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Stiffening of under-constrained spring networks
under isotropic strain

Cheng-Tai Lee and Matthias Merkel *

Disordered spring networks are a useful paradigm to examine macroscopic mechanical properties of

amorphous materials. Here, we study the elastic behavior of under-constrained spring networks,

i.e. networks with more degrees of freedom than springs. While such networks are usually floppy, they

can be rigidified by applying external strain. Recently, an analytical formalism has been developed to

predict the scaling behavior of the elastic network properties close to this rigidity transition. Here we

numerically show that these predictions apply to many different classes of spring networks, including

phantom triangular, Delaunay, Voronoi, and honeycomb networks. The analytical predictions further

imply that the shear modulus G scales linearly with isotropic stress T close to the rigidity transition.

However, this seems to be at odds with recent numerical studies suggesting an exponent between G

and T that is smaller than one for some network classes. Using increased numerical precision and shear

stabilization, we demonstrate here that close to the transition a linear scaling, G B T, holds independent

of the network class. Finally, we show that our results are not or only weakly affected by finite-size

effects, depending on the network class.

Introduction

Understanding macroscopic rigidity and how it depends on the
microscopic structure in amorphous materials such as fibrous
networks, glasses, jammed colloids, and granular materials has
been a long-standing challenge in the field. While the macro-
scopic mechanics of crystalline materials can be computed
explicitly by exploiting their spatially periodic microscopic
structure, this is not possible for disordered materials.
In particular, upon deformation disordered materials generally
display non-affine microscopic displacements, which are hard
to predict.1–11

A classical way to predict the onset of rigidity in many
systems is to use Maxwell’s constraint counting, which states
that rigidity emerges whenever the constraints in a system
outnumber its degrees of freedom.12–14 In systems with pair
interactions, this is equivalent to comparing the average con-
nectivity z, i.e. the average number of pair interactions each
particle is involved in, to the number of degrees of freedom per
particle, which is given by the dimension of space, D. Such
systems are predicted to be rigid if z exceeds the isostatic point,
z 4 zc := 2D. In this case the system is called over-constrained.
Otherwise, for z o zc, the system is called under-constrained or
sub-isostatic, and is predicted to be floppy.

While Maxwell’s constraint counting predicts under-
constrained systems to be floppy, these systems can still be
rigidified, either through the application of external strain or
the presence of residual stresses.3,6,7,11,15–21 As a simple model
to study such strain-induced rigidity, we discuss here strain-
induced rigidity in athermal, under-constrained disordered
spring networks.16,18,19,22–24 Strain-induced rigidification is
illustrated in Fig. 1a for a network to which isotropic and shear
strain has been applied.

The mechanism creating strain-induced rigidity has been
discussed in the literature before.15,16,25,26 When approaching
the transition from the floppy side, a state of self-stress (SSS)
forms right at the transition. A SSS is a set of tensions that
could be put on the springs without any net forces on the
nodes. The SSS that appears at the rigidity transition couples to
isotropic strain, and using known approaches it can be shown
that this induces a jump in the bulk modulus right at the
transition (Fig. 1b).14,18 Meanwhile, the shear modulus shows a
continuous transition, whenever the SSS that appears at the
transition has no net overlap with shear strain. Previously, the
floppy side of the strain-stiffening transition was discussed in
the limit where the springs are infinitely rigid.25,26 Here, we are
interested in the network mechanics of the rigid side of the
transition when spring constants are finite.

Recent work involving one of us proposed a theoretical
approach that allows to analytically predict the behavior of
the elastic properties of under-constrained materials close to
the strain-induced rigidity transition.18 This approach is based
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on a minimal-length function that formalizes the relationship
between spring lengths and the applied global strain. This
minimal-length function both reflects the critical point where
the network starts to rigidify and allows to predict the behavior
of the elastic network properties in the rigid regime. In ref. 18,
this approach was numerically verified both on models for
disordered cellular materials and for packing-derived spring
networks. However, it has never been explicitly tested for other
classes of under-constrained spring networks.

The approach in ref. 18 allows to predict the behavior of the
elastic moduli close to the transition, where the bulk modulus

B shows a discontinuity, while the shear modulus G increases
linearly with isotropic strain e (Fig. 1b). One can show that as
a consequence of both, one would expect the shear modulus G
to linearly increase also with isotropic stress T close to the
transition. This is also consistent with earlier work on stress-
induced rigidity.3,15,27 However, more recent numerical work19

on under-constrained disordered spring networks suggested
that the value for the scaling exponent between G and T can
differ from one, depending on the class of network studied.
The reason for this deviation from the analytical predictions is
so far unclear. Other recent work proposed that the numerical
results in ref. 18 could potentially be affected by finite-size
effects caused by a diverging length scale when shearing the
system.11 Could similar finite-size effects be the reason for this
contradiction between predicted and numerically obtained
exponents between G and T?

Here, we numerically test the predictions from ref. 18 on
several different classes of athermal spring networks. These
include phantom triangular, Delaunay, Voronoi, and honey-
comb networks, where we study two types of spring potentials,
harmonic and rope-like (Fig. 1c). In the following, we first
summarize the analytical approach from ref. 18 in Section 1.
We then test the analytical predictions on the four different
network classes in Section 2, and show that they follow the
predicted behavior (Section 2.2). In Section 2.3, we furthermore
show that the scaling behavior of the coefficients appearing in
the minimal-length function with connectivity z depends on
the network class. We then numerically explore the scaling
behavior of the shear modulus G over isotropic stress T with
increased numerical precision and find a scaling exponent of
one, independent of network class (Section 2.4). Finally, we
show that depending on the network class, there is no or a weak
system-size dependence affecting these results (Section 2.5).

1 Theoretical predictions

We start by summarizing the approach of ref. 18, which allows
to predict the scaling behavior of the elastic properties
of under-constrained spring networks close to the rigidity
transition.

In general, the formalism of ref. 18 applies to any disordered
Hookean spring network of N springs, where each spring i has a
different spring constant ki and rest length ‘0i. The energy of
such a network is:

e ¼
XN
i¼1

ki ‘i � ‘0ið Þ2; (1)

where ‘i is the length of spring i. The springs are connected at
movable nodes, around which they can freely rotate. While the
approach can be applied largely independently of the precise
boundary conditions, we focus here on periodic boundary
conditions with fixed system size. Unless stated otherwise, we
use dimensionless quantities, where the length unit is Lc := (V/N)1/D

with D being the dimension of space and V the system volume.

Fig. 1 Under-constrained spring networks can be rigidified by the external
application of strain. (a) Network configurations and spring tensions for an
example network under either isotropic or shear strain. (b) Change of
minimal network energy E, bulk modulus B, and shear modulus G when
isotropically deforming a network across the rigidity transition, which occurs
at the critical strain value e*. Below e*, all springs can attain their rest lengths,
the system is floppy, and E = B = G = 0. Beyond e*, springs start to deviate
from their rest lengths. According to ref. 18, the bulk modulus B shows a
discrete jump at e*, while G increases linearly and E increases quadratically
with the distance from the transition point e*. (c) Two types of spring
potentials are used in our simulations, harmonic (left) and rope-like (right).
‘ and ‘0 denote spring length and rest length, respectively.
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We define the energy unit such that
P

i ki
� ��

N ¼ 1. Using
dimensionless lengths will later allow us to describe the effect of
isotropic strain (Section 1.3).

Here, to explain just the key ideas of the approach, we focus
for simplicity on the special case of a network with homoge-
neous spring constants ki = 1 and rest lengths ‘0i = ‘0:

e ¼
XN
i¼1

‘i � ‘0ð Þ2: (2)

The behavior of networks with heterogeneous spring properties
can be predicted by formally mapping them onto eqn (2) as
discussed in Appendix A.

The elastic properties of disordered networks are in general
difficult to predict analytically. Formally, these elastic proper-
ties can be computed from derivatives of a minimal energy
function emin(e,g) with respect to external isotropic strain e or
shear strain g. This function corresponds to the minimized
system energy e({rn},e,g) with respect to the node positions rn at
constant strain variables e,g. However, applying strain to a
disordered network generally induces non-affine displacements
of the node positions, which are typically hard to predict
without numerical energy minimization. To nevertheless make
non-trivial predictions about the scaling of the elastic proper-
ties, ref. 18 introduced a different approach. Instead of expli-
citly following the node motion, progress can already be made
by focusing on the relation between spring lengths and external
strain.

Note that while we focus in this section on harmonic
springs, the formalism can also be applied to networks with
rope-like pair interactions (Fig. 1c). This is because a rope-like
pair interaction can be perfectly mimicked by a chain of two or
more harmonic springs18 (see also Appendix D).

1.1 Key idea

To obtain an explicit expression for emin in terms of external
strain, we first transform the expression in eqn (2) into a sum of
two squares:

e ¼ N �‘� ‘0
� �2þs‘2h i

: (3)

Here, �‘ ¼
P

i ‘i
� ��

N and s‘2 ¼
P

i ½‘i � �‘�2
� ��

N are average and

variance of the spring lengths, respectively.
The expression in eqn (3) allows us to more conveniently

discuss the minimal network energy emin and its behavior once
we strain the system. Because e is the sum of two squares, an
energy minimum is attained whenever both j�‘� ‘0j and s‘ are
as small as possible. There are two possibilities. First, if there is
a set of node positions such that both squares can simulta-
neously attain zero, then the minimal energy is zero emin = 0.
Because elastic stresses and moduli correspond to derivatives
of emin, the system is floppy in this parameter regime. Second,
there might be no set of node positions such that both terms
j�‘� ‘0j and s‘ can simultaneously vanish. In this regime, the
system is typically rigid.

To access the value of emin in the rigid regime, we need to
understand how the system compromises between minimizing
j�‘� ‘0j and s‘ in eqn (3). To this end, we first need a way to
express which combinations of �‘ and s‘ are geometrically
possible. As shown in ref. 18, this can be done using a

minimal-length function �‘minðs‘Þ; which returns the minimally
possible �‘ for a given s‘. In other words, a combination of �‘ and
s‘ is geometrically possible only if:

�‘ � �‘minðs‘Þ: (4)

For instance, for s‘ = 0 it is possible to find only network
configurations with �‘ � �‘minðs‘ ¼ 0Þ. Thus, for ‘0 � �‘minðs‘ ¼ 0Þ
the network will be floppy, because both squares in eqn (3) can
simultaneously vanish, which implies that emin and its deriva-
tives vanish. Conversely, for ‘0 o �‘minðs‘ ¼ 0Þ; the first term in
eqn (3) can not vanish with s‘ = 0, because only configurations

with �‘ � �‘minðs‘ ¼ 0Þ4 ‘0 are possible. Thus, ‘�0 : ¼ �‘minðs‘ ¼ 0Þ;
is the transition point between floppy and rigid regime.

In general, the precise functional form of �‘minðs‘Þ depends
on the network structure. However, we showed in ref. 18 that at
the transition point to first order in s‘ this function can be
expanded as

�‘minðs‘Þ ¼ ‘�0 � a‘s‘; (5)

where ‘�0 and a‘ are constants that encode the network struc-
ture. Eqn (5) holds in the limit of small s‘, which means that
the system is close to the transition point, where s‘ = 0. We
expect that deriving expressions for ‘�0 and a‘ from first princi-
ples is very hard for disordered networks. Besides some excep-
tions, ‘�0 and a‘ will need to be determined numerically.

We briefly outline how eqn (5) is a consequence of the SSS
that is created at the transition point (details in ref. 18). At the
transition point the N-dimensional vector of all spring lengths
‘i is given by ¼ ‘�0e with e = (1,. . .,1). We consider a state of the
network that is slightly shifted into the rigid regime, where
¼ ‘�0eþ d . One can then show that the definition of an SSS

implies that d is perpendicular to it:18

t�d = 0. (6)

Here, t is the SSS created at the transition. To find the minimal
possible �‘, we first decompose both and t into parts parallel

and perpendicular to e: ¼ �‘eþ s‘m‘ and t B e + a‘mt, where
we use the normalization m‘

2 = mt
2 = N. Note that this defines a‘

as the coefficient of variation of the SSS components. We then
insert both decompositions into eqn (6) and obtain:

�‘ ¼ ‘�0 � a‘s‘ðm‘ �mtÞ=N: (7)

Thus, to minimize �‘ for fixed s‘, the scalar product m‘�mt needs
to be maximized. In the presence of only a single SSS, m‘ can be
any normalized vector perpendicular to e, and thus m‘�mt is
maximized by m‘ = mt, for which eqn (7) becomes eqn (5).

To derive an expression for the minimal energy emin in the
solid regime, we combine two parts: the energy in eqn (3) and
the condition of geometrically possible combinations ð�‘; s‘Þ in
eqn (4) and (5). First, eqn (4) implies that for fixed s‘, the energy
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in eqn (3) is minimized when �‘ ¼ �‘minðs‘Þ. Combining this with
eqn (5), insertion into eqn (3), and minimization with respect to
s‘, yields:

emin ¼
N

1þ a‘2
‘�0 � ‘0
� �2

: (8)

This expression only depends on the spring number N, the rest
length ‘0, and the two parameters ‘�0 and a‘ that encode the
network structure. Note that from eqn (8) we see that
the system energy is that of a single effective spring with rest
length ‘0.

1.2 Simple example network

To illustrate the ideas of the previous section, we discuss a
simple example network (Fig. 2a left). The network consists
of four springs with equal dimensionless spring constants
k = 1 and rest lengths ‘0. Two of the springs are connected to
fixed points (black dots) located at positions (�1/2,0) and
(1/2,0), respectively. The two internal nodes (red dots) at
positions rn with n = 1, 2 are movable. We will use the ideas
of the previous section to derive an expression for the minimal
energy emin.

For ‘0 Z 1/3, there are always configurations where all
springs can attain their rest lengths ‘i = ‘0 (Fig. 2a top). This

implies that j�‘� ‘0j ¼ 0 and s‘ = 0, i.e. both terms in eqn (3) can
simultaneously vanish.

Conversely, for ‘0 o 1/3, the springs will be under tension
(Fig. 2a bottom). Our 4-spring example network is simple
enough so that we can explicitly minimize the energy with
respect to the inner node positions rn = (xn,yn) with n = 1, 2. This
will allow us to first directly test whether the minimal energy
has the form predicted by eqn (8) in the previous section.

The energy of our example network is

e ¼ x1 þ
1

2
� ‘0

� �2

þ2ðx2 � x1 � ‘0Þ2 þ
1

2
� x2 � ‘0

� �2
" #

:

(9)

Here, to simplify the following discussion, we have set
y1 = y2 = 0. The energy e has a global minimum at x1 =
�(1 + 2‘0)/10, x2 = (1 + 2‘0)/10, where its value is

emin ¼
2

5
1� 3‘0ð Þ2: (10)

This expression is indeed of the predicted form eqn (8).
We now demonstrate how the minimal energy emin can

instead be obtained using the ideas of the previous section.
We first discuss which pairs of �‘ and s‘ are geometrically

possible. To this end, we express �‘ and s‘ in terms of the
internal degrees of freedom x1,x2:

�‘ ¼ 1

3
þ 1

4
~x2 � ~x1ð Þ; (11)

s‘2 ¼
1

16
ð11~x1

2 � 14~x1~x2 þ 11~x2
2Þ; (12)

where we defined x̃1 = x1 + 1/6 and x̃2 = x2 � 1/6. Both eqn (11)
and (12) are illustrated in Fig. 2b. Curves of constant �‘ corre-

spond to lines inclined by 45, where �‘ increases as x̃1 decreases
and x̃2 increases. Meanwhile, curves of constant s‘ correspond
to ellipses centered at x̃1 = x̃2 = 0, whose main axes scale with s‘
and are oriented at 45 angles with respect to the x̃1 and x̃2 axes.†
Thus, for a given value of s‘, any combination of x1 and x2 can

give rise to values for �‘ only in an interval between �‘minðs‘Þ (blue
solid line) and �‘maxðs‘Þ (red dashed line). The upper bound
�‘maxðs‘Þ only exists because we set y1 = y2 = 0 before; without
this constraint, �‘ can become arbitrarily large for a given s‘.‡
Meanwhile, the lower bound �‘minðs‘Þ decreases linearly with the
distance between origin (black dot) and the intersection point
(red dot) in Fig. 2b, which is proportional to s‘. As a

Fig. 2 Illustration of the analytical formalism using a 4-spring example
network. (a) The network can be rigidified by either decreasing the
dimensional spring rest length or increasing the system size, both of which
has the effect of decreasing the dimensionless parameter ‘0. Black and red
dots indicate fixed and movable nodes, respectively. (b) Dependence of
average �‘ and standard deviation s‘ of the four spring lengths on the
internal node positions rn = (xn,yn) with i A {1,2} and y1 = y2 = 0. The axes

are x̃1 = x1 + 1/6 and x̃2 = x2 � 1/6. Curves of constant �‘ are diagonal lines

(with increasing �‘: blue solid, black dashed, red dotted lines), while curves

of constant s‘ are ellipses. The configuration of minimal �‘ for given s‘ is
indicated by the red dot. Because the linear size of the ellipse scales with

s‘, the minimal �‘ for given s‘ decreases linearly with s‘.

† This is because eqn (12) can be transformed into

s2‘ ¼
1

16
ð2u2 þ 9w2Þ; (13)

where u = x̃1 + x̃2 and w = x̃1 � x̃2. This is the equation of an ellipse whose main
axes are diagonally oriented and scale with s‘.
‡ That �‘ can become arbitrarily large for given s‘o 1/4 can be shown explicitly by
considering a subset of configurations parameterized by two scalars w and h as
r1 = (�w/2,h) and r2 = (�w/2,h). Then one can show that the choice

wðs‘; hÞ ¼ �
1

3
ð1þ 8s‘Þ þ

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2s‘Þ2 þ 3h2

q

leads to the correct value for the standard deviation of the spring lengths s‘.
Moreover, one can show that for this choice, the relation

�‘ðs‘; hÞ ¼ s‘ þ wðs‘; hÞ

holds, and that �‘ðs‘; h ¼ 0Þ ¼ �‘minðs‘Þ with �‘min given by eqn (14). Finally, for fixed

s‘, the function �‘ðs‘; hÞ increases monotonically with h without upper bound.
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consequence, using eqn (11) and (12):

�‘minðs‘Þ ¼
1

3
� s‘

3
: (14)

This is of the form of eqn (5), where we identify ‘�0 ¼ 1=3 and
a‘ = 1/3. Inserting this into eqn (8), we obtain indeed eqn (10).

In our discussion here we included the internal degrees of
freedom x1, x2 to demonstrate their connection to geometrically

possible combinations of �‘ and s‘, and to obtain explicit values
for ‘�0 and a‘. In general, however, the approach from ref. 18
does not require a discussion of internal degrees of freedom.
Eqn (3)–(5) are sufficient to understand the overall system
behavior close to the rigidity transition, unless one wants
to derive the values of the coefficients ‘�0 and a‘ from first
principles.

1.3 Effect of isotropic strain

We now discuss how the effect of isotropic strain e is incorpo-
rated into the formalism. The 4-spring system in Fig. 2a transi-
tions from floppy to rigid when decreasing the dimensionless
parameter ‘0. Such a decrease in ‘0 can correspond either to a
decrease in the dimensional spring rest length while keeping
the system size constant (Fig. 2a left), or to an increase in
system size while keeping the dimensional rest length constant
(Fig. 2a right). Thus, ‘0 is a control parameter combining both
dimensional spring rest length and isotropic strain.

Let us consider simulations where the dimensional spring
rest length L0 is kept constant, but the system size V is
changing. In this case, the combined control parameter ‘0

encodes isotropic strain. We define (linear) isotropic strain
as e := (V/Vref)

1/D � 1, where the Vref is the system volume right
after creation of the network. From our length non-dimension-
alization follows that we can convert between ‘0 and bulk strain
e via:

‘0 ¼
L0

1þ e
N

Vref

� �1=D

: (15)

Inserting this equation into eqn (8) provides an explicit expres-
sion of the dimensionless system energy on isotropic strain e.

1.4 Effect of shear strain

To understand how shear strain enters the formalism, we first
note that shearing the system does not change the energy
formula eqn (3). However, shearing the system will change

the set of geometrically possible combinations ð�‘;s‘Þ. Thus,
shear strain needs to be included as a parameter in the
minimal-length function �‘min. In ref. 18 this function is Taylor
expanded to second order in shear strain, so that eqn (5)
becomes most generally:

�‘minðs‘; ĝÞ ¼ ‘̂
�
0 � a‘s‘ þ b1ĝþ bĝ2: (16)

For later compactness of notation, here we also substituted the

notation of parameter ‘�0 by ‘̂
�
0.

Note that the linear order term in ĝ appears only because
disordered systems with a finite size generally display a small

but finite anisotropy. Eqn (16) can be simplified by removing
this anisotropy through defining a new shear variable g = ĝ �
Dg0, where ĝ = Dg0 is defined as the shear where the function
�‘minðs‘; ĝÞ is minimal: Dg0 = � b1/2b. Defining ‘�0: ¼ ‘̂

�
0 � b1

2=4b;

this leads to the minimal-length function:

�‘minðs‘; gÞ ¼ ‘�0 � a‘s‘ þ bg2: (17)

The anisotropy Dg0 is expected to disappear in the limit of a
large network size.

1.5 Elastic properties near the rigidity transition

Substituting eqn (17) into eqn (3) and minimizing with respect
to s‘, we obtain the following explicit energy expression in
terms of the control parameters ‘0 and g:

eminð‘0; gÞ ¼
N

1þ a‘2
ð‘�0 � ‘0 þ bg2Þ2: (18)

Derivatives of this expression with respect to ‘0 (which is related
to isotropic strain e via eqn (15)) and shear strain g allow to
derive the following quantities, here for the 2D case:18

T ¼ ‘�0
1þ a‘2

ð‘�0 � ‘0 þ bg2Þ; (19)

s ¼ 4bg
1þ a‘2

ð‘�0 � ‘0 þ bg2Þ; (20)

DB ¼
‘�0
� �2

2 1þ a‘2ð Þ at g ¼ 0; (21)

G ¼ 4b

1þ a‘2
ð‘�0 � ‘0 þ 3bg2Þ: (22)

Here, T, s, DB and G are isotropic stress, shear stress, bulk
modulus discontinuity, and shear modulus, respectively. These
formulas hold close to the rigidity transition in the region
where eqn (17) is accurate. As shown by eqn (19)–(22), the three
parameters ‘�0, a‘ and b fully describe the macroscopic elastic
behavior in this regime.

2 Numerical results

While in ref. 18 the analytical predictions in eqn (19)–(22) were
numerically tested on packing-derived networks only, we test
these predictions here on a set of additional network classes.
These include phantom triangular and Delaunay networks
(both with varying connectivity z), as well as honeycomb and
Voronoi networks (which both have fixed connectivity z = 3).
We probe the elastic properties of these networks under iso-
tropic (i.e. bulk) strain.

2.1 Network generation and energy minimization

Networks of freely hinging nodes are created in a periodic box
following existing protocols19,28 (details in Appendix B).
We probe the system by varying isotropic strain e. Each time,
we first use bisection to detect the transition point e*, before we
carry out exponential and/or linear sweeps in isotropic strain e
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(details in Appendix C). To ensure high precision in our energy
minimization, we use an optimized conjugate gradient scheme
that allows to reduce the average residual force per degree of
freedom to less than 10�12.18

Right after creation, where ĝ = 0, the disordered networks will
generally display an anisotropy. To remove this anisotropy, we
need to shear the system to the state ĝ = Dg0 (i.e. g = 0, see Section
1.4). At this point, according to eqn (20), shear stress vanishes,
s = 0. Thus, the anisotropy in the networks can be numerically
removed using shear stabilization.29 Shear stabilization means
that shear strain is treated as an additional degree of freedom
during the energy minimization. Unless stated otherwise, we
always apply this method during the bisection phase to search
for the transition point, so that our system right after the
bisection phase is at (e,g) = (e*,0). During the subsequent e
sweeps, we keep shear strain g fixed (details in Appendix C).

2.2 Elastic moduli close to the transition

To numerically characterize the nature of the transition, we
first carry out a combination of exponential and linear sweeps

around the transition point e* (details in Appendix C). In Fig. 3,
we plot bulk modulus B and shear modulus G against isotropic
strain e for single network realizations with varying connectivity
z, where we use harmonic spring potentials.

At the transition, all networks show a discontinuity DB in the
bulk modulus, while the transition is continuous in the shear
modulus G. This is qualitatively consistent with our analytical
predictions (Section 1.5) and the behavior of packing-derived
networks.18 We also observe that for both phantom triangular
and Delaunay networks the transition point e* decreases with
the average connectivity z.

To compare these data to the prediction for the bulk
modulus discontinuity DB according to eqn (21), we need the
values of ‘�0 and a‘ for our simulations. To extract ‘�0, we insert
the transition point strain value e* into eqn (15). To extract a‘,

we plot s‘ over �‘� ‘0 (inset of Fig. 4d) and perform a linear fit
whose slope is a‘ for small �‘� ‘0 (see Appendix D). Note that for
symmetry reasons, the honeycomb lattice has s‘ = 0 and thus
a‘ = 0. The resulting predictions for the bulk modulus disconti-
nuities DB are respectively indicated as horizontal bars in

Fig. 3 Behavior of bulk and shear moduli across the transition for four different classes of networks and comparison to analytical predictions. (a)–(c)
Sketches of network structures of phantom triangular (a, z = 3.2, W = 10), Delaunay (b, z = 3.2, W = 12), Voronoi (c, z = 3, W = 12) and honeycomb (c, z = 3,
W = 12) networks. In (a), the solid lines are springs of length one, while the dashed ones are phantom springs, i.e. springs that cross one or more nodes
without being connected to them. We show phantom springs, which are actually straight, slightly curved only for better visualization. In (b), gray lines
indicate the removed springs from the initial full Delaunay network, leaving the black springs in the actual network. (d)–(i) Numerically obtained bulk
modulus B and shear modulus G at g = 0 against increasing isotropic strain e for different network classes: phantom triangular (d, g, W = 40) and Delaunay
(e, h, W = 20) networks with variable connectivity z, as well as Voronoi (f, i, W = 70) and honeycomb (f, i, W = 60). Here, we use harmonic spring potentials,
and we shear stabilized the networks before the e sweeps (Appendix C). The discontinuity DB in the bulk modulus at the transition point and linear scaling
of G predicted from eqn (21) and (22) are indicated as solid bars and solid lines, respectively. (h inset) Log-log plot of G against strain difference e � e*, to
resolve the vicinity of the transition point e*. Symbols are numerical data and lines are analytical predictions.
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Fig. 3d–f. Indeed, our predictions match well the discontinu-
ities present in the simulation data for all four network classes
and all connectivities z.

Some of the data points right at the transition fall below the
analytically predicted value for DB. These deviations occur in
our data for the strain values closest to the transition point,
while DB values of the same network at similar strain values
match closely with our analytical prediction. These deviations
are likely due to numerical residues, an effect that we observed
before.18

For the shear modulus, eqn (22) predicts a continuous
transition with a linear scaling G � ð‘�0 � ‘0Þ. Using eqn (15),
this implies also a linear scaling G � De: ¼ e� e� to lowest
order in De. Indeed, this is what we observed close to the
transition (inset of Fig. 4g). We indicate this linear scaling also
in Fig. 3g–i. Note that for larger De, non-linearities in �‘min and
in eqn (15) create deviations from this prediction.

Note that both honeycomb and Voronoi networks have their
transition points at e* = 0. This means that these networks have

a SSS already right at creation. While this is clearly the case for
the honeycomb lattice, we show in Appendix E that it is also
true for any Voronoi network.

Taken together, the elastic properties of the system close to
the transition, such as the transition point e*, the magnitude of
the discontinuity DB in the bulk modulus, and the linear
scaling coefficient for the shear modulus G, can be predicted
from the coefficients ‘�0, a‘ and b.

2.3 Scaling of ‘�0, a‘ and b with connectivity z

In Fig. 4, we plot the parameters ‘�0, a‘ and b for phantom
triangular, Delaunay, Voronoi, and honeycomb networks with
harmonic spring potentials. For phantom triangular and Delau-
nay networks, we show the dependency on the connectivity z.
For the disordered networks (i.e. phantom triangular,
Delaunay, and Voronoi) we average each time over 50 random
realizations.

In both phantom triangular and Delaunay networks, close
to the isostatic point the parameter ‘�0 exhibits a linear

Fig. 4 Scaling of the parameters ‘�0, a‘ and b with network connectivity z for phantom triangular (system size W = 40), Delaunay (W = 20), Voronoi
(W = 70; z = 3) and honeycomb (W = 60; z = 3) networks with harmonic spring potentials. The parameters ‘�0, a‘ and b are extracted for each network

realization according to the protocols in Section 2 and Appendix D. For instance, (d inset) a‘ is extracted using a linear fit of s‘ over �‘� ‘0, and (g inset) b is

extracted using a linear fit of G over �‘� ‘0. Error bars in all panels indicate the standard error of the mean. We use the first 5 data points away from Dz = 0
to fit ‘�0 and obtain 2.07–0.31Dz for phantom triangular and 1.30–0.30Dz for Delaunay networks (red dashed lines in panels (a) and (b)). For the

honeycomb network, the numerically obtained value for ‘�0 is consistent with its theoretical value ‘�0 ¼ 21=2=31=4 � 1:0745, and the parameter a‘ is exactly

zero, because s‘ = 0 due to symmetry.
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dependence on Dz with a negative coefficient (Fig. 4a and b),
which has also been observed in 2D packing-derived networks.18

We also examined the z-scaling exponents of a‘ and b close
to isostaticity (Fig. 4d, e, g and h). For a‘, we find for phantom
triangular networks a scaling exponent of E0.2, for Delaunay
networks, we find an exponent close to �1, while we found an
exponent of �0.5 in earlier work for packing-derived networks.
Meanwhile for b, we find for phantom triangular networks
an exponent of E�0.5 or smaller, for Delaunay networks
an exponent of roughly �2, while we have found before
for packing-derived networks an exponent of �1. Hence, the
scaling exponent of both parameters strongly depends on
network class.

Note that for a small fraction of the Delaunay networks,
we did not observe a linear scaling between s‘ and �‘� ‘0,

suggesting that the linear relation between �‘min and s‘ might
be violated for these networks (Appendix D). A more detailed
examination suggests that this could quite possibly be due to
finite numerical cutoffs required to identify the transition
point, which would make us miss the regime where this scaling
is linear (Appendix F). We excluded these networks from the
averages shown in Fig. 4. We stress that we only found devia-
tions from the linear �‘min scaling for Delaunay networks with
harmonic springs, while we could numerically confirm the
predicted linear scaling for all phantom triangular and Voronoi
networks, as well as the honeycomb network.

2.4 The shear modulus scales linearly with isotropic stress.

In the previous Sections (1.5 and 2.2), we showed that the shear
modulus G scales linearly with the isotropic strain beyond the
transition point, De = e �e*. Moreover, a finite bulk modulus
discontinuity at e* implies that the isotropic stress T also scales
linearly with De to lowest order, which can be derived form

eqn (15) and (19). Hence, we would expect from the analytical
predictions in Section 1 that the shear modulus scales linearly
with the isotropic stress:

G B Ta with a = 1. (23)

However, recent numerical work has suggested different values
for a. For instance, ref. 19 studied networks with rope-like
potentials, and for z = 3.2 the results suggested an exponent
of a E 0.85 for phantom triangular and a E 0.9 for Delaunay
networks, while a = 1 was found for honeycomb and Voronoi
networks.

To resolve this contradiction between the numerical results
from ref. 19 and our analytical results from Section 1 and ref.
18, we simulate here different kinds of rope-like networks with
a high numerical precision, where we vary linear system size W
by more than an order of magnitude. Fig. 5a shows the scaling
of the shear modulus G against the isotropic stress T, both
averaged over 50 realizations, for phantom triangular networks,
where we used two protocols. The open symbols correspond to
a protocol without any shear stabilization. This means that no
shear strain was applied after the creation of the network, and
the e sweep was carried out at ĝ = 0. The closed symbols
correspond to a protocol where we used shear stabilization
when searching for the transition point, and as a consequence
the e sweep was carried out at g = 0 (see Sections 1.4).

We find that indeed, for the protocol with shear stabilization
(closed symbols), the shear modulus G scales linearly with
isotropic stress T over many orders of magnitude (Fig. 5a for
phantom triangular networks & inset for the other network
classes). This observation is independent of system size.
However, without shear stabilization (open symbols), at small
stress T we observe a plateau, whose value depends on system
size. Away from the plateau regions the curves largely collapse
for different system sizes.

Fig. 5 The shear modulus G scales linearly with isotropic stress T for shear-stabilized networks. Without shear stabilization an additional plateau appears
at small T. (a) Dependence of G on isotropic stress T for phantom triangular networks with z = 3.2 and rope-like spring potentials for varying system size
W, where we either use shear stabilization (closed circles) or not (open circles). All shear-stabilized networks show a linear scaling close to the transition
point (at small T). The gray vertical line indicates the lowest T value probed in previous work.19 (a inset) The linear scaling in G(T) also appears for shear-
stabilized honeycomb (W = 60), Voronoi (W = 70) and Delaunay (W = 20) networks. Error bars in panel a & inset indicate the standard error of the mean.
(b) The G(T) curves for individual phantom triangular networks with z = 3.2 and W = 40 without shear stabilization also exhibit a plateau, confirming that
the plateaus in panel a are not due to an averaging effect. (b inset) The variance of the network anisotropy Dg0 (defined below eqn (16)) across different
randomly generated networks for a given system size W scales inversely proportional with W2.
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The appearance of a plateau in G(T) in the protocol without
shear stabilization can be readily understood from our analy-
tical results. eqn (22) states that G is proportional to
‘�0 � ‘0 þ bg2, where ð‘�0 � ‘0Þ � De � T and g = ĝ � Dg0. Without
shear stabilization, ĝ = 0 and so g = �Dg0. This implies a plateau
in G that is proportional to Dg0

2. In other words, the plateau in
G(T) is related to the small anisotropy in the disordered net-
works. Shear stabilization removes this anisotropy and thus
also the plateau in G(T).

To test whether the plateaus that we find in Fig. 5a do not
result form an averaging effect, we plot in Fig. 5b the same
curves for individual realizations for a given system size.
We find that the plateau is also present in individual simulations,
and that its height fluctuates across realizations. This makes
sense, because the network anisotropy Dg0 also fluctuates across
realizations. Moreover, we find that the variance of Dg0 decreases
inversely proportional to the number of springs in the system
(Fig. 5b), which scales as BW 2. Hence, the plateau in G(T)
corresponds to a finite-size effect. A similar conclusion was drawn
also in ref. 30 following a different line of argument.

2.5 Linear range of �‘min shows no or weak system-size
dependence

In recent work, it was pointed out that scaling exponents in
spring networks under shear strain may be affected by finite-
size effects.11 In particular, it was suggested that for networks
of size W, finite-size effects could affect scaling exponents when
shearing the systems by Dg t W �1/n beyond the transition
point g*, where n 4 0. This would correspond to a diverging
length scale x B |Dg|�n. While in this article, we probe the
system mechanics with respect to isotropic strain e instead, we
still wanted to check whether such finite-size effects could
affect our results.

The system mechanics with respect to isotropic strain is

crucially determined by how the minimal-length function �‘min

scales with s‘ in eqn (15) (Section 1, Appendix H). Hence, we

were wondering whether the linear scaling of �‘min with s‘ is only
valid close to the transition point with strains De o Demax B
W �1/n‘ for some n‘ 4 0. In other words, we wondered whether
the range Demax of linear �‘min scaling would algebraically
decrease to zero with increasing system size W.

In Fig. 6 we show the resulting dependency of Demax on
system size W for both phantom triangular networks and
packing-derived networks, both with rope-like spring poten-
tials, where Demax is quantified as described in Appendix G. For
the phantom networks, beyond an initial quick decrease in
Demax for small W, we find that for W Z 60 our data indicates a
finite-size scaling exponent in the range 1/n‘ A [0.04,0.35].
Thus, the range of linear scaling in the �‘min function slowly
decreases with system size. In contrast, for the packing-derived
networks discussed in ref. 18, we find a range of 1/n‘ A

[�0.03,0.08]. This means that the linear scaling range of �‘min

is subject to none, or at most a weak finite-size effect. Thus,
intriguingly, the effect of finite-size effects on the linear scaling

range of �‘min appears to depend on the class of network studied.

Given that strain-controlled transitions in spring networks
have been shown to be critical transitions,4,6,7,10,11,19 we won-
dered whether we would also observe a divergence in the
fluctuations close to the transition. Focusing on the scaling
behavior of a non-affine motion parameter G with system size
W and distance to the transition point, e � e*, we find indeed
such a divergence (Appendix G). Moreover, we also find finite-
size effects with exponents of 1/nG E 0.75 for phantom trian-
gular networks and 1/nG E 0.6 for packing-derived networks.
Intriguingly, these exponents are very different from what we

observe for the linear scaling regime of �‘min, i.e. nG a n‘. This
suggests that the linear range of �‘min is not controlled by
the diverging length scale that controls non-affine motion.
A possible reason for this is that close to the transition the
non-affinity parameter G mostly captures motions that are (to
first-order) unconstrained by spring lengths, while �‘minðs‘Þ
characterizes spring length behavior.

3 Discussion

We studied the elastic behavior of sub-isostatic spring networks
that are rigidified by isotropic expansion, comparing numerical
simulation results with analytical predictions from ref. 18. We
first summarized the approach from ref. 18, which proposed an
analytical framework to predict the behavior of the elastic

network properties using a minimal-length function �‘min

(eqn (17)). This minimal-length function allows to map the
physical problem of the strain-induced stiffening transition to
the purely geometric problem of finding a minimal length.
Because of this reduction to a geometric problem, we expect
these results to hold quite generally for any athermal, under-
constrained material with a fixed connectivity.

Fig. 6 Plot of the isotropic strain range Demax = emax � e* within which the
�‘min function scales linearly with s‘, shown here for increasing system size
W for phantom triangular networks, and for shear-stabilized packing-
derived networks (inset). In both cases, we use z = 3.2 and rope-like
potentials. The range Demax is quantified as explained in Appendix G and
Fig. 9. While for W \ 60, the linear range of the phantom triangular
networks appear to show a weak power-law dependence on W, there is no
significant dependence on system size for packing-derived networks. Error
bars indicate the standard error of the mean.
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The �‘min formalism allows to make several predictions of the
elastic network behavior close to the transition.18 These pre-
dictions include the rigid-floppy boundary with respect to shear
and isotropic strain, the value of the bulk modulus disconti-
nuity at the transition, the linear scaling coefficient of shear
modulus with isotropic tension, the value of the shear modulus
discontinuity for networks under shear strain, the coefficient of
the linear shear modulus scaling beyond this transition, and
the coefficient describing the anomalous Poynting effect. All of
these predictions are based on the three parameters ‘�0, a‘ and
b. In other words, ref. 18 reduced the question of quantitatively
predicting the elastic properties of disordered spring networks
close to the transition to the question of determining these
three parameters a priori, which we believe is a very hard
problem that remains for future work. Currently, these para-
meters need to be determined numerically. However, by com-
bining our predictions one also obtains non-trivial parameter-
free predictions that apply to any athermal under-constrained
material.18

A key result required to derive all our predictions is that
close to the transition the minimal average spring length �‘min

depends linearly on the standard deviation of the spring
lengths s‘. We have shown that this scaling results from the
appearance of a state of self-stress (SSS) at the onset of
rigidity.14 We note that an equivalent linear scaling has been
reported before, in a system of spheres close to the jamming
point.31 However, in such a system each contact change will
also change the set of SSSs. Contact changes occur also in a
host of other systems, such as vitrimers.32 Hence, investigating
in depth how varying connectivity affects the relation between
�‘min and s‘ is an interesting question for future research.

To numerically test the predictions, we first verified the
linear scaling of the minimal-length function near the transi-
tion and extracted the three parameters ‘�0, a‘ and b for four
different network classes, including phantom triangular,
Delaunay, honeycomb, and Voronoi networks. Based on these
parameters, we compute the bulk modulus discontinuity DB,
which predicts well our numerical results for all network
classes (Fig. 3). Moreover, we also recovered the predicted
linear scaling of the shear modulus G with isotropic tension
T close to the transition.

Next we explored the scaling of the parameters ‘�0, a‘ and
b with respect to connectivity z. We found that the scaling of the
parameters a‘ and b with the distance to isostaticity Dz = 4 � z
strongly depends on the network class. The scaling exponent
for a‘ can even change sign, varying from �1 for Delaunay
networks to E0.2 for phantom triangular networks (Fig. 4, with
an exponent of �0.5 for packing-derived networks18). The
scaling exponent for b varies from �2 for Delaunay networks
to �0.5 for phantom triangular networks (Fig. 4, with an
exponent of �1 for packing-derived networks18). This depen-
dency on network class is not too surprising, since the para-
meters ‘�0, a‘ and b depend on the microscopic network
structure, which varies with network class. In contrast, the
value of ‘�0 always showed a linear dependency on Dz, where
intercept and slope depend on network class.

One prediction of the formalism in ref. 18 is a linear scaling
of the shear modulus G with the isotropic stress T close to the
transition point: G B T a with a = 1. This is a direct conse-
quence of the discontinuity DB in the bulk modulus and of the
linear scaling of the shear modulus G with strain De. There are
different ways to derive such a linear scaling (e.g. ref. 15 and
27); ref. 18 showed that it can be understood as a consequence
of the linear scaling of the �‘min function with s‘. While in
Section 1.4 we make the assumption that �‘min at its minimum is
analytical in g, even certain non-analytic behavior in g would
still lead to an integer exponent a (Appendix H). However, the
prediction of integer a seems to be at odds with recent
numerical work, which suggested that the value of a can be
different from one for networks with a rope-like interaction
potential, depending on the disordered nature of the
network.19 In particular, ref. 19 found an exponent of a E
0.85 for phantom triangular networks and aE 0.9 for Delaunay
networks with connectivity of z = 3.2.

To reconcile the two results from ref. 18 and 19, we numeri-
cally studied the G(T) scaling with an increased numerical
precision, and our results confirmed the analytically predicted
scaling exponent of a = 1 in both phantom triangular and
Delaunay networks (Fig. 5a and inset). We show that the result
also depends on a small random anisotropy in the generated
network. In the presence of such a finite anisotropy, we
observed a plateau in the shear modulus G(T) for small iso-
tropic stress T, consistent with the analytic prediction, eqn (22).
This plateau disappears when using shear stabilization,29

which removes the network anisotropy by shearing the network
by a shear strain Dg0 (Section 1.4). We moreover show that the
plateau disappears for larger system sizes (Fig. 5b inset). Hence,
while without shear stabilization large system sizes are
required to probe the behavior close to the transition, shear
stabilization allows to explore this regime already for smaller
systems.

We see two possible reasons for the discrepancy in the G(T)
scaling between ref. 18 and 19. First, we used the conjugate
gradient minimizer code developed in ref. 18, which allows us
to probe the system at least two orders of magnitude closer to
the transition point than ref. 19 (see gray vertical line in
Fig. 5a). For instance in phantom triangular networks we
observe an exponent of a o 1 for larger isotropic stress T \

10�3, which seems consistent with the value of 0.85 given by ref.
19, while we observe an exponent of a = 1 for stress T smaller
than that. Second, we show that a small anisotropy in the
generated network can lead to a plateau in the shear modulus
curve G(T), which could in turn affect the inferred scaling
exponent.

Previous work suggested that finite-size effects could affect
scaling exponents in spring networks.11 This can occur when-
ever the system size is on the order of or smaller than a length
scale that diverges close to the transition point. While ref. 11
focused on shear simulations, we wanted to test whether such
an effect could also arise in our isotropic-strain simulations.
To this end, we numerically tested in what range around the
transition point the linear scaling of the �‘min function holds.
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Our results suggest that this potentially depends on the class of
network studied. While in phantom triangular networks, this
range decreases weakly with system size, we did not find a
significant decrease in packing-derived networks. This is also
consistent with Fig. 5a, which suggests that G(T) is largely
independent of system size W for the range of W probed.

Intriguingly, we found that non-affine motion G shows a
much stronger system-size dependence, suggesting that it is
controlled by a length scale that does not affect the linear range
of �‘min. One possible reason for this is that close to the
transition point non-affine motions are to linear order uncon-
strained in under-constrained networks. Better understanding
this difference in the finite-size scaling behavior of G and �‘min is
an interesting avenue for future research.
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Appendix

A Generalization to networks with
heterogeneous spring constants and
rest lengths

In the main text, we focused on the case where all springs share
the same rest length ‘0 and the same spring constant k. Here,
we generalize this to networks where rest length and spring
constant may differ among the springs, as in eqn (1). Similar to

ref. 18, we introduce re-scaled spring lengths ~‘i, re-scaled spring
constants k̃i, and an average spring rest length ‘0 in a way that
allows us to rewrite eqn (1) in the form:

e ¼
XN
i¼1

~ki ~‘i � ‘0
� �2

: (24)

For this to work, we need to define the re-scaled spring
lengths as

~‘i ¼ ‘i
‘0
‘0i
: (25)

This will accordingly give rise to a new re-scaled spring con-
stants

~ki ¼ ki
‘0i
‘0

� �2

: (26)

Finally, we choose to define ‘0 as the quadratic mean of the ‘0i,
weighted by the ki:

‘0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ki‘0i

2P
i ki

s
: (27)

Using the re-scaling eqn (25)–(27), eqn (1) can be exactly
re-expressed as eqn (24). This network energy can be

transformed into

e ¼ N �‘� ‘0
� �2þs‘2h i

: (28)

Here, �‘ and s‘ are defined as the average and standard devia-
tion of the re-scaled spring length �‘i with the weighting factors
k̃i:

�‘: ¼
P

i
~ki~‘iP
i

~ki
; s‘2: ¼

P
i

~ki �‘� ~‘i
� �2P
i

~ki
: (29)

The subsequent discussion in Sections 1.1–1.5 remains
unchanged.

B Network generation

Networks were created using the following protocols.

Phantom triangular (Fig. 3a)28

Following ref. 19, a 2D triangular lattice of spacing 1 is first
constructed by depositing three sets of W parallel filaments
each at angles of 01, 601 and 1201 with the x-axis, respectively.
To reduce the connectivity from z = 6 to values observed in
e.g. collagen networks33 of 3 r z o 4, we first detach at each
node one filament, which is randomly chosen among the three
crossing filaments. This creates a network of homogeneous
connectivity z = 4. To avoid system-spanning filaments, one
spring is removed at a random position on each filament,
giving the average connectivity z = 4 � 6/W. To further reduce
the connectivity to a defined value z, we implement an iterative
procedure. At each iteration, we randomly remove only a few of
the springs and then clear off all of the dangling springs and
isolated islands. This is repeated until the desired connectivity
z is reached.

Delaunay (Fig. 3b)

Delaunay networks are constructed from W 2 nodes that are
placed at uncorrelated random positions in a square box of side
W. The connectivity of initially z = 6 is decreased to the desired
value z by employing the same protocol using random cuts as
for the phantom triangular networks.

Honeycomb (Fig. 3c)

We construct a network of W 2/3 regular hexagons with side
length 1.

Voronoi (Fig. 3c)

Voronoi networks correspond to the Voronoi tessellation of
W 2/2 nodes at uncorrelated random positions in a square box
of side W.

In all four network classes, we set the dimensionless spring
rest lengths ‘0i to the respective initial spring lengths before any
deformation is applied, i.e. at (e,ĝ) = (0,0). We set the dimen-
sionless spring constants as the inverse of the respective rest
length at zero strain, ki = 1/‘0i.
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C Details of numerical strain sweeps
and computation of the elastic moduli

In this paper, we exclusively carry out sweeps of isotropic strain
e. Before each sweep, we first identified the transition point e*.
To this end, we implemented a bisection scheme, which we
optimized by linearly interpolating the transition point in each
step. We defined networks as rigid whenever their isotropic
stress T is above a cutoff value of 10�10 (two orders of magni-
tude above the tolerance for the residual force cutoff per degree
of freedom, 10�12). We use isotropic stress T as a criterion for
network rigidity, because it is much faster to compute than an
elastic modulus.

In the bisection to identify the transition point, we also
implemented the option to perform shear stabilization to remove
network anisotropy (Sections 1.4 and 2.1). This is done by treating
the shear strain ĝ as an additional degree of freedom during each
energy minimization of the bisection process. In any case, shear
stabilization was always turned off (i.e. shear remains constant)
after the transition point e* has been identified.

We apply an exponential sweep of isotropic strain to probe
the scaling behavior of network mechanics close to the transi-
tion point e*. In particular, we probed strain values e � e* =
10�10+0.2k, where the step index k ranged from 0 to 51 by
default, with only two exceptions. First, in Fig. 3, we apply the
same exponential sweep, yet with k ranging from 0 to 7 only,
which is then followed by a linear sweep. Second, for the
Voronoi networks of size W = 70 (Fig. 4 and Fig. 5a inset) we
needed to increase the residual force cutoff for the energy
minimization to 10�10, and so we also raised the cutoff in
isotropic stress T to identify the transition point to 10�8.
Accordingly, we changed the sweep to the values e � e* =
10�8+0.2k with k ranging from 0 to 41.

We computed the elastic moduli using two different methods.
For not too big networks, we diagonalized the Hessian of the
system energy and used the resultant eigenvalues to compute
elastic moduli.18,27,34–36 This approach produces a higher numer-
ical precision and was suitable for typical system sizes W o 100
(Fig. 3 and 4). However, in Fig. 5 we studied networks with a large
system size, and so we used a less time-intensive way of comput-
ing the shear modulus G. We computed G through a difference
quotient of the shear stress over the shear strain: G(e, g = 0) =
[s(e, D) � s(e, �D)]/2D, where we numerically tuned and found
the optimized shear strain D = 5 	 10�5. We also noticed that for
e � e* o 10�7 the shear modulus computed with this method
could deviate significantly from the true value. We hence
excluded these data points in Fig. 5 and the lowest isotropic
stress there is accordingly T E 10�7.

D Extraction of the parameters a‘ and
b of the minimal-length function

To extract a‘ from numerical data, one could just directly use
the �‘minðs‘Þ function (eqn (5)). However, this approach depends
on the correct identification of the transition point ‘�0. While we

can identify ‘�0 with a relatively high precision of B10�10, we
could even remove the dependency on ‘�0 entirely when deter-
mining a‘. To this end, we note that in an energy-minimized
state, the energy is also minimal with respect to variation of s‘,
i.e. de/ds‘ = 0. From eqn (3), and using the insight that �‘ ¼
�‘minðs‘Þ in the rigid regime, the minimization condition reads:

de

ds‘
¼ 2N �‘� ‘0

� �d�‘min

ds‘
þ s‘

� 	
¼ 0: (30)

Using eqn (5), the derivative of the minimal-length function
is d�‘min=ds‘ ¼ �a‘. Taken together, we thus obtain the linear
relation:

s‘ ¼ a‘ �‘� ‘0
� �

: (31)

Based on eqn (31), examining the relation between s‘ and
ð�‘� ‘0Þ (e.g. Fig. 4d inset) allows both to effectively verify the
scaling of the minimal-length function (eqn (5)), and to extract
the value of a‘. This approach does not involve the critical value
‘�0 which we obtain with a lower precision as compared to �‘ and
s‘ (as precise as 10�12).

To extract the parameter b, we use the derived shear mod-
ulus formula (eqn (22)), instead of directly using the original
minimal-length function (eqn (17)) since we do not shear the
networks (i.e. g = 0). As before, we intend not to use the critical
value ‘�0. Thus, to replace the term ð‘�0 � ‘0Þ that appears in the
shear modulus formula (eqn (22)), we insert eqn (31) back into
the minimal-length function (eqn (5)) and obtain

‘�0 � ‘0 ¼ 1þ a‘
2

� �
�‘� ‘0
� �

: (32)

Combining this equation with the shear modulus formula
(eqn (22)) yields

G ¼ 4b �‘� ‘0
� �

: (33)

We used this equation to extract b from the plots of G over
�‘� ‘0 (Fig. 4g inset).

By default we use the first 25 data points from an exponen-
tial sweep to numerically fit eqn (31) and (33) and extract the
parameters a‘ and b. Note that a‘ in Fig. 6 is defined in the very
same way, based on the first 25 data points of an exponential
sweep. Meanwhile in Fig. 3 we use only the first 5 data points
due to a decreased step number n in the exponential sweep of
isotropic strain (Appendix C).

We note that rope-like spring potentials can be treated as
well with the analytical framework in Section 1, which we took

into account when computing �‘ and s‘ here. While one way to
treat rope-like spring potentials was discussed in ref. 18, where
each spring is subdivided into a series of shorter springs, we
chose here an alternative approach. We used the fact that for
rope-like spring potentials, a spring i only affects the mechanics
when ‘i 4 ‘0i, while springs with ‘i o ‘0i do not contribute.
Thus, to compute �‘ and s‘, whenever for any spring i the
distance of the two connected nodes is smaller than the rest
length ‘0i, we set the spring length to ‘i = ‘0i. This redefinition of
‘i does not affect the computation of shear modulus G and
tension T.
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E Any Voronoi network at creation has
a state of self stress

We numerically found that Voronoi networks have a critical
isotropic strain very close to zero, e* E 0. Here we show that the
critical strain is indeed exactly zero, by proving that there is a
state of self stress right at creation of these networks. In other
words, at creation (e = 0) these networks can sustain finite
tensions in a subset of springs, while force balance is main-
tained at the internal nodes.

The geometric structure of a Voronoi network allows for the
following set of spring tensions ti (with i being a spring index)
to be a state of self stress:

ti = Z |C2
i� C1

i |. (34)

Here, Z is some constant factor, the vectors C1
i and C2

i refer to
the two Voronoi seed points that are closest to spring i (Fig. 7;
i.e. C1

i and C2
i are the two points that generated the line that

defines spring i), and |�| denotes the length of a vector.
To show that the set of spring tensions ti form a state of self

stress, we demonstrate that they satisfy local force balance at
each node. To this end, we focus here on a node n that is
connected to springs i, j, k as shown in Fig. 7. The force that
spring i exerts on the node n is fi = tiei, where ei is the unit
tangent vector of spring i pointing away from node n. Furthermore,
we have

f i ¼ tiei

¼ ZjC2
i � C1

i jei

¼ ZjC2
i � C1

i j
Rðp=2Þ � ðC2

i � C1
i Þ

jC2
i � C1

i j

¼ ZRðp=2Þ � ðC2
i � C1

i Þ:

(35)

Here, in the second line, we inserted the spring tensions eqn (34).
In the third line, we used the fact that spring i is perpendicular to
the segment connected by the two seed points C1

i and C2
i , while the

operator R(p/2) performs a counter-clockwise rotation by an angle
of p/2. An analogous equation to eqn (35) holds also for the forces
by springs j and k. As a consequence, the sum of these three forces
is zero:

fi + fj + fk = 0. (36)

In other words, force balance on node n holds. This proof is
also illustrated at the bottom of Fig. 7; up to the factor of
proportionality Z, the three forces fi, fj, fk correspond to the
three triangle sides rotated by p/2, which is why they add up to
zero. Hence, Voronoi networks at creation have a state of self
stress given by eqn (34).

F Apparent non-linear scaling of �‘min in
some Delaunay networks

For Delaunay networks with harmonic spring potentials, we
observed that a fraction of the networks did not seem to follow

the linear relation (31) between s‘ and ð�‘� ‘0Þ (blue and red
data points in Fig. 8a inset). This is also apparent from the

absence of a plateau in s‘=ð�‘� ‘0Þ (compare blue and red with
black data points in Fig. 8a). From our arguments in Appendix
D, it follows that this non-linearity also implies a non-linear
scaling of the minimal-length function �‘min with s‘, which
would also affect the elastic network properties, eqn (19)–(22).

We wondered whether this non-linear scaling between s‘
and ð�‘� ‘0Þ was just due to finite numerical cutoffs, or whether
it reflects the real scaling behavior infinitesimally close to the
transition point. Numerical limitations arise because we cannot
probe the networks arbitrarily close to the true transition point.
Indeed, we used a cutoff value of Tcutoff = 10�10 for the isotropic
stress T to numerically identify the transition point. In other
words, at the detected transition point we are already in the
rigid regime by some small extent beyond the true transition

point. If the plateau in s‘=ð�‘� ‘0Þ exists only close to the true
transition point until some isotropic stress value Tmax o Tcutoff,
we will not detect it since we missed that regime. To test if this
could be the case, we created histograms of the extent Tmax of
the plateau for different connectivity z (Fig. 8b). For a given
network, we define Tmax as the isotropic stress of the data point

at which the quotient s‘=ð�‘� ‘0Þ first deviates by more than
10% from the value of this quotient at the detected transition
point. For networks where the plateau ends below Tcutoff,
we would find with this approach Tmax E Tcutoff = 10�10.
If there is a significant excess of networks where we numerically

Fig. 7 Illustration of local force balance at any node n of a Voronoi
network, demonstrating that Voronoi networks have a SSS at creation.
Red dots are the internal nodes, while blue dots are the neighboring
random seeds used for the Voronoi tessellation. Geometrically, node n is
created as the circumcenter of the local triangle (gray dashed lines)
formed by these seeds, and the three local springs i, j and k (black
segments) are the vertical bisectors of the respective sides. The vectors
C1

i and C2
i refer to the two seed points at the side perpendicular to spring i

(and similarly for springs j and k). The node n is force-balanced when the
magnitude of the spring tensile forces (fi, fj and fk, in black arrows) follow
the proportionality relation, eqn (34). These forces will form a closed
triangle that is similar to the local triangle by a rotation of 901, thus giving
zero net force, see also eqn (35) and (36).
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do not observe a plateau, this could be an indication that there
is indeed no plateau.

Fig. 8b shows that for Delaunay networks with harmonic
springs, Tmax generally decreases with connectivity z, and that
we only observe a peak around Tmax E Tcutoff occur mostly for
the two largest values of z. Even in these cases, the peak is not
very pronounced and may very well arise from the integral of
the real Tmax distribution from 0 to Tcutoff. In other words, these
networks may possibly have a plateau which ends just too close
to the transition point for us to detect it.

This is also consistent with the observation that most of
these curves appear to collapse with the curves that do show a
plateau beyond the end of the plateau (Fig. 8a). This suggests
that the non-linear scaling regime just corresponds to a regime
governed by higher-order terms. In future work, it will be
interesting to see if these higher-order terms could also be
predicted from first principles.

G Finite-size effects

In the main text, we examined the range of validity of the linear

scaling of �‘min with s‘. In Fig. 9 we show how we determined
this range using a 10% cutoff on the ratio s‘=ð�‘� ‘0Þ. We find
in Section 2.5 that this range does not or only weakly change
with system size.

Strain-stiffening of spring networks has been shown to be a
critical transition when using shear strain as control parameter,
which includes diverging fluctuations when approaching the
transition point.6,10,11,19 We wondered whether we would also
observe diverging fluctuations when using isotropic strain as
control parameter. Analogous to previous work,6,10,11,19 we
quantify fluctuations using a non-affinity parameter G, which
we define as:

G ¼
P

n ðduNA
n Þ2

NLc
2de2

: (37)

Here, duNA
n is the (dimensionful) non-affine displacement of

node n during an isotropic expansion by strain de. The factor Lc

is the length unit defined below eqn (1). Because the affine
transformation corresponds in our case to uniform isotropic
inflation, eqn (37) can be simplified using dimensionless node
positions r, so that in practise we compute G as:

GðekÞ ¼
1þ ekð Þ2

P
n rn;k � rn;k�1
� �2

N ek � ek�1ð Þ2
: (38)

Here, ek is the strain step with index k within a sweep, and rn,k is
the corresponding dimensionless position of node n.

Using the same networks as in Fig. 6, we numerically studied
G(e) and its dependence on system size. For all system sizes
we observed a plateau in G(e) (Fig. 10a), for both phantom
triangular and packing-derived networks.

We examined how both height Gpl and extent Depl of the
plateau depend on system size (Fig. 10b and c). We quantified
the extent Depl as the value of e where G deviates by 10% from
the plateau value, where we also performed linear interpolation

Fig. 8 (a) The quotient s‘=ð�‘� ‘0Þ plotted versus �‘� ‘0 for Delaunay networks with harmonic spring potentials, shown here for three networks. These

networks show either a linear (black diamonds) or non-linear (blue dots and red squares) scaling between s‘ and �‘� ‘0 close to the transition point (inset),

where a linear scaling is reflected by a plateau in the quotient s‘=ð�‘� ‘0Þ. (b) Histograms of the extent Tmax of the plateau in the quotient s‘=ð�‘� ‘0Þ
for Delaunay networks with harmonic spring potentials of different connectivity z. We compute Tmax as the isotropic stress value where the quotient

s‘=ð�‘� ‘0Þ starts to show a deviation of more than 10% from the one computed at the detected transition point.

Fig. 9 Demax in Fig. 6 is defined as the strain range where the ratio s‘=ð�‘� ‘0Þ
shows a deviation of less than 10% from its value a‘ defined very close to the
transition point (Appendix C).
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between neighboring ek values. We found power law scaling
with system size of both plateau value Gpl B W lG/nG and plateau
extent Depl B W �1/nG. For the phantom triangular networks we
found the plateau height exponent lG/nG E 1.1 and for plateau
extent 1/nG E 0.75. For the packing-derived networks, we found
the plateau height exponent lG/nG E 0.5 and for plateau extent
1/nG E 0.6.

These findings are consistent with the finite-size scaling
behavior of the non-affinity parameter G with respect to shear
strain g:6,10,11,19 The non-affinity parameter generally diverges
when approaching the transition as G B |Dg|�lG with lG 4 0,
but a diverging length scale xG B |Dg|�nG with nG 4 0 changes
this behavior for system sizes W t xG. As a consequence, the
non-affinity parameter G (g) has a plateau whose height scales
as Gpl B W lG/nG, and whose extent scales as Dgpl B W �1/nG. Here
we demonstrated that this behavior also appears when using
isotropic strain instead of shear strain as control parameter.

Noticeably, the 1/nG values are much larger than the power-
law exponent 1/n‘ that characterizes the range of the linear
scaling of �‘min (Fig. 6; for phantom triangular networks 1/n‘ A
[0.04,0.35], while for packing-derived ones 1/n‘ A [�0.03,0.08]).

This indicates that the linear scaling regime of �‘min is not
controlled by the diverging length scale xG that governs the
apparent divergence of the non-affine motions.

H General form of the minimal length
function

In eqn (5), we Taylor-expanded the minimal length function
�‘min to the second order in shear strain g, while treating the
coefficient a‘ as independent of g. Here we discuss a more

general form of �‘min that can include potentially non-analytic
dependencies on g:

�‘min ¼ ‘�0 � a‘ðgÞs‘ þ gðgÞ; (39)

where the coefficient a‘(g) is a function of g. We also newly
introduced the function g(g), where we choose the convention
g(0) = 0; any offset can be absorbed into ‘�0. Note that eqn (39)

reflects an arbitrary dependency of �‘min on g, while we keep the

linear dependency on s‘. Both a‘ and g do not need to be
analytic, but they need to be twice differentiable at g = 0, or at
least arbitrarily close to g = 0.

After minimizing the energy with respect to inner degrees of
freedom and the standard deviation s‘, the resultant energy
e is:

e ¼ N

1þ a‘
2
D‘þ gð Þ2 (40)

Here we defined D‘:¼ ‘�0 � ‘0. Using G = (d2e/dg2)|g=0/N we then
obtain for the shear modulus:

G ¼ 2

1þ a‘
2ð Þ3
½Q0 þQ1D‘þQ2D‘2�; (41)

where Q0, Q1, and Q2 are coefficients that depend only on a‘, g,
and their derivatives with respect to g.

Note that according to eqn (19), D‘ is proportional to
isotropic tension: T B D‘, which can be understood as a
consequence of the bulk modulus discontinuity. Since the Qs
in eqn (41) do not depend on D‘, one already observes from this
equation that any scaling G B T a needs to have a A {0,1,2}. In
this sense, the integer scaling exponent between G and T is
inherited from the linear scaling of the �‘min function with s‘ in
eqn (39).

Which of the three values a A {0,1,2} is attained depends on
the coefficients Q0 to Q2 in eqn (41), which are:

Q0 = (1 + a‘
2)2g02 (42)

Q1 ¼ 1þ a‘
2

� �
1þ a‘

2
� �

g00 � 4a‘a‘
0g0


 �
; (43)

Q2 ¼ a‘ 1þ a‘
2

� �
a‘
00 þ 1� 3a‘

2
� �

a‘
02: (44)

Here, for simplicity we used the superscripts 0 and 00 for the first
and second derivatives with respect to g, respectively. From
eqn (41)–(44) follows that the system has finite shear modulus
only if at least one of a‘ or g has a finite first or second
derivative with respect to g at g = 0.

With respect to the scaling exponent a we can say that first,
a = 0 only if g has a finite first derivative. This corresponds to
the case where there is a discontinuity in the shear modulus at

Fig. 10 Finite-size scaling of the non-affinity parameter G defined in eqn (37). (a) A plateau regime is observed in G at strain values close to the transition
point e*. Here we show only three example networks with W = 140 of different class. (b and c) As system size W increases, the range Depl of the plateau
decreases as a power-law, while the plateau value Gpl increases as a power-law. The plateau range Depl here is defined as the strain difference between
the transition point e* and the point where G shows a 10% deviation from its plateau value Gpl. Error bars indicate the standard error of the mean (E50
networks for each system size). Here we studied the same set of networks as in Fig. 6.
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the transition point. In these cases, the SSS that appears at the
transition must have finite overlap with the shear deformation,
i.e. the network is asymmetric (Section 1.4, e.g. the non-shear
stabilized simulations in Fig. 5). Second, a = 1 only if g0 = 0
(i.e. the network is symmetric) and g has a finite second
derivative. This is the typical case that we observe for shear-
stabilized networks. Third, a = 2 would appear if the network is
symmetric (g0 = 0), the second derivative of g vanishes, and a‘
has finite first or second derivative. This situation might appear
at a bifurcation (where g00 as bifurcation parameter crosses
zero), possibly related to a structural transition in the network.

Eqn (42)–(44) include first and second derivatives of g and a‘,
which may formally not exist at g = 0. An important possibility is
that at least one of these four derivatives might diverge as g -
0. However, with eqn (41) this would imply that generally also
the shear modulus G diverges as g- 0, which to our knowledge
has not yet been observed in spring networks.
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