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Spontaneous phase separation of ternary
fluid mixtures

Alvin C. M. Shek and Halim Kusumaatmaja *

We computationally study the spontaneous phase separation of ternary fluid mixtures using the lattice

Boltzmann method both when all the surface tensions are equal and when they have different values.

To rationalise the phase diagram of possible phase separation mechanisms, previous theoretical works

typically rely on analysing the sign of the eigenvalues resulting from a simple linear stability analysis, but

we find this does not explain the observed simulation results. Here, we classify the possible separation

pathways into four basic mechanisms, and develop a phenomenological model that captures the

composition regimes where each mechanism is prevalent. We further highlight that the dominant

mechanism in ternary phase separation involves enrichment and instability of the minor component at

the fluid-fluid interface, which is absent in the case of binary fluid mixtures.

1 Introduction

Spontaneous phase separation of fluid mixtures is important
for a wide range of processes. For example, in nature, it is
known to give rise to structural colours in living creatures, such
as observed in birds and butterflies.1,2 More recently, it has also
been shown to play fundamental roles in volcanic eruptions3,4

and in the organisation of cellular matters, leading to the for-
mation of the so-called biomolecular condensates or membrane-
less organelles.5–8 In industry, better understanding of the phase
separation process is necessary, among others, for tuning the
formation of fractures in alloys in the field of metallurgy,9,10 for
manipulating the structure of polymer blends which in turn affect
their mechanical and electrical properties,11–13 and for controlling
the morphology of complex emulsions for applications in drug
delivery14–16 and in the food industry.17–19

Extensive theoretical and experimental studies on phase separa-
tion have been carried out in the case where the fluid mixtures
separate into two distinct, immiscible fluid components.20–27 For
such binary fluid case, it is now generally well understood
when spontaneous phase separation occurs, what the resulting
morphologies are, how the separated domains coarsen (both with
and without the influence of hydrodynamics), and how the
process may be affected by the patterning of the solid boundary.
However, the general problem of phase separation is significantly
more complex, and there are numerous instances where
the fluid mixtures separate into more than two immiscible
components.28–31 These scenarios, in contrast, have received less
attention and remain poorly understood.

Our focus in this work is on phase separation of three
immiscible fluid components. In the literature, this ternary
fluid case has primarily been studied in the context of thin
films of polymer blends32–34 where the evolution of their
morphologies for a number of specific polymer compositions
have been tabulated experimentally.35 There is also growing
interest in ternary fluid phase separation for other applications,
such as a novel route for the production of complex droplet
emulsions, nanoparticles and patchy droplets.36–39 In addition,
from the modelling side, there have been efforts to simulate
phase separation pathways that reproduce the experimental
observations,35,40–43 including scaling analysis on the domain
coarsening.44–47 Yet, despite these advances, there is still limited
understanding in one of the most fundamental aspects of
ternary fluid phase separation: how to predict and characterise
the different possible distinct morphologies and phase separa-
tion pathways as function of the fluid composition. To provide
insights, surprisingly, works to date have primarily relied on a
simple linear stability analysis to demarcate the ternary phase
diagram into regions with zero, one and two positive
eigenvalues.35,40,41,48 As we will demonstrate here, considering
only the sign of the eigenvalues do not allow qualitative,
let alone quantitative, predictions for the separation pathways.

Our contribution in this work is three-fold. First, in agree-
ment with previous literature, we observe numerous possible
morphologies and separation pathways. Here, we group them
into 4 distinct categories, and rationalise these groupings by
extending the prevailing linear stability analysis and harnessing
information provided by the resulting eigenvalues and eigen-
vectors. Second, we highlight that the dominant mechanism
across the composition phase space in ternary phase separation
is where the minor fluid component is enriched and undergoes
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an instability at the interfaces between the two more major
components. Third, we show that the theoretical framework can
be applied when the interfaces all have the same surface
tension, as well as when they all take different values.

2 Lattice Boltzmann simulation
method

To simulate the ternary phase separation dynamics, we employ
a free energy lattice Boltzmann method. The detailed lattice
Boltzmann implementation is similar to the one described by
Semprebon et al.49 Here we only summarise the most salient
aspects of the continuum model we employ.

The free energy model we use is based on the work of Boyer
and Lapuerta,50

F ¼
ðX3
m¼1

12

e
Sm

2
C2

mð1� CmÞ2 þ
e2

16
ðrCmÞ2

� �
dV : (1)

This model implicitly assumes we are below the critical temperature
where three fluid components can coexist. Here, the concentration
or volume fraction for each component is given by Cm. The
coefficients S’s are related to the interfacial tensions, such that
the interfacial tension between fluids m and n is given by gmn = (Sm +
Sn)/2. The coefficient e describes the characteristic interface width,
which is taken to be the same for all fluid interfaces.

The fluid equations of motion that we solve correspond to
the Cahn-Hilliard, continuity and Navier–Stokes equations. The
Cahn-Hilliard equations capture the evolution of the fluid
interfaces, and for each component Cm, it is given by

qtCm + qa(Cmua) = qa(Mmqamm). (2)

Here, u is the fluid velocity, Mm = Mo/Sm is the mobility
parameter for each fluid component m (Mo is a constant),
and mm is the chemical potential. Following the work by Boyer
and Lapuerta,50

mm ¼
dF
dCm

þ b ¼ �3
4
ekmr2Cm þ

12

e
SmHðCmÞ þ b; (3)

where

H(Cm) = Cm(1 � Cm)(1 � 2Cm), (4)

b ¼ �12
e
dC1C2C3; (5)

d ¼ 6S1S2S3

S1S2 þ S1S3 þ S2S3
: (6)

The b term is a Lagrange multiplier term to ensure that the
constraint C1 + C2 + C3 = 1 is maintained. The introduction of
this term leads to two desirable properties. First, the model
becomes reducible, meaning that when one component is
absent from the system, then the resulting equations of motion
become independent of the removed component. Second, it
inhibits unphysical growth of a third fluid component at the
interface between two fluids. This can occur when the model is
not reducible.

The Cahn-Hilliard equations are coupled to the continuity
and Navier–Stokes equations that describe the hydrodynamics
of the fluids:

qtr + qa(rua) = 0, (7)

qt(rua) + qb(ruaub) = �qbPab + qbZ(qbua + qaub). (8)

In this work, for simplicity, we have assumed all components
have the same density, such that the total density r = C1 + C2 +
C3 = 1 is constant. The pressure tensor is related to the
chemical potential via

@bPab ¼ @apþ
X3
m¼1

Cm@amm½ �: (9)

As is standard in the lattice Boltzmann method,49,51 the ideal
gas pressure contribution is p = rcs

2, with the speed of sound

cs ¼ 1=
ffiffiffi
3
p

.
In all situations studied in this work, we initialise each

simulation by introducing small random concentration pertur-
bations (white noise) on top of a homogeneous mixture at a
given composition, typically with an amplitude of 10�4 of the
maximum concentration value. In this range, we verify the
simulation results do not sensitively depend on the choice of
noise amplitude. We have also systematically varied the size of
our simulation box, and find a domain size of 240 � 240 is
suitable to robustly identify the different phase separation
pathways for constructing the phase diagrams.

For all the simulations explicitly presented here, the follow-
ing parameters are set to be M0 = 0.005, e = 4.0, and Z = 0.167.
For the surface tension, we use S1 = S2 = S3 = 0.0133 in the
equal surface tension case. When we vary the surface tension,
we set S1 = 0.0133, S2 = 9S1 and S3 = 4S1.

3 Equal surface tension case

We first focus on the simplest scenario where the surface
tensions between any two pair of liquids are equal. We will
consider the case where the surface tensions are different in the
next section.

3.1 Morphologies and pathways

Let us start by considering the structures which can occur as
the ternary fluid mixtures undergo phase separation. We find
there are four distinct types of separation pathways, which
typically lead to four morphology classes.

Type I of ternary phase separation is when all three fluid
components begin to simultaneously separate. This is exempli-
fied in Fig. 1(a–c), leading to what we term a lattice morphol-
ogy. Here, separate domains corresponding to the three fluids
are interspersed among each other, and domain coarsening
occurs due to rearrangement and coalescence of alike domains.

For types II and III of ternary phase separation, the pathways
consist of two stages, in contrast to only one stage for type I
above. Fig. 1(d–f) illustrate type II where primary and secondary bulk
separation (spinodal decomposition) occur consecutively. This most
commonly leads to what we term the worm morphology, where
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there is a chain of alternating fluid domains. During the primary
spinodal (panel e), two components (e.g. without any loss of
generality, C1 and C2) remain mixed and together they separate
out from the third (e.g. C3) component. During the secondary bulk
phase separation (panel f), the two initially mixed components
undergo another spinodal decomposition.

An example of type III of ternary phase separation is shown
in Fig. 1(g–i). As we will show in the phase diagrams in the
following sections, this is the most occuring pathway. Unlike
for the binary phase separation where spinodal decomposition
is the sole driving mechanism for spontaneous phase separa-
tion, in ternary fluid case, we have an alternative mechanism.
Here, the primary spinodal is followed by the enrichment of the
minority component at the interface (panel h). When there is
sufficient third component at the interface, this component
eventually becomes unstable and form small droplets at the
fluid-fluid interface (panel i). This type of ternary phase separa-
tion typically gives rise to patchy droplet morphology.

Finally, for type IV, as in Fig. 1(j–l), when there is insufficient
minor component at the interface, the phase separation path-
way is akin to the binary fluid case. Here, the smallest minority
component never fully phase separates but it is typically
concentrated at the interface between the two more major
components.

Our simulation results are fully consistent with previous
works describing possible phase separation pathways (some-
times also termed as decomposition patterns) in ternary fluid
mixtures.35,40–43 Many of the extensive morphologies previously
tabulated are a result of stochastic collision and coalescence of
different fluid structures at the later stages of the coarsening
dynamics. For example, Nauman and He recorded 27 possible
morphologies.35 In contrast, here we focus on the instability
mechanisms and simplify the classification into 4 basic types
of phase separation mechanisms. We find these same 4
instability types when we vary the fluid viscosity or when we
simulate the purely diffusive regime (by turning off coupling to
hydrodynamics).

3.2 Phase diagram

Building on the four fundamental phase separation mechan-
isms identified in the previous sub-section, a natural question
arises: can we predict which pathway and morphology will form
given the mixture composition? In the literature to date, the
phase diagram for ternary phase separation is commonly
interpreted by performing a linear instability analysis and
looking into the eigenvalues. This is a standard tool to under-
stand phase separation via spinodal decomposition.9,10,41,52

Suppose the system is initialised as a homogeneous mixture
with small perturbations in composition, such that, in 1-D,

Cmðx; t ¼ 0Þ ¼ Am þ
X1
k

cosðkxÞamkðt ¼ 0Þ; (10)

where the Am’s are the initial concentrations, and the amk(t)’s
describe the amplitudes of the perturbations. If we substitute
the above equation into the Cahn-Hilliard equation, eqn (2),
with zero initial velocity, to linear order we obtain (the prime
denotes a time derivative)

a
0
1kðtÞ
a
0
2kðtÞ

� �
¼ D1 þ F11 F12

F21 D2 þ F22

� �
a1kðtÞ
a2kðtÞ

� �
(11)

with

Di ¼
�3
4
ek4 � 12

e
ð6Ai

2 � 6Ai þ 1Þk2; (12)

Fi1 ¼
12d
eSi
ðA2ð1� 2A1 � A2ÞÞk2; (13)

Fi2 ¼
12d
eSi
ðA1ð1� 2A2 � A1ÞÞk2: (14)

Without any loss of generality, we have explicitly considered
variations in C1 and C2. The third concentration can be
obtained by using the constraint C3 = 1 � C1 � C2. From the
matrix equation, the eigenvalues can then be determined:

l� ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c
p

2
; (15)

where

b = �(D1 + F11 + D2 + F22), (16)

Fig. 1 Four types of spontaneous phase separation pathways for ternary
fluid mixtures: (a–c) direct ternary separation, (d–f) primary and secondary
bulk phase separation, (g–i) enrichment and instability at interface, and
(j–l) binary-like phase separation.
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c = (D1 + F11)(D2 + F22) � F12F21. (17)

The eigenvalues can be used to differentiate between three
regions in the phase diagram: (i) where both eigenvalues are
negative, (ii) where one is positive and one negative, and (iii)
where both eigenvalues are positive. These regions are shown
in Fig. 2(a) in green, blue and red respectively. In our phase
diagrams the corners of the triangle correspond to when one
component is maximal, i.e. C1 = 1.0 for the bottom right corner,
C2 = 1.0 for the top corner, and C3 = 1.0 for the bottom left
corner.

Numerically, we can also construct a phase diagram by
varying the initial fluid composition and observing the result-
ing fluid structures in the simulations. This phase diagram is
shown in Fig. 2(b). Here, we have used red to represent direct
ternary phase separation, gray for two-step primary and sec-
ondary spinodal decomposition, orange for enrichment and
instability at interface, and blue for binary-like phase separa-
tion. When comparing the the two phase diagrams in Fig. 2(a)
and (b), we can immediately conclude that knowing only the
eigenvalues is far from adequate for predicting ternary fluid
phase separation. Extending the linear stability analysis to
higher dimension (2D) also will not capture the discrepancy
we have highlighted. Fundamentally, both the primary and
secondary bulk phase separation and the enrichment and
instability at the interface mechanisms are two step processes
that cannot be captured from a linear stability analysis simply
using information on the initial mixture concentrations.
Hence, our next aim is to develop a simple phenomenological
model that better describe the numerical phase diagram shown
in Fig. 2(b).

From the numerical results, while the red region in Fig. 2(a)
with two positive eigenvalue covers a significant area, we find
the direct ternary phase separation scenario is very limited.
Across all surface tension values we have studied, direct ternary
phase separation is limited to compositions where all the

concentrations satisfy
1

3
� 5%. This is the region marked as

red in Fig. 2(c). Geometrically, the lattice morphology is
favoured for such composition due to packing constraint as

there simply is not enough space for the other types of
morphologies to form.

Next, we will study the two-step primary and secondary
spinodal decomposition scenario. To do this, it is useful to
consider the full linearised solution for the evolution of the
perturbation amplitude, given by

aðtÞ ¼ Bþ exp lþteþ þ B� exp l�te�; (18)

where B� are fixed by the initial conditions, and �e
� are the two

eigenvectors corresponding to eigenvalues l�, as given in
eqn (15). For equal surface tension considered in this section,
when A1 = A2 = A, we find D1 = D2 = D and Fi1 = Fi2 = F, and the
full linearised solution simplifies to

aðtÞ ¼ Bþ exp lþt 1
1

� �
þ B� exp l�t 1

�1

� �
(19)

with eigenvalues

l� = D + 2F, D. (20)

The l� mode is the standard binary mode of separation where
D 4 0 leads to unstable situation. Here, the perturbations in
components C1 and C2 grow with opposite signs. In contrast,
for the l+ mode, the two components grow together at the same
rate. Looking at the equations for F in Eqs. 13 and 14, its sign

depends on a term proportional to (1 � 3A). Hence, if Ao
1

3
,

F 4 0, and l+ 4 l�. This condition corresponds to the gray
points in Fig. 2(c). In fact, this condition should be a continuous
line, but it appears discrete due to how we sample the phase
diagram for consistency with the full numerical results in Fig. 2(b).

Dominant l+ mode explains the primary spinodal observed
in Fig. 1(d–f), where two components grow together for a
significant period and separate from the third fluid compo-
nent. If the initial condition satisfies A1 + A2 o A3, as is the case
in Fig. 1(d–f), the third component forms the background,
while we observe droplets composed of C1 and C2 components.
In contrast, if A1 + A2 4 A3, we find the opposite with C3

droplets and a continuous phase of C1 and C2 mixture. How-
ever, these mixed domains cannot grow together indefinitely. At
some point, they will enter the spinodal region for the binary

Fig. 2 Phase diagrams obtained (a) from considering the signs of the eigenvalues from linear instability analysis, (b) from lattice Boltzmann simulation
results, and (c) from the phenomenological model proposed in this work. In panel (a), the red, blue and green regions have two, one, and zero positive
eigenvalues. In panels (b) and (c), red denotes the direct ternary phase separation mechanism, gray the primary and secondary bulk phase separation
mechanism, orange the enrichment and instability at the interface mechanism, blue the binary-like mechanism, and green no phase separation.
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mixture and the two components will undergo the secondary

bulk phase diagram. As we step off from the A1 ¼ A2 o
1

3
line,

we can derive that the eigenvectors do not support any two
components to co-grow at the same rate. This limits the region
in the ternary phase diagram that phase separates via the two
step spinodal pathway.

For the rest of the phase diagram where there is at least one
positive eigenvalue, considering the full linear solution leads to
the conclusion that ternary phase separation is dominated by
the two more major components, in agreement with the
numerical results. Further, from energetic arguments, it is
favourable for the minor component to be enriched at the
interface,42,43 instead of uniformly diffused in the bulk of the
major components. The remaining task in this case is to
understand if and how the instability at interface takes place.

To study this we simulate fluid strips in 2-D initialised with
the following concentration profile, as shown in Fig. 3:

C1(r) = 1 � C2(r) � C3(r), (21)

C2ðrÞ ¼
1

2
1þ tanh

2ðr� Rþ aÞ
e

� �� �
; (22)

C3ðrÞ ¼
1

2
1� tanh

2ðr� R� aÞ
e

� �� �
; (23)

where r is the distance from the centre of a fluid strip, R is half
the thickness of the strip, and a is the shift from an equilibrium
hyperbolic tangent profile for a strip of C2 surrounded by C3.
With increasing a 4 0, we effectively introduce additional
minority fluid component C1 at the interface between C2 and
C3. Numerically we find the minority component at the inter-
face is stable for small a, Fig. 3(a and b), but it becomes
unstable for large a, Fig. 3(c and d). The transition occurs at
a B e/2, irrespective of the thickness of the strip. Hence, this
instability is primarily determined by the amount of the min-
ority component at the interface, relative to the interface length
between the two major components. In addition, since this

mode of phase separation requires an instability to form
droplets, it is only possible when the spatial dimension is
greater than or equal to two. It cannot occur in 1-D.

With this observation we can make a simple phenomenolo-
gical model for when patchy droplets will occur. We first
determine when spinodal decomposition will occur, i.e. when
at least one of the eigenvalues is positive. Then we consider the
cases where type I and II do not occur. In these cases there are
two possibilities left for phase separation, either following type
III or IV pathway.

To predict the boundary between types III and IV, we make
the following approximations. We assume that the minor
component is evenly distributed at the interfaces with width
w. Without any loss of generality, here we make the assumption
that C1 o C2 o C3, such that the minority component C1 is
enriched between the C2 droplets and the C3 surrounding.
Following the results shown in Fig. 3, we expect instability
leading to droplets formation to occur above w B 2a B e.

If phase separation between the two major components C2

and C3 continues indefinitely, the total interface length will
decrease and w will increase monotonically with time. Hence,
eventually we can expect the enrichment and instability mecha-
nism to take place. However, in our simulations, we often
observe meta-stable states where the phase separated droplets
are well separated and they do not coalesce further. This limits
the decrease in the interface length and the increase in w. If the
number of such droplets is N and the characteristic radius of
the C2 droplets is rd, then we can write V2 = prd

2 and V1 +
V2 = p(rd + w)2, with V1 and V2 corresponding to the total volume
of C1 and C2 components in the system. Combining these
relations with the condition w B e, we expect the enrichment
and instability mechanism to be observed when

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

pn
þ A1

pn

r
� A2

pn

� �1
2
� e: (24)

Here A1 = V1/VT and A2 = V2/VT are the average concentrations of
the C1 and C2 components in the system, and n = N/VT is the
typical density of isolated droplets, with VT the total volume of
the simulation domain. Fitting n to obtain the best comparison
between the phase diagrams in Fig. 1(b and c), we obtain
n B 1.7 � 10�4. In practice, the number of isolated droplets
observed does vary depending on the initial concentrations.
However, they are in the same order as the fitted value of n.
Importantly, as n is an intensive variable, our argument holds
independent of the system size.

4 Non-equal surface tensions

Having elucidated the case for equal surface tensions, we now
generalise our argument for the non equal surface tensions
case. As a representative example, we choose a case where the
surface tensions are considerably distinct between one another,
corresponding to S3 = 4S1, S2 = 9S1 in the free energy model,
such that g23/g12 = 1, 3 and g13/g12 = 0.5. This set of parameters

Fig. 3 Evolution of the minority component initialised at the interface for
(a and b) a = 3e/8 and (c and d) a = e/2.
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leads to the formation of Neumann angles of y1 = 63.91,
y2 = 159.81, and y3 = 136.31 at the three phase contact line.

A major difference for non-equal surface tensions is the
occurrence of secondary bulk separation. The criteria need to
be broadened, as it is possible for secondary bulk separation to
occur even if the eigenvector components are not equal. This is
because the different surface tensions give rise to varying
growth rates for each of the fluid component, and this has a
complex interplay with the initial fluid concentrations. Similar
to the equal surface tension criteria, we focus on the largest
positive eigenvalue and its corresponding eigenvector. Follow-
ing eqn (18), with e1 and e2 the components of the eigenvector
with the largest positive eigenvalue, we consider two possible
conditions for secondary bulk phase separation to be observed.
First, if C1 = C2 and e1 = e2, then the two components grow
together. This is the same condition as discussed in the
previous section, but in fact this condition is rare to achieve
when the surface tensions of the fluid interfaces are not equal.
As before, without any loss of generality, we explicitly consider
concentration variations in C1 and C2, and the third component
can be obtained via C3 = 1� C1� C2. The second possibility is if
one component has a lower initial concentration (C1 o C2), but
its fluctuation has a faster growth rate e1 4 e2 (or vice versa for
C2 o C1). In such a case, the two components are mixed
together for some period before eventually phase separating.

Using this updated condition for the secondary bulk phase
separation, along with the other conditions as described for
equal surface tensions, we can compare the resulting phase
diagrams. Fig. 4(a) shows the eigenvalue analysis, while (b) and
(c) represent the numerical and theoretical results respectively.
As before, the eigenvalue analysis on its own has little pre-
dictive value for the morphologies observed in the simulations.
Comparing Fig. 4(b) and (c), we further find that our phenom-
enological model extends to general surface tension values. It is
clear that the key trends are captured for each phase separation
mechanism, even though the boundaries of the different
regions are less accurate when compared to the equal surface
tension case.

The deviations observed are mainly due to two reasons.
First, at the boundary between binary-like and enrichment

mechanisms, the minor component does not always enrich at
the interface, especially when its total amount is very small
compared to the simulation size. Here, the minor component
remains mixed in the background components. Such tendency
is more common with increasing surface tension, as it becomes
more costly energetically to create interfaces.

Second, at the boundary between enrichment and secondary
bulk phase separation mechanisms, there are several sources of
uncertainties to classify the phase separation mechanism. In
particular, the separation between the two more minor compo-
nents may take place within a small droplet and before the
components clearly reaching their expected bulk values. In
addition, the condition C1 o C2 and e1 4 e2 must be consid-
ered with care. If C1 is significantly smaller than C2, then e1

must be significantly larger than e2 instead of being only
modestly larger for secondary bulk separation to occur. To
further highlight the importance of the eigenvectors in the
phase separation dynamics, consider the results shown in
Fig. 5. Here, we initialise the simulation with A1 = 0.1 (red),
A2 = 0.2 (green), and A3 = 0.7 (blue), and the normalised
eigenvector corresponding to the largest positive eigenvalue is
calculated to be (e1,e2,e3) = (�0.580,�0.208,0.788). In agreement
with our updated condition, both C1 and C2 remain mixed
together for a significant length of time as the composite
droplets emerge from the C3 background. Then, despite the
C1 component being the most minor component, we observe it
separates out before the second minor component (C2). This is
precisely because the eigenvector component for C1 is twice
larger compared to C2. The component C2 eventually begins to
enrich at the interfaces to form patches.

Finally, we note that the surface tension values affect the
possible morphologies, consistent with the observations in a
recent work by Mao et al.29 For our choice of surface tensions in
this section, the worm morphology is not possible during phase
separation, unlike in the equal surface tension case. Since the
Neumann angle y1 o 901, the domains enriched in C1 will form
concave capillary bridges with negative pressure compared to
their surroundings. These will lead to the surrounding domains
quickly merging together, and as a result, the worm morphology
cannot be supported.

Fig. 4 Phase diagrams for non equal surface tensions where S3 = 9S1, S2 = 4S1. In panel (a), the red, blue and green regions have two, one, and zero
positive eigenvalues. Panel (b) is the numerically obtained phase diagram, while panel (c) is our theoretical prediction. In panels (b) and (c), red denotes
the direct ternary phase separation mechanism, gray the primary and secondary bulk phase separation mechanism, orange the enrichment and instability
at the interface mechanism, blue the binary-like mechanism, and green no phase separation.
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5 Conclusion

In this work, we have systematically simulated spontaneous
phase separation of ternary fluid mixtures across the composi-
tion space, both when all the fluid surface tensions are equal
and when they all have different values. The observed possible
phase separation mechanisms are in agreement with previous
results,35,40,41 and we have classified them into four basic types,
which we term as (I) direct ternary phase separation, (II)
primary and secondary bulk phase separation, (III) enrichment
and instability at interface, and (IV) binary-like. Typically, these
mechanisms lead to lattice, worm, patchy droplet and droplet
morphologies.

In contrast to binary phase separation, to understand the
phase separation pathways, we have shown that the eigenvalues
alone are insufficient, and it is important to consider both the
eigenvalues and eigenvectors. Such consideration is in good
agreement with direct simulation results, and it leads us to the
conclusion that the enrichment and instability at interface
mechanism is the dominant mechanism in ternary fluid phase
separation. We have also carried out preliminary work where we
switch off the coupling to the Navier–Stokes equation, and
where we vary the fluid viscosity ratios (up to a maximum of
10, data not shown) for the equal surface tension cases. We find
the observed instability mechanisms are qualitatively very
similar to the 4 reported here, and hence hydrodynamics effects
will only lead to minor variations in the phase diagram.
However, variations in the structures are found at the later
stages of the coarsening. For example, the domains are more
elongated in the diffusive regime without any coupling to
hydrodynamics, akin to that reported for binary fluids.21

Indeed, in the future, it will be interesting to systematically
study the possible scaling laws for the coarsening dynamics.
For ternary fluid phase separation, we anticipate a much more
complex growth laws. For example, in the primary and second-
ary bulk phase separation and the enrichment and instability at

interface regimes, there are multiple length scales depending
on whether we are interested in the majority or the minority
fluid components. Furthermore, it will also be interesting to
extend the study to three dimensional phase separation and to
consider more than three fluid components, including when
the components are all immiscible and when they are partially
miscible. When there are four or more fluid components, an
open question is whether the enrichment in the enrichment
and instability mechanism remains occurring at the interface,
or if it favours the junction of three or more domains.
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