynamics of the squirmer rods, we
consider the quasi two-dimensional geometry of a Hele-Shaw
cell of linear size L = 300a0 in the x and y direction. Along the
z direction the system is confined by walls separated by a
distance Dz = 6R to mimic the experimental setups using
microfluidic chambers51,105 or liquid–oil interfaces.106,107 It has
also been used in previous work.94,97 Additionally, this realization
guarantees a strong contribution of the force-dipole interaction
in the near field, as we will show in Section 3.2 and Fig. 2. In the
x and y direction periodic boundary conditions are employed.
In this geometry, the N squirmer rods are confined to only
move in the midplane of the Hele-Shaw cell by a strong
harmonic potential. The rods’ initial positions are generated
randomly for area fractions f = NAsw/L2 o 0.6, where Asw is the
two-dimensional cross section of one squirmer rod. For fZ 0.6

squirmer rods are placed on a rectangular lattice, all with a
randomly chosen orientation either parallel or anti-parallel to
one of the major axis of the unit cell. We simulate for a time of
107Dt while saving snapshots every 2500Dt for further analysis.
To ensure that the system is equilibrated, we omit the first
100 snapshots from the analysis.

To improve statistics in the study of the emergent turbulent
patterns of pusher-type squirmer rods, we perform two addi-
tional simulation runs for all turbulent states and their neigh-
boring points in the (a, f) parameter space. Furthermore, for all
these cases we also perform three simulation runs with an
increased system size of L = 600a0 to investigate finite-size effects.

3 Results

In the following we report on our simulation results. First, we
show that the anisotropy parameter w of the surface slip-velocity
field is directly proportional to the strength of the hydro-
dynamic force-dipole field and we illustrate the flow field of a
single pusher-type squirmer rod in the Hele-Shaw cell. Then, we
thoroughly discuss the state diagrams of the strongest pusher
rod (w = �1) and the strongest puller rod (w = 1) depending on
aspect ratio a and area fraction f. We describe the different
states using the velocity pair-correlation function, the power
spectral density of the velocity fluctuations, and the orienta-
tional autocorrelation function. Finally, for a specific aspect
ratio a, we show the state diagram in the space of w versus f.

3.1 Variation of the swimmer-type parameter v

To extract the force-dipole coefficient A2 from the flow field of
the squirmer rod in the 3D bulk fluid, we follow the method
described in detail in our previous article ref. 76. To do so, we
consider the expansion of an axisymmetric flow field into a
series of hydrodynamic multipoles u(r) = uFD(r) + uSD(r) +
uFQ(r) +. . ., where the leading-order multipoles are the force
dipole, source dipole, and force quadrupole, respectively. The

radial velocity component with the general form urðr; yÞ ¼

P1
n¼1

Anr
�n þ Bnr

�n�2� �
Pnðcos yÞ is measured from the simula-

tions and then projected on the second Legendre polynomial

P2(cosy). From the resulting polynomial
5

2

Ð p
0urðr; yÞP2ðcos yÞ

sin ydy ¼ A2r
�2 þ B2r

�4, we determine the force-dipole
coefficient A2 by a polynomial fit in r�1.

Indeed, we find a linear relation of the swimmer-type para-
meter w and the force-dipole coefficient w B A2 [Fig. 1(b)]. This
is expected since the terminal values of the envelope function
f (x) in eqn (2), which determine the strength of the force
dipole, are linear in w. Furthermore, we find that due to the
definition of the envelope function with h f (x)i = 1, the swim-
ming velocity is nearly independent of w [cf. Fig. 1(b), red curve].

3.2 Force-dipole flow fields in the Hele-Shaw geometry

As already explained, our study of the collective dynamics of the
squirmer rods is performed in a Hele-Shaw cell, which alters

Fig. 2 Hydrodynamic flow field around a pusher-type squirmer rod
(w = �1.0) swimming in the Hele-Shaw geometry with cell height Dz = 6R.
(a) Flow field in the mid plane of the Hele-Shaw cell. The force dipole clearly
dominates the near field. (b) Radial components ũr,n(r) of the leading source-
dipole (blue) and force-dipole (red) flow fields. They are normalized by the
thermal velocity of fluid particles, vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m0

p
.
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the radial decay of the multipole far fields but also their
strengths depends on the cell height Dz.76,99 Thus, the multi-
pole expansion for the radial component of the flow field

becomes ~urðr;jÞ ¼
P1
n¼1
ðAn þBnÞr�ðnþ1Þ cosðnjÞ for a micro-

swimmer oriented along the x-axis.76 Force multipoles dissipate
momentum at the bounding walls, which increases for smaller
Dz, i.e., when they are closer to the walls.99,108 In our notation
this means that the coefficient of the force dipole in the
Hele-Shaw cell scales as A2 B A2Dz with respect to the bulk
coefficient A2. In contrast, the fluid mass flux initiated by a
point source in the Hele-Shaw geometry is distributed in a
volume that is proportional to the cell height Dz. Hence, the
coefficient of the source dipole, as all the other source multi-
poles, scales as B2 B B2/Dz.76,99

Fig. 2(a) shows the flow field of a pusher-type squirmer rod
(w = �1.0, a = 3.25) swimming in Hele-Shaw geometry with wall
distance Dz = 6R. The force-dipole field visibly dominates the
flow field with its characteristic outwards directed streamlines
along the rod and inwards directed streamlines at the side.
From the simulated flow field, we extracted the radial parts
of different hydrodynamic multipoles ũr,n(r) following our
previous work,76 and arrived at the curves shown in Fig. 2(b).
The radial part of the force dipole Br�3 (red symbols) domi-
nates the flow field up to a distance of circa 8lS, where it is
exceeded by the more long-ranged field of the source dipole
Br�2 (blue symbols). For smaller cell heights Dz, this crossover
occurs at smaller distances. Since we are interested in exploring
the effect of the hydrodynamic force dipole, we keep Dz = 6R for
the rest of this work, such that the force dipole dominates the
flow field close to the squirmer rod.

3.3 Pushers-type squirmer rods

3.3.1 State diagram. For the minimum dipole strength
w = �1, i.e., the pusher-type squirmer rods with the largest
force dipole, we study the collective dynamical states as a
function of the aspect ratio a and area fraction f. A comparison
between the state diagrams of neutral squirmer rods [cf. Fig. 1(c)]
and pusher rods [cf. Fig. 3(a)] already illustrates the strong
influence of the long-ranged hydrodynamic dipole–dipole inter-
actions. Compared to neutral squirmer rods the transition line
from the disordered to other states is shifted to larger area
fractions and new dynamic states arise such as active turbulence
and dynamic clustering. We provide an overview of the observed
dynamic states before presenting a more quantitative analysis in
Section 3.3.2.

Most interestingly, compared to neutral squirmer rods the
flow field of the pusher rod obviously suppresses the formation
of dynamic swarms and impedes the single swarm state, which
only occurs for large aZ 4.0. This is in agreement with findings
of Saintillan and Shelley,88 who employ slender-body theory to
show that polar and nematic order in systems of elongated
pusher microswimmers is destroyed by their hydrodynamic
flow fields. Likewise, explicit hydrodynamic simulations of
collective dynamics of spherical squirmers show that pushers

create disordered homogeneous systems,13,109 while pullers
show swarming.109 An argument for this difference in the
collective dynamic behavior is found in both implicit90 and
explicit71 hydrodynamic simulations, which show that pushers
are deflected during collision, while pullers align.

Instead of the suppressed swarming states for a r 3.25,
we find a very dynamic or turbulent state. A typical snapshot of
a rod configuration is shown in Fig. 4(a), a video is provided
in the Video 1 (ESI†). Here, the hydrodynamic dipole–dipole
interactions compete with steric interactions that favor the
formation of single swarms at large area fraction f in the case
of neutral rods.94 Towards lower f the turbulent state transi-
tions to the disordered state and towards higher aspect ratio a
to cluster or swarm states.

Similar to other examples of active turbulence in theory and
experiments,47,49–51,97 we find two cascades in the power spec-
tral density of the squirmer velocities, as we will show in detail
in Section 3.3.2. For the turbulent state at a = 3.25 and f = 0.6
we construct a continuous velocity field v(x, y) to visualize the
turbulent flow pattern and its vortices. A snapshot of the system
and the resulting flow field are shown in Fig. 4(a) and (b),
respectively. We also calculate the vorticity o = (r � v)z, which
is shown in Fig. 4(c). To easily obey the periodic boundary
conditions, the vorticity was determined via a Fourier trans-
formation. In all turbulent states, we observe that squirmer
rods show a local alignment, which extends over short streaks,
where squirmer rods swim side by side and head to tail.
However, these streaks buckle and dissolve frequently, leaving
a chaotic pattern of streaks and vortices.

Fig. 3 (a) State diagram of the strongest pusher-type squirmer rods with
w = �1 in the parameter space aspect ratio a versus area fraction f.
(b) Snapshot of a single swarm state at a = 4.75 and f = 0.6, (c) snapshot of
a dynamic cluster state at a = 4.0 and f = 0.7 as indicated in the state
diagram. The color of the individual squirmer rods encode their orientation
êi in the xy-plane.
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For large aspect ratio a Z 4.0 we still find the single swarm
state [Fig. 3(b) and Video 2, ESI†], where a stable cluster moves
through the system, and also a jammed cluster state. Since they
are also found for neutral squirmer rods,76 we deduce that they
mainly arise from steric interactions. Indeed, they are also
found for dry active rods.98 For aspect ratios below a o 4.75
and large area fractions clusters still form, but they deform
dynamically while squirmer rods join or leave constantly
[Fig. 3(c) and Video 3, ESI†]. However, the power spectral
densities of this dynamic cluster state lacks the characteristic
scaling behavior of the turbulent state, as we will show in
Section 3.3.2. The absence of two power-law regimes (energy
cascades) in the power spectra separated by a maximum, which
defines a characteristic length scale, is our main criterion to
distinguish the dynamic cluster state from the turbulent state.
Hence, this state is intermediate between the jammed cluster
and turbulent state. In the jammed cluster state observed for
a = 4.75 and f = 0.77 the average swimmer velocity is low,
hvi�êii E 0.18v0, and rises to hvi�êii E 0.4v0 for the aspect ratio
a r 4 in the dynamic cluster state.

As already mentioned, the disordered state extends to higher
densities compared to neutral squirmer rods. Here, velocity
correlations between squirmer rods are short-ranged and the
power spectral density decays without any algebraic behavior as
we will show in Section 3.3.2. In other words, no patterns
emerge because energy is not transported to larger scales.

All together, our results imply that the pusher-type flow
fields inhibit or destabilize the steric alignment of swimmers
that has been found for neutral squirmer rods. In intermediate
regions of the state diagram, the competition of both effects
lead to new dynamic states.

3.3.2 Velocity pair correlations and power spectral density.
To investigate and classify the emergent dynamic states of
pushers-type squirmer rods, we employ the velocity pair-
correlation function Cv(R) and the power spectral density of
velocity fluctuations, E(k). While the velocity pair correlation
allows us to examine emerging patterns, the power spectral
density quantifies the distribution of kinetic energy over

different length scales 1/k, which we will use to classify
turbulent dynamics. To calculate the velocity pair-correlation
function,

CvðRÞ ¼

P
iaj

vi � vjdðjrij j � RÞ
* +

P
iaj

dðjrij j � RÞ
* + ; (3)

we use a histogram for the scalar product vi�vj with distance R
between rods i and j, assuming our systems are isotropic,
i.e., Cv(R) = Cv(R). Here, h� � �i means an average over time. The
power spectral density is formally defined as h|ṽ(k)|2i, where
ṽ(k) is the Fourier transform of the velocity field of the squirmer
rods. According to the Wiener–Khinchin theorem, the power
spectral density is related to the Fourier transform of the
velocity pair-correlation function, h|ṽ(k)|2i = F(Cv)(k). Due to
the isotropy of the velocity fluctuations, we introduce the
spectrum as a function of wave number k following ref. 51

and 110, EðkÞ ¼ k

2p
j~vðkÞj2
� �

. Then, using the zeroth-order Bessel

function of the first kind, we arrive at

EðkÞ ¼ k

2p

ð
L2

CvðRÞe�ik�Rd2R ¼ k

ðRmax

0

CvðRÞJ0ðkRÞRdR; (4)

where Rmax = L is the system size.111 Since for small R, Cv(R)
only exists for rods positioned side by side and thereby is highly
anisotropic, we shift Cv(R) by a length lS/2 to smaller distances
R when calculating E(k), similar to ref. 97.

In Fig. 4 we compare the normalized velocity pair-correlation
functions C̃v(R) = Cv(R)/hvi

2i of pusher-type squirmer rods for
aspect ratio a = 3.25 at different area fractions f. A more
complex behavior is observed for an area fraction in the
range f A [0.4, 0.77], which allows for competing steric and
hydrodynamic interactions and for which we show C̃v(R)
in Fig. 5. The respective states are characterized as disordered
(f = 0.4/0.5), turbulent (f = 0.6/0.7), and dynamic cluster
f = 0.77, as we detail also further below. Generally, for larger f,

Fig. 4 Turbulent state of pusher-type squirmer rods with dipole strength w = �1, an aspect ratio a = 3.25, and for an area fraction of f = 0.6. (a) Snapshot
of the system with individual squirmer rods. Their orientation angles j in the x/y-plane are color-coded to help identifying small groups with the same
orientation. (b) Streamlines of the velocity field v(x, y) of the squirmer rods constructed from the snapshot in (a) with color-coded swimming velocity
v = |v(x, y)|. To construct the velocity field, each rod is represented by an elliptic Gaussian function with the standard deviations s8 and s> matching the
shape of the squirmer rods. Each point on a regular grid is then assigned the average velocity of the surrounding rods weighted with the Gaussians.
(c) Streamlines of the velocity field with color-coded vorticity o = [r � v(x, y)]z.
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the correlations extend to larger distances, which indicates
that the size of ordered patterns increases with density.
Distinctive for pushers we find that C̃v(R) is not purely positive
but also shows distances where it becomes negative. In more
detail, we observe the following characteristics. For distances,
where steric interactions occur and dominate, R o lS, C̃v(R) is
positive. With increasing R it decays to zero around R = lS to
R = 3lS and becomes negative for area fractions f up to 0.7.
In the turbulent states for f = 0.6 and 0.7, C̃v(R) returns to
positive values at more than twice the first zero-crossing dis-
tance [inset of Fig. 5]. For f = 0.6 we even observe a third zero
crossing. In the disordered states for f = 0.4 and 0.5C̃v(R) does
not show a second zero crossing but approaches zero from the
negative region. Lastly, at f = 0.77 the system is in the dynamic
cluster state with densely packed squirmer rods. This is in
agreement with the pair-correlation function, which has the
longest range and only exhibits anti-correlations for R 4 6lS.
However, we find that the orientational autocorrelation func-
tion hê(t)�ê(t + dt)i (not shown) decays after the cluster moved a
distance of 3–5lS, considering its mean velocity of hvi�êiiE 0.4v0

for a = 4.0. This clearly indicates that the clusters are dynamic.
For other aspect ratios a only small quantitative changes occur.
Especially, the correlation functions for the turbulent and
disordered states are representative for all a and f.

The power spectral densities E(k) calculated from Cv(R) are
in accordance with the findings so far. In Fig. 6(a) we compare
the power spectral densities E(k) for three different aspect ratios
a = 1.75, 2.5, and 3.25 in dense systems. The velocity autocorrela-
tion functions C̃v(R) show the same oscillating decay as already
observed above for a = 3.25 and f = 0.6. We called these states
active turbulence since the power spectral density E(k) shows a
broad peak, which separates two regions from each other with
power-law decays towards low and high k. This is characteristic of
active turbulence. Close to the characteristic wave number kc = 2p/lS,
where energy is inserted from the active motion of the squirmer
rods, E(k) decays to zero. The maxima of the power spectral density
all roughly occur at 0.2kc, indicating that the pattern size scales
with lS, which makes sense when the density is roughly the same.

As reported in other experimental51 and theoretical50 studies
on polar active fluids, the scaling exponents for the power laws
in k are not universal. Towards smaller length scales (larger k),
the exponent shows only a weak dependence on the aspect ratio
a with values of �1.1 and �1.3, while towards larger length
scales we observe a stronger variation of the scaling exponent
with aspect ratio. For short squirmer rods with a = 1.75, the
power spectral density decays more rapidly with E(k) B k1.9 and
for a larger aspect ratio a = 3.25, the power spectral density
scales with E(k) B k1. This indicates that for larger aspect ratio
patterns at large length scales (small k) are observed more
frequently.

For disordered states the power spectra do not follow power
laws [cf. Fig. 6(b)]. Instead, they quickly decay towards smaller
k, which indicates again that energy is not transported to larger
length scales. In contrast, for the dynamic cluster state energy
is concentrated at the larger length scales (small k) as expected,
while E(k) decays strongly towards smaller length scales
[cf. Fig. 6(c)]. To investigate finite size effects, we compare the
regular systems of size L = 300a0 to systems with the increased
system size of L = 600a0 performed for a = 4 and f = 0.7. In the
bigger system the maximum of E(k) shifts to smaller values
of k roughly proportional to the change in L which suggests
that the maximum correlation length always corresponds to the
system size, and no characteristic length scale emerges. At the
same time, we observe a decrease of max[E(k)] indicating
that the dynamic of the cluster slows down as L increases.

Fig. 5 Normalized velocity pair-correlation function C̃v(R) as a function of
the rod distance R for pusher-type squirmer rods (w = �1) with aspect ratio
a = 3.25 at different area fractions f. Inset: Plot of |C̃v(R)| versus R.

Fig. 6 (a) Power spectral density E(k) in the turbulent state calculated
from the velocity pair-correlation function Cv(R). Light and dark colors
correspond to small and large system sizes L, respectively. (b) Power
spectral density E(k) in the disordered state and (c) in the dynamic cluster
state.
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This behavior clearly distinguishes the dynamic cluster state
from active turbulence, which has an intrinsic characteristic
length scale. However, we note that data for larger systems
would be necessary to show that the maximum correlation
length 1/argmax[E(k)] diverges for infinite system size. Though,
this currently exceeds our computational capabilities. Note, the
irregular behavior in the curve for L = 300a0 is due to the fact
that with increasing a close to the jammed cluster state the
dynamics of the clusters slows down and longer simulation
times are needed to smooth the curve.

3.4 Puller-type squirmer rods

3.4.1 State diagram. For strong puller-type squirmer rods
with w = 1, we also investigate the system for varying aspect ratio
a and area fraction f and generate the state diagram as shown
in Fig. 7(a). Here, we observe a completely different behavior
compared to the pusher-type squirmer rods. Only for dense
systems and at large aspect ratios, where steric interactions
dominate, we observe the same single swarm/jammed cluster
states for pusher and puller rods. Thus, the behavior resembles
that of dry self-propelled rods,98 although differences for

pushers and pullers still remain. Otherwise, the state diagram
is more similar to that of the neutral squirmer rods [Fig. 1(c)].
Only the disordered state is completely suppressed and replaced
by the swarming state. This also means that the occurrence of all
states are shifted towards smaller area fractions f.

The most prominent feature of puller-type squirmer rods is
that their flow fields strongly promote the formation of small
swarms. Even for dilute systems with area fractions down to 0.2,
the hydrodynamic interactions between the squirmer rods
favor small swarms against the disordered state. Different from
the purely steric alignment responsible for swarming neutral
squirmer rods,94 pairs of puller-type squirmer rods form
T-shaped configurations, although deformed, when they col-
lide. Examples are indicated in the snapshot of Fig. 7(b). This
leads to small groups, where several squirmer rods follow a
central leader of the group, arranged in a ‘‘comet tail’’ and
pointing inwards [Fig. 7(b)]. A similar behavior is also found in
ref. 95 and for dry active rods.98 However, we observe that for
the hydrodynamically interacting squirmer rods the swarming
behavior extends to smaller densities and aspect ratios com-
pared to dry self-propelled rods.61,64 Often the swarms have an
asymmetric shape, which then induces curved trajectories
(Video 4, ESI†). With increasing area fraction, f Z 0.4, swarms
also increase in size. However, the overall alignment in the
swarms rather decreases. This is due to the low polarity of the
small swarms, which then merge in an unordered fashion with
increasing f.

For aspect ratios a Z 3 we also observe the formation of a
single swarm, which collects all squirmer rods in the system
[Fig. 7(d) and Video 5, ESI†]. For area fractions f Z 0.6 and
sufficiently large aspect ratios the single swarm becomes
jammed and forms a static cluster state [Fig. 7(e) and Video 6,
ESI†]. Reducing the aspect ratio at f = 0.77 to ar 2.5, the jammed
cluster becomes dynamic similar to the state observed in pusher-
type squirmer rods [Fig. 7(c) and Video 7, ESI†].

3.4.2 Velocity pair correlations. For a quantitative study of
the emergent states of the puller-type squirmer rods, we use
again the velocity pair-correlation function. In Fig. 8(a) we
compare results for the representative aspect ratio a = 4, which
exhibits most of the emergent states. We immediately notice
the difference to the pusher-type squirmer rods; C̃v(R) does not
become negative. This underlines the tendency of pullers to
form two swarming states. To thoroughly distinguish these
states, which both give very similar velocity correlation functions,
we will further examine the orientational autocorrelations in
Section 3.4.3.

We have already seen, that even in dilute systems with
f = 0.2, the puller-type flow fields locally align the squirmer
rods and thereby cause swarming. This is also visible in the
velocity correlation function C̃v(R), which is more long-ranged
compared to pusher-type rods [Fig. 5(a)]. Thus, squirmer rods
are significantly correlated for distances up to R = 2lS. As
described in Section 3.4.1, the size of swarms increases with
density. For the subsequent area fraction of f = 0.4 the system
is already in the single swarm state at the chosen aspect ratio of
4.0. Hence, the velocity correlation function C̃v(R) becomes

Fig. 7 (a) State diagram of the puller-type squirmer rods with w = 1 in the
parameter space aspect ratio a versus area fraction f. Snapshots of the
system in (b) the swarming state at f = 0.2 and a = 2.5 (only a part of
the system is shown), (c) the dynamic cluster state at f = 0.77 and a = 2.5,
(d) the single swarm state at f = 0.4 and a = 4.0, and (e) the jammed cluster
state at f = 0.77 and a = 4.0.
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more long-ranged. At f = 0.6 and f = 0.77, when the system is
noticeably in the jammed cluster state, we observe two different
features. For f = 0.6, C̃v(R) reaches a plateau, which indicates
that the jammed cluster drifts in one direction since the
squirmer rods are aligned, on average. At the highest density
f = 0.77 the cluster formation takes place more quickly result-
ing in a disordered structure without drift. Here, the velocity
correlation function C̃v(R) decreases and does not exhibit a
plateau until R/lS = 5.

3.4.3 Orientational autocorrelations. To further characterize
and distinguish the single swarm, dynamic cluster, and jammed
cluster states from each other, we employ the orientational
autocorrelation function Ce(dt) = hei(t)�ei(t + dt)i. In Fig. 8(b) we
compare Ce(dt) for different area fractions f at constant aspect
ratio a = 4, and in Fig. 8(c) for different a at constant f = 0.77.

In dilute systems with f = 0.2, Ce(dt) decays to zero at around
dt = 15lS/v0, meaning that swarms swim a distance of around 7lS

until they either rotate, merge with other clusters or dissolve
(Video 8, ESI†). For the single swarm state at f = 0.4, we observe
a more long-ranged autocorrelation. After a swarm has formed

it remains stable but also goes through configurational changes
so that partially straight motion is observed interrupted by
rotations or turns of the swarm (Video 5, ESI†). As a result,
Ce(dt) exhibits a damped oscillation, where the first minimum
at dt E 37lS/v0 means that the swarm has rotated by 1801. In the
jammed cluster state, we again observe two different features.
For f = 0.6, the cluster drifts due to its overall polar order.
However, also configurational changes occur, which results in a
decay of Ce(dt) towards a non-zero value meaning that the
cluster has reached some stable configuration within the
observation window. At the higher density f = 0.77, the cluster
now has a more random but static arrangement of the rods.
Therefore, it hardly drifts and it only rotates very slowly, which
causes a very slow decrease of Ce(dt).

Comparing dense systems (f = 0.77) of different aspect
ratios to each other, we observe the following characteristics
from high to low a [Fig. 8(c)]. For the largest aspect ratio a = 4.75
steric interactions between the rods are most dominant and we
find an entirely jammed configuration with constant Ce(dt) = 1.
Lowering the aspect ratio, the jammed cluster becomes more
and more interrupted by occasional configurational changes,
which results in the noticeable but slow decay of Ce(dt) for
a = 3.25. In contrast, the dynamic cluster states at a = 1.75 and
a = 2.5 show a fast exponential decay of Ce(dt) due to the
dynamic rearrangements within the cluster. The decay is faster
for the lower aspect ratio, where the rods reorient more easily.

3.5 Variation from pusher to puller-type squirmer rod

In this section, we compare squirmer rods at a constant aspect
ration a = 3.25 and vary the swimmer type by the force-dipole
strength w. Furthermore, we performed simulations at different
area fractions f. The resulting state diagram is shown in Fig. 9(a).
States of neutral squirmer rods are adapted according to ref. 94.

For puller-type squirmer rods with w 4 0, we observe that
already weak pullers with w = 0.25 show swarming at the small
area fraction of f = 0.2, i. e., the same state we observed in
Section 3.4.1 for the highest strength w = 1.0. Obviously, the
force-dipole field, which attracts nearby rods along the rod axis,
promotes swarming. However, with increasing f, swarming
also extends to weak pusher rods. At higher area fractions
f Z 0.6, we find single swarm and jammed cluster states due to
steric interactions between the rods, where neutral (w = 0) and
puller-type squirmer rods show qualitatively similar behavior.

For pusher-type squirmer rods, w o 0, we observe a more
diverse behavior, which we already noted for w = 1 in Sec-
tion 3.3.1. While at f = 0.2 only the disordered state occurs,
at f = 0.4 we find a transition from swarming to turbulent to
disordered state with increasing pusher strength. The analysis
of the power spectral density E(k) reveals that the system with
w = �0.5 is indeed in the turbulent state. Thus, the pusher flow
field destabilizes swarming clusters. As a compromise between
swarming and disordered states, active turbulence occurs in
conjunction with steric repulsion. Increasing density further to
f = 0.6, steric repulsion stabilizes swarming clusters and active
turbulence is shifted to the largest pusher strength w = �1.
Finally, at f = 0.77 the pusher flow field destabilizes the

Fig. 8 (a) Normalized velocity pair-correlation function C̃v(R) plotted
versus distance R for puller-type squirmer rods at constant aspect ratio
of a = 4.0. (b) Orientational autocorrelation function Ce(dt) for constant
aspect ratio a = 4.0. (c) Orientational autocorrelation function Ce(dt) in
dense systems at area fraction f = 0.77.
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jammed cluster of neutral and puller-type squirmer rods, which
then becomes dynamic.

3.5.1 Velocity pair correlations and power spectral density.
For a more quantitative analysis, we use the normalized velocity
pair-correlation function C̃v(R) as defined in eqn (3). In Fig. 9(b)
we compare C̃v(R) in dilute systems with f = 0.2 for different
force-dipole strengths w to each other. The collective dynamics
is mainly governed by hydrodynamic interactions. Fig. 9(c)
shows C̃v(R) for the larger area fraction f = 0.6, where a
transition to the turbulent state occurs at w = �1.

In the dilute systems, all the velocity pair-correlation func-
tions in the swarming state of puller-type swimmers (w 4 0) are
nearly identical and show correlations up to circa 2lS [Fig. 9(b)].
This indicates that the mechanism behind swarm formation is
fully established already at small dipole strength. Pusher-type
squirmer rods (w o0) only exhibit the disordered state and no
swarms, so C̃v(R) is more short-ranged compared to pullers.
Pushers prefer to order side by side and therefore pronounced
peaks at closest distance R = lS/a are observed compared to
puller rods. Furthermore, we observe anti-correlations with
C̃v(R) o 0 starting at distances R between lS and 2lS. They
belong to pusher rods approaching each other head on.

At the higher area fraction f = 0.6, we observe the single
swarm, swarming, and turbulent states [Fig. 9(c)]. In the single
swarm state observed for weak pullers (w = 0.25), C̃v(R) is long-
ranged and shows significant correlations for all recorded
distances up to R = 5lS. In the swarming state that emerges
for pushers at w =�0.25 and�0.5 the correlation length of C̃v(R)
decreases with increasing force-dipole strength. At w = �0.5 it is
around R = 2lS. In the turbulent state at w = �1, C̃v(R) becomes
even more short-ranged and negative at R = lS due to the
occurrence of vortices.

In Fig. 9(d) we compare the power spectral densities E(k) for
three systems in the turbulent state at a = 3.25. All three spectra
show a regular cascade towards large k (small scales) and a
second cascade towards small k (large scales). At large k all
three power spectral densities show roughly the same scaling
behavior E(k) B k�1.3. Furthermore, the curves for (w, f) =
(�0.5, 0.4) and (w, f) = (�1.0, 0.6) coincide in the range from
k = 0.2kc to kc, which includes the maximum of both spectra.
For the second cascade, different scaling exponents are
observed. At w = �1 the power spectral density decays more
rapidly in the system with f = 0.6 following a scaling E(k) B k2,
while in the denser system (f = 0.7) the scaling is E(k) B k1.
Furthermore, the maximum of E(k) shifts to a smaller wave
number k, which implies a larger intrinsic length scale of the
turbulent pattern. For the system with the smaller pusher
strength, w = �0.5, the scaling follows E(k) B k1.4, thus, it is
situated between the two cases just discussed.

4 Summary and conclusion

In this article, we investigated the dynamic states of pusher and
puller-type squirmer rods. Varying the head-to-tail anisotropy
parameter w of the surface slip-velocity field of the squirmer
rod, we are able to smoothly tune the force-dipole strength of
the resulting flow field between a pusher and puller.

Fig. 9 (a) State diagram of the squirmer rods for different dipole-
strengths w and area fraction f at an aspect ratio of a = 3.25. The labeled
vertical lines indicate the states for which the velocity correlation function
is shown in (b and c). (b) Normalized velocity pair-correlation function
C̃v(R) for dilute systems with f = 0.2 and different force-dipole strengths w.
Red curves belong to systems in the swarming state and green curves to
the disordered state. (c) Normalized velocity pair-correlation function
C̃v(R) for f = 0.6. The black curve belongs to the system in the single
swarm state, green to the swarming state, and yellow to the turbulent case
(d) Power spectral density E(k) for the turbulent state at different w, f.
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For pushers with largest force-dipole strength w = �1, we
observe a new turbulent state along with other modifications in
the state diagram compared to neutral squirmer rods. In dilute
systems, where steric interactions are less important, the
pusher flow field suppresses the formation of the swarming
states so that the disordered state extends to larger area frac-
tions and aspect ratios. When steric interactions and thereby
steric alignment of the rods become more important with
increasing area fraction, the turbulent state emerges at small
aspect ratios. To observe it for weaker pusher strengths at
constant aspect ratio, one has to decrease the area fraction,
which confirms the importance of steric interactions for the
turbulent state. The velocity pair-correlation function decays and
exhibits negative regions after one or two swimmer lengths,
which indicates a characteristic length scale. At the same time,
the power spectral density of the velocity fluctuations shows
two energy cascades at small and large wave numbers with
power-law scaling and non-universal exponents as reported
in other works on active turbulence in polar fluids.49,50,97

Increasing the area fraction further, a transition to the dynamic
cluster state occurs at medium aspect ratios, which is reminis-
cent of the turbulent state but without the characteristic energy
cascades. This is in contrast to soft active rods, where jammed
states occur,42,63 which are, however, destroyed for strong
enough self-propulsion.112 At larger aspect ratios, steric inter-
actions become more important. Here, pushers resemble the
dynamics of neutral squirmer rods94 and dry active rods,61,62

such that, instead of the turbulent and dynamic swarm state, a
single swarm and jammed cluster are observed.

For pullers at all studied force-dipole strengths w and in the
most dilute system at f = 0.2, hydrodynamic interactions
already promote the swarming state instead of the disordered
state observed for neutral rods. At smaller aspect ratios and the
largest area fraction, the dynamic cluster state occurs, while
for larger aspect ratios swarming and dynamic clustering are
replaced by a single swarm and jammed cluster state.

Thus, our study clearly indicates the importance of the type
of the swimmer flow field for the occurring states. Although
comparable states are often found for dry self-propelled rods,
for squirmer rods their occurrence in the state diagram cru-
cially depends on the specific hydrodynamic flow field. Speci-
fically, active turbulence is only found for pushers and puller
type flow fields greatly enhance the formations of swarms.
Additionally, the different scaling exponents in the turbulent
state show that steric interactions, tuned by rod density, play an
important role for this state. All in all, the turbulent state
occurs as a compromise between disordering hydrodynamic
pusher flow fields and aligning steric interactions. Therefore,
with our work we contribute to the insights how various bio-
logical propulsion strategies determine the collective motion of
microswimmers.

In future work, it will be interesting to investigate collective
dynamics of pusher and puller-type squirmer rods also in the
bulk fluid, where the hydrodynamic force-dipole has the most
long-range or dominant flow field. Likewise, implementing a
liquid–air interface using a slip-boundary condition at one wall

of the Hele-Shaw geometry, would provide a realistic modeling
of recent experiments, where bacteria move close to a fluid–air
interface.113
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57 G. Grégoire and H. Chaté, Phys. Rev. Lett., 2004, 92, 025702.
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