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Electric-field-induced oscillations in ionic fluids: a
unified formulation of modified Poisson–Nernst–
Planck models and its relevance to correlation
function analysis

Hiroshi Frusawa

We theoretically investigate an electric-field-driven system of charged spheres as a primitive model of

concentrated electrolytes under an applied electric field. First, we provide a unified formulation for the

stochastic charge and density dynamics of the electric-field-driven primitive model using the stochastic

density functional theory (DFT). The stochastic DFT integrates the four frameworks (the equilibrium and

dynamic DFTs, the liquid state theory and the field-theoretic approach), which allows us to justify in a

unified manner various modifications previously made for the Poisson–Nernst–Planck model. Next, we

consider stationary density–density and charge–charge correlation functions of the primitive model with

a static electric field. We predict an electric-field-induced synchronization between emergences of

density and charge oscillations. We are mainly concerned with the emergence of stripe states formed by

segregation bands transverse to the external field, thereby demonstrating the following: (i) the electric-

field-induced crossover occurs prior to the conventional Kirkwood crossover without an applied electric

field, and (ii) the ion concentration dependence of the decay lengths at the onset of oscillations bears a

similarity to the underscreening behavior found by recent simulation and theoretical studies on

equilibrium electrolytes. Also, the 2D inverse Fourier transform of the correlation function illustrates the

existence of stripe states beyond the electric-field-induced Kirkwood crossover.

I. Introduction
Primitive model

Ionic fluids cover a wide range of charged materials, including
solvent-in-salt electrolytes, room-temperature ionic liquids
(RTILs), various colloidal dispersions, and polyelectrolytes.1,2

Recently, ionic fluids are increasingly attracting much atten-
tion, due to their diverse applications not only in chemistry and
biology1 but also in renewable energy devices such as batteries,
supercapacitors, and separation media.2–4 Here we consider
electrolytes, RTILs, and mixtures of oppositely charged colloids
under applied electric fields, as examples of symmetric ionic
fluids driven by external electric fields. These appear in biologi-
cal ion channels, micro/nanofluidic devices for environmental
and biomedical applications, and electrolyte-immersed porous
electrodes for electrochemical applications.1–4

Among models of the ionic fluids on target is a primitive
model, or a symmetric collection of charged spheres whose
cationic and anionic species have equal size and equal but
opposite charge. The primitive model under a static electric

field, with which we are concerned, has been widely used to
explain the structural and dynamical properties of concen-
trated electrolytes driven by external electric fields in confined
geometries.2,5–7

Poisson–Nernst–Planck (PNP) model

The Poisson–Nernst–Planck (PNP) model is the standard
approach to describe the primitive model with a static electric
field applied.2,5–7 The Nernst-Planck equation, also known as
the drift-diffusion equation, treats ionic currents arising from
the combination of Fick’s law of diffusion due to a concen-
tration gradient and Ohm’s law for drift of ions in a gradient of
Coulomb potential. The Nernst-Planck equation represents the
conservation law:

qtnl(r, t) = �r�Jl(r, t), (1)

where nl(r, t) (l = 1,2) denotes an instantaneous number density
of either cations (l = 1) or anions (l = 2) and Jl(r, t) the associated
current vector of the l-th ion density. The PNP model considers
the coupled set of the Poisson and NP equations by relating
nl(r, t) to the Coulomb interaction potential via the Poisson
equation.
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Deficiencies of the PNP model

The PNP model provides a basic description of linear response
dynamics of dilute electrolytes perturbed from equilibrium.
However, the original PNP model takes no account of (i) steric
interactions, (ii) ion–ion Coulomb correlations, and (iii) dielec-
tric boundary effects. Hence, the conventional PNP model is
insufficient to predict various electrokinetic phenomena
when ions are crowded and/or when the ion distributions are
spatially inhomogeneous.5,6

For example, the PNP model is not relevant to the interfacial
electrokinetic phenomena which are found not only in biolo-
gical ion channels but also in advanced devices for micro/
nanofluidic and electrochemical applications.5,6 Steric effects
become significant in either RTILs or thin electric double layers
formed at large applied voltages, which, however, are not
included in the PNP model.5–16

There are also bulk properties for which the PNP model is
not valid: inhomogeneous steady states have been reported by
theoretical, experimental, and simulation studies in the bulk
region of either electrolytes or oppositely charged colloidal
mixtures driven by electric fields.13,17–20 Theoretically, on the
one hand, stationary correlation functions of electric-field-
driven electrolytes were calculated, suggesting a tendency to
form chains of cations and anions in the external field direction
at large electric fields.13 On the other hand, experimental and
simulation studies have provided dynamic phase diagrams of
steady states including laned, jammed or clogged, and mixed
states of oppositely charged particles under DC or AC electric
fields.17,18 It is well known that lane formation of like-charge
particles occurs at a high enough field strength along the
applied field.17,18 At the same time, previous studies have
observed that bands of like-charge particles are aligned in a
direction non-parallel to the applied field direction when the
electric-field-driven colloidal mixtures are in jammed or mixed
states.17,18

Modified PNP models: deterministic case

A variety of modified PNP (mPNP) models have thus been
proposed so far; these arise either from semi-phenomeno-
logical methods5–10 or from deterministic density functional
theory (DFT).11,12 The modifications have aimed to comple-
ment the above shortcomings given in (i) to (iii) as follows: (i)
Steric effects are included by adding a density current, or its
associated chemical potential due to non-Coulombic short-
range interactions. (ii) Ion–ion Coulomb correlations are taken
into account by modified Poisson equations such as higher-
order Poisson equation.21–24 (iii) Dielectric boundary effects are
investigated according to a generalized Born theory which
evaluates solvation energy from an ionic self-energy.25

Some of the results achieved by the deterministic mPNP
models are as follows:5–10 first, for biological ion channels, the
numerical results have been found to agree with experimental
or simulation data on the ion channel characteristics of
selectivity and rectification. Next, for micro/nanofluidics, it
has been demonstrated that a coupled set of the mPNP and

Navier-Stokes equations is a good descriptor of the interfacial
electrokinetic phenomena. These include electro-osmotic flow,
streaming current, and ionic conductance in porous media or
nanochannels filled with RTILs or concentrated electrolytes of
high valence. Then, in terms of renewable energy technologies,
the deterministic mPNP models have successfully explained
differential capacitance and non-monotonic oscillatory decay
of electric double layers at solid-liquid interfaces with large
voltages applied to RTILs or concentrated electrolytes.

Modified PNP models: stochastic case

An alternative approach to extend the PNP dynamics to a
stochastic process is the stochastic DFT (SDFT).11,26 In the
SDFT, we use the Dean–Kawasaki model11,26 that contains
multiplicative noise by adding a stochastic current in eqn (1).
The Dean–Kawasaki equation can be linearized for fluctuating
density field around a reference density.13–15,27,28 The linear-
ized Dean–Kawasaki equation has proved relevant to describe
various dynamics. It is an outstanding feature of the linearized
SDFT to justify the inclusion of stochastic processes into the
PNP model. The stochastic nature allows us to compute corre-
lation functions for density and charge fluctuations around a
uniform state.

Recently, the stochastic mPNP models based on the linear-
ized SDFT have provided the following results:13–16,27,28 First,
the linear Dean–Kawasaki equation has formulated ion
concentration-dependent electrical conductivity. The obtained
expression for conductivity reproduces the Debye–Hückel-
Onsager theory and also explains the experimental results on
concentrated electrolytes where the Debye–Hückel-Onsager
theory breaks down.13,15,16 It should be noted that we need to
use a regularized interaction potential15 and to introduce
hydrodynamic interactions15,16 for explaining the high-density
results;15 while this paper will justify the use of regularized
form from the first principle, consideration of hydrodynamic
interactions is beyond our scope. Furthermore, it is found from
the analysis of correlation functions that density–density and
charge–charge correlations are long-range correlated even in
the steady state. The asymptotic decay of the correlation func-
tions exhibits a power-law behavior with a dipolar character,
thereby giving rise to a long-range fluctuation-induced force
acting on uncharged confining plates.14

However, the above three issues (i.e., (i) to (iii) described
above) have yet to be fully addressed by the stochastic mPNP
models. It should also be remembered that the stochastic
mPNP models have been concerned with linear response
dynamics from a uniform density distribution and that there
have been few systematic studies on an inhomogeneous density
distribution in a steady state.28 Further modifications of the
stochastic mPNP models need to be made for incorporating
improvements in the deterministic mPNP models.

The aim of this paper

To summarize, the deterministic and stochastic mPNP models
proposed so far are beneficial in the following respects: while
the deterministic mPNP models have provided elaborate and
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tractable methods to include short-range correlations and
interactions of Coulombic and non-Coulombic origins, the
stochastic mPNP models have demonstrated the relevance to
correlation function analysis on fluctuation phenomena in
uniform and steady states. Integration of the deterministic
and stochastic mPNP models should lead to a deeper under-
standing of the electrokinetic phenomena in concentrated
electrolytes. To pave the way for such an elaborate mPNP
model, the stochastic mPNP models need to capture the
benefits of the deterministic mPNP models.

Thus, this paper serves two purposes. The first aim is to
provide a unified formulation that combines the above results
of the deterministic and stochastic mPNP models. From the
aspect of the deterministic mPNP models, we attempt, using the
unified formulation, to add the stochastic term to the determi-
nistic mPNP equations and to derive the semi-phenomenological
modifications5–10 from the first principle based on the liquid state
theory. In terms of the stochastic mPNP models, on the other
hand, the unified formulation justifies the inclusion of modified
terms proposed by the deterministic mPNP models5–10 into the
stochastic equations.13–15

The second purpose is to determine when density and
charge oscillations emerge in non-equilibrium steady states.
To this end, we investigate stationary correlation functions
which are averaged over the plane transverse to the applied
electric field. The unified mPNP model yields the stationary
correlation functions at equal times, which enables us to
explore crossovers from monotonic to oscillatory decay of
density–density and charge–charge correlations.

The organization of this paper

In what follows, we first present the summarized results on
both the unified form of mPNP models (Section II) and the
correlation function analysis to investigate steady states
(Section III) before going into the details.

On the one hand, Table 1 in Section II summarizes the
obtained forms compared to previous formulations. The essential
achievement in terms of the theoretical formalism is clarified in
Section IID. As detailed in Appendix A, the hybrid framework of
the field-theoretic approach, the equilibrium37,38 and dynamic11

DFTs, and the liquid state theory justifies the modified Poisson
equations5–10,23,24,39–41 and the generalized Debye–Hückel equa-
tion for the self-energy.10,25

On the other hand, Fig. 2 in Section III provides a schematic
summary of electric-field-dependent decay length prior to the
equilibrium Kirkwood crossover in the external field direction.

Fig. 2 illustrates not only the emergence of stripe states formed
by segregation bands transverse to the applied field direction
but also the intimate connection between the electric-field-
induced shift of the decay length at the steady-sate Kirkwood
crossover and the underscreening behaviors19,20,29–31 observed
in equilibrium electrolytes whose concentrations are higher
than the conventional Kirkwood crossover point.32–36 Section
IIIE presents the 2D behaviors of oscillatory correlations above
the Kirkwood crossover using heat maps, which corroborates
the appearance of stripe states in the presence of relatively
weak electric fields.

Section IV clarifies the detailed process to analytical and
numerical results of the electric-field-induced Kirkwood cross-
over and the decay length using a couple of models typical for
the liquid state theory. In Section V, we have discussions for
comparing the theoretical predictions with experimental and
simulation results.

II. Formulation results on
modifications of PNP model

In the first place, this section summarizes the resulting
formulation, according to Table 1 (Section IIA). As seen from
the equation type given in the leftmost column of Table 1, we
have verified two modifications of PNP equations using the
SDFT of the symmetric primitive model specified in Section IIB.
In Section IIC, we present fully modified PNP equations
that incorporate into the PNP model density currents due to
Gaussian noise fields as well as a self-energy contribution.
Section IID describes the theoretical achievements in terms of
the Dean–Kawasaki model.11,26 In Section IIE, we investigate the
linearized mPNP equations while neglecting the self-energy in
order to obtain stationary correlation functions at equal times.

A. Comparison with previous theories

In Sections IIC and D, we will present the self-energy-modified
PNP equations10 and the linear mPNP equations.13–15 Table 1
compares these equation sets with previous approaches.

Self-energy-modified PNP equations. Previous theories5–12

have made two modifications. One is to improve the Poisson
equation for the Coulomb interaction potential c(r, t) experi-
enced by an ion (the higher-order Poisson eqn (15)).5–10,21–24

The other is to make a self-energy correction to the Coulomb
interaction term in the PNP equations (the self-energy term
determined by the generalized Debye–Hückel eqn (21)),10,25

Table 1 Summary table of our formulation in comparison with previous theories on the mPNP models

Equation type
Modification of the
Poisson equation Self-energy contribution Stochastic density current Correlation functions

Self-energy-modified Ref. 10 Eqn (15)b Eqn (9), (20) and (21) — —
PNP equations Ours Eqn (14)a or (15)b Eqn (9), (16) and (17) Eqn (3) and (4) TBD
Linear Ref. 13–15 Poisson or eqn (14)a — Eqn (30) Eqn (43)–(50)
mPNP equations Ours Eqn (14)a — Eqn (30) Eqn (43)–(50)

a Finite-spread Poisson equation.13,15,24,39–41 b Higher-order Poisson equation.5–10,21–24
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thereby providing theoretical descriptions of ionic transport in
agreement with simulation results; however, these modifica-
tions are empirical, and correlation functions have been
beyond the scope due to the absence of stochastic current.
Meanwhile, our self-energy-modified PNP equations, derived
from the basic formulation of the SDFT (see Appendix A for
details), verify the stochastic dynamics and encompass the
above modifications.

Linear mPNP equations. Recently, the mPNP model covers
the stochastic dynamics of density fluctuations around a uni-
form state while neglecting the self-energy contribution.13,14

Furthermore, a finite-spread Poisson equation has been used in
an ad hoc manner depending on a charge smearing model
adopted.15 The stochastic mPNP equations allow us to evaluate
correlation functions, yielding either the ion concentration-
dependent electrical conductivity or the long-range fluctuation-
induced force.14 In this study, we confirm the stochastic mPNP
equations previously used as an approximation of the self-
energy-modified PNP equations.10 Accordingly, the use of the
finite-spread Poisson equation13,15,24,39–41 is validated from the
decomposition of the direct correlation function (DCF) to extract
the weight function o(k), implying that we can improve the
finite-spread Poisson equation systematically by adopting a more
appropriate function form of o(k) other than eqn (12).

B. Model

The 3D primitive model introduces three parameters, p, s and
e, for concentrated electrolytes with a static electric field E
applied: p-valent cations and anions are modeled by equisized
charged hard spheres of diameter s immersed in a structure-
less and uniform dielectric medium with dielectric constant e at
a temperature T. For later convenience, the external field E
represents the conventional field multiplied by e/kBT (see also
the statement after eqn (A14)). Fig. 1 presents a schematic of the
electric-field-driven primitive model in Cartesian coordinates
where the external electric field E with its strength of E = |E|
is parallel to the unit vector êx = (1,0,0)T = E/E in the direction of
x-axis. There are two parallel plates in Fig. 1; however, the
interplate distance is much larger than the sphere diameter,
and we suppose that the finite size effect due to the presence of
the plates is negligible.

The primitive model is characterized by a pairwise inter-
action potential vlm(r) between charged hard spheres with a
separation distance of r = |r|: v11(r), v12(r) and v22(r) represent
cation-cation, cation-anion and anion-anion interactions,
respectively. We have

vlmðrÞ ¼
1 ðrosÞ

ð�1Þlþmp2lB=r ðr � sÞ;

(
(2)

where lB = e2/(4pekBT) denotes the Bjerrum length, the length at
which the bare Coulomb interaction between two monovalent
ions is exactly kBT. It is noted that this paper defines all of
the energetic quantities, including the pairwise interaction
potentials, in units of kBT.

C. Self-energy-modified PNP equations: a full set of the
resulting formulation

The conservation equation with stochastic current. In the
conservation eqn (1) of the SDFT, the ionic current Jl(r, t)
consists of three parts:

J lðr; tÞ ¼ ð�1Þl�1Dnlðr; tÞpE �Dnlðr; tÞrml ½n�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dnlðr; tÞ

p
zðr; tÞ;

(3)

where D and ml[n] denote, respectively, the diffusion constant
and the chemical potential as a functional of n(r, t) = (n1(r, t),
n2(r, t))T, and z(r, t) represents an uncorrelated Gaussian noise
field defined below. Incidentally, we have neglected an advec-
tion term,15,16 nl(r, t)u(r, t), on the right hand side (rhs) of
eqn (3) with u(r, t) denoting the solvent velocity field to satisfy
the incompressibility condition r�u = 0; this approximation is
equivalent to supposing that juj � jDpEj.

Concrete forms of density current Jl(r, t). The first term on
the rhs of eqn (3) represents the reference current directly
determined by E. The chemical potential ml[n] of the second
term on the rhs of eqn (3) is given by

ml[n] = ln nl(r, t) + Ul[n], (4)

using an instantaneous interaction energy Ul[n] per cation
(l = 1) or anion (l = 2). Eqn (4) indicates that this part of the
total current is due to contributions from ideal entropy and
Coulomb interactions including steric effects. The last term on
the rhs of eqn (3) corresponds to the stochastic current arising
from z(r, t) characterized by

hz(r, t)z(r0, t0)Tiz = d(r � r0)d(t � t0), (5)

Fig. 1 A schematic of concentrated electrolytes under a static electric
field E in Cartesian coordinates (top figure). The 3D primitive model is
illustrated in the xy plane (lower figure). The definition of symbols is
provided in the main text.
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with the subscript ‘‘z’’ representing the Gaussian noise aver-
aging in space and time.

Following the mPNP equations proposed so far,5–10,13–16

Ul[n] is further divided into two parts:

Ul ½n� ¼ ð�1Þl�1cðr; tÞ þ
uðr; tÞ
2

; (6)

where (�1)l�1c(r, t) and u(r, t)/2 denote, respectively, the
instantaneous interaction potential and the instantaneous
self-energy per ion. We define c(r, t) by

cðr; tÞ ¼ �
ð
d3r0cðr� r0Þqðr0; tÞ; (7)

using the DCF c(r � r0) and an instantaneous charge density,

peq(r, t) = pe{n1(r, t) � n2(r, t)}. (8)

By definition of the DCF, the potential function c(r, t) defined
in eqn (7) corresponds to the conventional Coulomb potential

multiplied by pe/kBT (see also eqn (13)). It follows that q(r, t) in
eqn (7) is not an instantaneous charge density but is merely the
concentration difference (q = n1 � n2) as seen from eqn (8).

Meanwhile, our resulting formulation provides the self-
energy as follows:

uðr; tÞ
2
¼ p2

2
lim
r0!r

Gðr� r0Þ � G0ðr� r0Þf g; (9)

where bare and dressed propagators, G0(r � r0) and G(r � r0),
are given by

p2G0(r � r0) = �c(r � r0), (10)

p2G(r � r0) = �h(r � r0), (11)

with h(r � r0) denoting the total correlation function between
ions of the same kind.

We investigate the following model forms as the DCFs:

oðkÞ ¼
e�ðksÞ

2=2

cosðksÞ;

8<: (12)

in the Fourier transform of the DCF given by

�cðkÞ ¼ 4pp2lB
k2

oð�kÞ; (13)

where |k| = k. While the former expression of o(k) in eqn (12)
represents the Gaussian charge smearing model35,40 and has
been used in the hypernetted chain approximation of one-
component ionic fluids,42 the latter form in eqn (12) indicates
the restriction of Coulomb interactions to the separation of
|r � r0| 4 s with a cutoff at |r � r0| = s and is an approximate
form of the modified MSA model43 as shown in Appendix A2.

Finite-spread or higher-order Poisson equation. Combining
eqn (7), (12) and (13), we have

�r2cðr� r0Þ ¼ 4pp2lB

ð
d3r0oðr� r0Þqðr0; tÞ; (14)

which will be referred to as the finite-spread Poisson equation
after the finite-spread Poisson–Boltzmann equation; both equa-
tions consider the charge distribution inside a charged sphere
using a weight function o(r � r0). As shown in Appendix A2,
eqn (14) transforms to

kBTe
s2

2
r2 � 1

� �
r2cðr� r0Þ ¼ ðpeÞ2qðr; tÞ; (15)

when performing the low wavenumber expansion of o(k),
similarly to the transformation from the finite-spread Poisson–
Boltzmann equation to the higher-order one for one-component
fluids.24 Eqn (15) will be referred to as the higher-order Poisson
equation5–10,21–24 for comparison with the finite-spread Poisson
eqn (14), though often called either the Poisson-Fermi equation
or the Bazant–Storey–Kornyshev equation.21

A generalized Debye–Hückel equation. It follows from
eqn (10)–(13) that the DCF and the total correlation function,
c(r � r0) and h(r � r0), obey a modified Poisson equation and a
generalized Debye–Hückel equation, respectively: we have

�r2G0(r � r0) = 4plBo(r � r0), (16)

Fig. 2 A schematic summary of results obtained in this study is depicted
in terms of the decay length x(1)

Decay of either monotonic decay or damped
oscillatory on a log–log plot of x(1)

Decay/xDH = �kx(1)
Decay vs. s/xDH = �ks where

xDH = �k�1 denotes the smeared Debye–Hückel screening length defined
by eqn (36). Our numerical results of x(1)

Decay will be given in Fig. 3 and 8. In
Fig. 2, these are shown using the solid brown lines terminated at nodes A
and B, and the dashed green arrow from node A to node B, or from the
Kirkwood crossover at E = 0 to that under electric field (E a 0). While the
solid brown line terminated at node A (E = 0) converges to x(1)

Decay/xDH = 1 in
the dilute limit, the solid brown line terminated at node B (E a 0)
approaches zero in the dilute limit because of the finite decay length
x(1)

Decay = (pE)�1 (see also a discussion given at the end of Section IIIA). As
illustrated by the upper inset, the green vertical line through node B marks

s=xDH ¼ s=xð�1ÞDH , or the onset of shifted Kirkwood crossover from a uniform

state to a stripe state without consideration of lane formation.17,18 For
comparison, we add the dashed blue line to show underscreening beha-
vior in concentrated electrolytes without applied electric field beyond the
conventional Kirkwood crossover indicated by the blue vertical line

through node A; this blue line represents s=xDH ¼ s=ð
ffiffiffi
2
p

xð�2ÞDH Þ, which is

the conventional Kirkwood crossover value32–36 in the range of 1.0 to 1.2
for symmetric electrolytes. Recent studies20,29–31 have demonstrated that
x(1)

Decay/xDH B (s/xDH)w with the exponent of w 4 1 in a damped oscillatory
state. It will be seen from Fig. 3(b) and 8(b) that a similar scaling relation
holds for the dashed green arrow.
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whereas the Orstein–Zernike equation reads

�r2Gðr� r0Þ þ
ð
d3r00oðr� r00Þk2ðr00ÞGðr00 � r0Þ

¼ 4plBoðr� r0Þ;
(17)

where a generalized Debye–Hückel length k�1(r) has been
defined as

k �1(r) = {4plBp2r(r, t)}�1/2, (18)

r(r, t) = n1(r, t) + n2(r, t). (19)

Eqn (16) and (17) for point charges (s = 0) reduce,
respectively, to

�r2G0(r � r0) = 4plBd(r � r0) (20)

and

�r2G(r � r0) + k2(r)G(r � r0) = 4plBd(r � r0) (21)

because of

lim
s!0

oðr� r0Þ ¼ dðr� r0Þ; (22)

as confirmed from eqn (12). Eqn (21) corresponds to the
generalized Debye–Hückel equation previously used.10,25

D. Theoretical achievement in terms of the Dean–Kawasaki
model

In Appendices A and B, we prove that the Dean–Kawasaki model
can be approximated by the formula given by eqn (3)–(11)
for concentrated electrolytes: the hybrid framework of the
equilibrium DFT and field-theoretic treatment transforms the
original Dean–Kawasaki equation11,26 to a tractable expression
for binary ionic fluids without ad hoc modifications. Here we
clarify the theoretical achievement instead of going into the
detailed formulations presented in Appendix A. It is found from
eqn (A2), (B1), (B2) and (B3) that the straightforward use of the
original DK model provides exactly

Ul ½n� ¼ ð�1Þl�1c0ðr; tÞ �
ullð0Þ
2

; (23)

c0ðr; tÞ ¼
ð
d3r0ullðr� r0Þqðr0; tÞ: (24)

It follows from eqn (3), (6) and (23) that the electrostatic
contribution to ionic current reads

�Dnlðr; tÞrUl ½n� ¼ Dnlðr; tÞ ð�1Þl�1rcðr; tÞ þ
ruðr; tÞ

2

� �
(25)

¼ Dnlðr; tÞ ð�1Þl�1rc0ðr; tÞ
� �

(26)

because of rull(0) = 0. Comparison between eqn (25) and (26)
reveals that the SDFT based on the above hybrid framework
justifies

r c0ðr; tÞ � cðr; tÞf gj j � rcð0; tÞ
2

				 				 (27)

in the Gaussian approximation of the auxiliary potential field
(see Appendix A for details), where use has been made of the
relation, ruðrÞ ¼ r lim

r0!r
cðr� r0; tÞ 	 rcð0; tÞ. Our achievement

in terms of the theoretical formalism is essentially to validate
eqn (27).

E. Linear mPNP equations and the associated correlation
functions

The matrix representation. Let us introduce two vectors,
h(r, t) and g(r, t), for having a compact form of the mPNP
equation set:

hðr; tÞ ¼
rðr; tÞ

qðr; tÞ

 !
; (28)

gðr; tÞ ¼
r � zðr; tÞ

r � z0ðr; tÞ

 !
; (29)

where r(r, t) and q(r, t) have been defined in eqn (19) and (8),
respectively, and z0(r, t) satisfies the relation (5) as well as z(r, t).
We perform the change of variables from n(r, t) to q(r, t) in the
linearization of the mPNP equation set given by eqn (1) and
eqn (3)–(6) with the self-energy term (9) being dropped. Thus,
we obtain the stochastic currents, Jr and Jq, from linearizing the
current given by eqn (3) (see Appendix A for details):

Jrðr; tÞ

Jqðr; tÞ

 !
¼

J1ðr; tÞ þ J2ðr; tÞ

J1ðr; tÞ � J2ðr; tÞ

 !

¼ �D
rrðr; tÞ � qðr; tÞpE

rqðr; tÞ þ 2nrcðr; tÞ � rðr; tÞpE

 !

�
ffiffiffiffiffiffiffiffiffi
4Dn
p zðr; tÞ

z0ðr; tÞ

 !
;

(30)

using the smeared density %n of cations or anions. We insert the
expression (30) into the conservation equation for r(r, t) and
q(r, t):

@thðr; tÞ ¼ �r �
Jrðr; tÞ

Jqðr; tÞ

 !
; (31)

which is Fourier transformed to

@thðkÞ ¼ �DKðkÞhð�k; tÞ þ
ffiffiffiffiffiffiffiffiffi
4Dn
p

gðkÞ: (32)

In eqn (14), the matrix to determine restoring forces is
expressed as

KðkÞ ¼
k2 ikxpE

ikxpE G1ðkÞ

 !
; (33)

G1ðkÞ ¼ k2 þ k2oðkÞ; (34)

noting that the finite-spread Poisson eqn (14) yields

�2 %nk2c(k) = �8pp2lB %no(k)q(�k) = ��k2o(k)q(�k), (35)
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where we have defined the smeared Debye–Hückel length,

xDH = �k�1 	 (8pp2lB %n)�1/2, (36)

other than k�1(r, t) defined by eqn (18). In eqn (33), the
anisotropy of the k-space is associated with the direction of
applied electric field (i.e., êx = E/E) and we have

kx = k�êx, (37)

or

k = kxêx + k>, (38)

k> = (0,ky,kz)
T. (39)

Density–density and charge–charge correlation functions. One
of the benefits of stochastic equations is that correlation functions
are calculated straightforwardly. Here we consider density–density
and charge–charge correlation functions at equal times, which are
defined using the equal-time correlation matrix as follows:

Cðk; tÞ ¼ hðk; tÞhð�k; tÞT

 �

z

¼
rðk; tÞrð�k; tÞh iz qðk; tÞrð�k; tÞh iz

rðk; tÞqð�k; tÞh iz qðk; tÞqð�k; tÞh iz

 !

¼
Crrðk; tÞ Cqrðk; tÞ

Crqðk; tÞ Cqqðk; tÞ

 !
:

(40)

In the matrix elements given by eqn (40), Crr and Cqq are the target

correlation functions. To be precise, p2e2Cqqðk; tÞ is the charge–
charge correlation function, according to the definition of eqn (8).
For brevity, however, we will refer to Cqqðk; tÞ as the charge–charge
correlation function.

We focus on the steady-state solutions of the correlation
functions:

CstrrðkÞ ¼ lim
t!1
Crrðk; tÞ; (41)

CstqqðkÞ ¼ lim
t!1
Cqqðk; tÞ: (42)

As detailed below, these are written as

1

ð2pÞ3
CstrrðkÞ
CstqqðkÞ

 !
¼ 2nG2ðkÞ

detPðkÞ
ePðkÞ k2

k2

� �
; (43)

where we have

G2ðkÞ
detP ¼

1

G2ðkÞ k2G1ðkÞ þ kx2ðpEÞ2f g; (44)

G2ðkÞ ¼ 2k2 þ k2oðkÞ; (45)

and the adjugate matrix of PðkÞ, signified by ePðkÞ, reads

ePðkÞ¼ G1ðkÞG2ðkÞþkx
2ðpEÞ2 kx

2ðpEÞ2

kx
2ðpEÞ2 k2G2ðkÞþkx

2ðpEÞ2

 !
: (46)

Eqn (44) indicates that both Cstrr and Cstqq have identical poles

under the external electric field E.

In the limit of k - 0, we have

1

ð2pÞ3
Cstrrð0Þ

Cstqqð0Þ

0@ 1A ¼ 2n

0

 !
: (47)

Then, we divide CstrrðkÞ into two parts: CstrrðkÞ=ð2pÞ3 ¼
2nþ DCstrrðkÞ=ð2pÞ3 where

1

ð2pÞ3DC
st
rrðkÞ ¼

�k2oðkÞkx2ðpEÞ2
G2ðkÞ k2G1ðkÞ þ kx2ðpEÞ2f g (48)

is directly related to total correlation functions, or essential
parts of density–density correlations.

In the limit of s - 0, on the other hand, we have o(k) = 1
and eqn (43) is approximated by

1

ð2pÞ3
CstrrðkÞ

CstqqðkÞ

0@ 1A¼2n
1

1

 !
þ kx

2ðpEk�1Þ2
k2þkx2ðpEk�1Þ2

�1

1

 !( )
1

k2=k2

 !
(49)

in the low wavenumber region of kx�k�1 { 1 (see Appendix D for
the derivation). It should be noted that eqn (49) agrees with the
expression previously obtained in a different manner14 and that
the Fourier transform of eqn (49) has been demonstrated to
provide anisotropic long-range correlation functions exhibiting
a power-law behavior with a dipolar character.14 At low field
strength of pE�k�1 { 1, eqn (49) converges to

1

ð2pÞ3
CstrrðkÞ
CstqqðkÞ

 !
!2n

1
k2=k2

� �
; (50)

clarifying that low electric-field-driven electrolytes in steady
states mimic weakly interacting ionic fluids without applied

electric field on a large scale and that CstqqðkÞ given by eqn (50)

satisfies not only the electroneutrality but also the Stillinger–
Lovett second-moment condition.

III. Correlation function analysis:
electric-field-induced crossover to a
damped oscillatory state

The first two subsections will be devoted to what is implied by

the complicated forms (43)–(48) of correlation functions, CstqqðkÞ
and DCstrrðkÞ, especially focusing on the high wavenumber in

the external field direction. While Section IIIA provides the pole
equations of the correlation functions, Section IIIB clarifies
the electric-field-induced oscillations when considering the
solutions to the pole eqn (66), or an anisotropic crossover
from monotonic to oscillatory decay of correlations along
the direction of applied electric field. Before going into the
numerical details of the results obtained from the pole
eqn (66), Section IIIC aims to understand the relationship
between the Kirkwood crossover at E = 0 and E a 0 using
Fig. 2, a schematic plot of the decay length x(1)

Decay. After
presenting the schematic summary, Section IIID explains
how the crossover point is determined in the anisotropic
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approximation of the pole eqn (66). In the anisotropic approxi-
mation (53), we can analytically investigate the electric-field-
induced Kirkwood crossover (see Section IV for details). Fig. 3
in Section IIID gives the numerical results on the E-

dependencies of both the decay length xð�1ÞDecay and the smeared

Debye–Hückel length xð�1ÞDH at the Kirkwood crossover points.
Last, Section IIIE presents various results on the 2D inverse

Fourier transforms of DCstrrðkÞ. We will see anisotropic density–

density correlations reflecting the emergence of stripe states in
a high-density region above the Kirkwood crossover.

A. Electric-field-induced synchronization between the
emergences of density and charge oscillations

It is found from the denominator on the rhs of eqn (44) that the
obtained correlation functions given by eqn (43)–(48) provide
the following pole equations:

kð1Þ
� 2

þk2oðkð1ÞÞ þ
k
ð1Þ
x

� 2
kð1Þð Þ2

ðpEÞ2 ¼ 0; (51)

2(k(2))2 + �k2o(k(2)) = 0, (52)

which remarkably apply to both density–density and charge–
charge correlation functions. Namely, both density–density and
charge–charge correlation functions exhibit the same behavior.

Let us discuss the concrete behaviors particularly in the
anisotropic approximation of eqn (39) such that

k( j) E k( j)
x êx (53)

(see Section IIIB for details). Focusing on the onset of oscilla-
tory decay of correlations (or the Kirkwood crossover) at a fixed
electric field, a summary provided in advance is threefold:

1. Simultaneous emergence of density and charge oscillations.
The weight function o(k) multiplied by �k2 allows us to have complex
solutions to the pole eqn (51) and (52), other than purely imaginary
solutions. The appearance of real solutions corresponds to the
onset of oscillatory correlations. Hence, we find that eqn (51) and
(52), which are equally valid for density–density and charge–charge
correlations, lead to simultaneous emergence of density and charge
oscillations. It is striking that the correlation function analysis
directly predicts the electric-field-induced synchronization between
the emergences of density and charge oscillations. The simulta-
neous occurrence of crossovers is in contrast to equilibrium cross-
over phenomena which emerge separately: the equilibrium density–
density and charge–charge correlation functions exhibit the Fisher–
Widom31,36,44 and Kirkwood31–36 crossovers, respectively.

2. Shifted crossover from monotonic to oscillatory decay of
correlations. We consider the case where a smallest value of the
purely imaginary solution to either eqn (51) or (52) exists for

�ks r �k(* j)s, (54)

with the superscripts, (*1) and (*2), of the maxima denoting the
upper bounds for eqn (51) and (52), respectively. Namely, the
solutions to eqn (51) and (52) become complex beyond �k(*1)s
and �k(*2)s, respectively. It can be readily seen from eqn (52) that
�k(*2)s is independent of E but is larger than the conventional
Kirkwood crossover value32–36 in the range of 1.0 o �k*s o1.2
for symmetric electrolytes in equilibrium where the pole equa-
tion is k2 + (�k*)2o(k) = 0: it follows from eqn (52) that

k�s ¼ kð�2Þsffiffiffi
2
p ¼ sffiffiffi

2
p

xð�2ÞDH

: (55)

In contrast, eqn (51) implies that �k(*1)s depends on E and is
smaller than the above Kirkwood crossover value at E = 0 due to
additional screening effect measured by pE.

Fig. 3 Comparison between the electric-field-dependent length results
which are obtained from the Gaussian charge smearing model (abbre-
viated as ‘‘G’’ and represented by green lines) and the modified MSA model
(abbreviated as ‘‘M’’ and represented by red lines). Section IVB presents the
detailed formulation to obtain the results given in this figure. (a) The
electric-field dependencies of the Debye–Hückel length xð�1ÞDH ¼ 1=kð�1Þ

and the decay length xð�1ÞDecay at the Kirkwood crossover are shown by the

plot of s=xð�1ÞDH and xð�1ÞDecay=s against pEs, an energetic measure of electric

field strength in units of kBT. While the solid lines represent s=xð�1ÞDH , the

dashed lines xð�1ÞDecay=s. The related equations are as follows: green solid line

(eqn (99)); green dashed line (eqn (102)); red solid and dashed lines

(eqn (105) and (106)). (b) A log–log plot of s=xð�1ÞDH -dependencies of

xð�1ÞDecay=x
ð�1Þ
DH . The dotted line, as a guide to the eye, indicates a scaling

relation xð�1ÞDecay=x
ð�1Þ
DH 
 ðs=x

ð�1Þ
DH Þ1:4.
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3. Finite decay length in the dilute limit. Eqn (51) and (52)
are reduced to

f1(k(1)
x ) 	 (k(1)

x )2 + �k2 + (pE)2 = 0, (56)

f2(k(2)
x ) 	 (k(2)

x )2 + 0.5�k2 = 0, (57)

respectively, when considering the anisotropic approximation
(53) and o(k) = 1 for simplicity. In the dilute limit of �k - 0,
eqn (56) yields a finite decay length x(1)

Decay E (pE)�1 (see Section
IIIB for detailed derivation), whereas eqn (57) ensures the
divergent behavior of the decay length x(2)

Decay given by

xð2ÞDecay ¼
ffiffiffi
2
p

k�1.

The non-vanishing decay length x(1)
Decay E (pE)�1 helps us

to understand the physics of the decay mode on target.
We explain below the decay length x(1)

Decay E (pE)�1 in terms
of competing electrokinetics between electrophoresis and
free diffusion. We have an electrophoresis time, L=ðDpEÞ, for
a variable length L because the electrophoretic velocity is given
by ðD=kBTÞpEkBT ¼ DpE, remembering that the force pE
exerted on a single ion by the applied electric field is defined
in units of kBT and that the mobility is given by D=kBT
according to the Einstein relation. It follows that the equality
between a required time for electrophoresis and free
diffusion reads

L

DpE ¼
L2

D ; (58)

which is equivalent to the above relation x(1)
Decay E (pE)�1 when

L = x(1)
Decay.

Hence, eqn (58) implies that x(1)
Decay E (pE)�1 is related to

an electrokinetic crossover length. In the smaller scale of
L o x(1)

Decay, free diffusion is dominant, and the electrophoretic
migration path is blurred by diffusion. Meanwhile, for an
electrophoresis dominant length scale L 4 x(1)

Decay, fluctuations
in diffusion processes become negligible in comparison with
electrophoretic migration: spatial distribution of charged
spheres in a steady state is mainly determined by particles
migrating uniformly. This electrokinetic aspect of a steady state
provides an explanation of the decay length x(1)

Decay E (pE)�1 that
remains finite even in the dilute limit of �k - 0.

B. Electric-field-induced Kirkwood crossover

Let r> be a transverse vector r> = (0, y, z)T similar to k> defined
by eqn (39) (see also Fig. 1). The Fourier transform then reads

DCstrrðkÞ ¼
ð
d2r?

ð
dxDCstrrðrÞe�ikxx�ik?�r? ; (59)

CstqqðkÞ ¼
ð
d2r?

ð
dxCstqqðrÞe�ikxx�ik?�r? : (60)

We consider the real-space representations of DCstrrðkxÞ and

CstqqðkxÞ defined by

1

2p
DCstrrðkxÞ
CstqqðkxÞ

 !
¼ 1

ð2pÞ3
ð
d2k?

DCstrrðkÞ
CstqqðkÞ

 !
ð2pÞ2dðk?Þ; (61)

following the anisotropic approximation (53). Accordingly,
eqn (59) and (60) are reduced, respectively, to

DCstrrðkxÞ ¼
ð
dxDCstrrðxÞe�ikxx; (62)

CstqqðkxÞ ¼
ð
dxCstqqðxÞe�ikxx; (63)

using smeared correlation functions which are integrated over
a cross section transverse to the applied electric field:

DCstrrðxÞ ¼
ð
d2r?DCstrrðrÞ; (64)

CstqqðxÞ ¼
ð
d2r?CstqqðrÞ: (65)

Correspondingly, the pole eqn (51) and (52) are simplified,
respectively, as

(k(1)
x s)2 + (�ks)2o(k(1)

x ) + (pEs)2 = 0, (66)

(k(2)
x s)2 + 0.5(�ks)2o(k(2)

x ) = 0, (67)

both of which are different not only from the Debye–Hückel-
type equation, G1ðkÞ ¼ 0, used in equilibrium electrolytes but
also from the approximate forms (56) and (57) where o(k) = 1.

The complex solutions k( j)
x s ( j = 1,2) to eqn (66) and (67) are

related, respectively, to the wavelengths m( j) and decaying
lengths x( j)

Decay of stationary correlation functions at equal times
as follows:

k( j)
x s = x( j) + iy( j), (68)

ðxð jÞ; yð jÞÞ ¼ 2ps
mð jÞ

;
s

xð jÞDecay

 !
: (69)

Thus, we have clarified that the above expressions (62) and (63)
of the anisotropic Fourier transforms satisfy the pole eqn (66)
and (67) with eqn (68) and (69). This leads to the averaged
correlation functions expressed as

DCstrrðxÞ ¼
X2
j¼1

Aje
�x=xð jÞ

Decay cos
2px
mð jÞ
þ dð jÞa

� �
; (70)

CstqqðxÞ ¼
X2
j¼1

Bje
�x=xð jÞ

Decay cos
2px
mð jÞ
þ dð jÞb

� �
; (71)

where it is noted that both of these density–density and charge–
charge correlation functions have the same wavelengths of
oscillations in addition to the identical decay lengths, reflecting
the above electric-field-induced synchronization.

The introduction of averaged correlation functions given by
eqn (64) and (65) enables us to investigate correlations between
coarse-grained planes perpendicular to the electric field without
consideration of lane formation. In particular, we focus on the pole
eqn (66) that predicts an electric-field-induced shift of the Kirkwood
crossover from a monotonic decay state to a damped oscillatory state.

More precisely, our focus is on the electric-field-induced
Kirkwood crossover between the two regions specified below.
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For �ks r �k(*1)s, both solutions to eqn (66) and (67) are purely
imaginary: eqn (70) and (71) read

DCstrrðxÞ ¼
X2
j¼1

A
0
je
�x=xð jÞ

Decay ; (72)

CstqqðxÞ ¼
X2
j¼1

B
0
je
�x=xð jÞ

Decay ; (73)

respectively, where A
0
j ¼ Aj cos dð jÞa

� 
and B

0
j ¼ Bj cos dð jÞb

� 
. In

the range of �ks 4 �k(*1)s, on the other hand, the solution to
eqn (66) becomes complex while the solution to (67) is purely
imaginary: eqn (72) and (73) transform to

DCstrrðxÞ ¼ A1e
�x=xð1Þ

Decay cos
2px
mð1Þ
þ dð1Þa

� �

þ A
0
2e
�x=xð2Þ

Decay ;

(74)

CstqqðxÞ ¼ B1e
�x=xð1Þ

Decay cos
2px
mð1Þ
þ dð1Þb

� �

þ B
0
2e
�x=xð2Þ

Decay ;

(75)

respectively.
The electric-field-induced Kirkwood crossover is thus repre-

sented by the changes of the correlation functions from
eqn (72) and (73) to eqn (74) and (75), which occurs at �ks =
�k(*1)s. We further predict the Fisher–Widom crossover31,36,44

that the density and charge oscillations become obvious in
the range of �k(*1)s o �ks o �k(*2)s where the two decay lengths,
x(1)

Decay and x(2)
Decay, approach each other; however, it is beyond the

scope of this paper to determine the full phase diagram using
the steady-state extensions of the Kirkwood and Fisher–Widom
crossovers31 related to eqn (66) and (67).

C. Relationship between E-dependent solutions to eqn (66)
and the equilibrium decay length

Fig. 2 shows a schematic representation of numerical results
presented in Fig. 3 and 8. In Fig. 2, the ratio of x(1)

Decay to the
smeared Debye–Hückel screening length xDH (i.e., x(1)

Decay/xDH) is
shown on a log–log plot as a function of s/xDH.

First, it is seen from Fig. 2 that the equilibrium Kirkwood
crossover point32–36 located at node A shifts gradually along
the green arrow with the increase of electric field strength: the
dashed green arrow from node A to node B represents the
numerical results shown in Fig. 3(b) and 8(b). Incidentally,
node B is merely an electric-field-induced Kirkwood crossover
point at an arbitrary field strength.

Next, we explain the solid brown curves in Fig. 2 terminated
at nodes A and B. These curves represent the �ks-dependencies
of x(1)

Decay in a uniform state without and with applied electric
field, respectively. On the one hand, x(1)

Decay at E = 0 is identified
with xDH in the dilute limit of �kB %n1/2 - 0 and decreases more
rapidly than xDH with increase of %n in a uniform state prior to
the Kirkwood crossover in equilibrium. On the other hand,

there are two features as seen from the brown curve under the
applied electric field (E a 0): the dilute limit of x(1)

Decay/xDH

approaches zero because of the finiteness of the decay length
x(1)

Decay in the limit of xDH - N as mentioned before, whereas
the downward trend of x(1)

Decay/xDH, similar to the above behavior
at E = 0, is observed near the electric-field-induced Kirkwood
crossover.

Third, let us turn our attention to the dashed blue line in
Fig. 2 representing a typical underscreening behavior beyond
the Kirkwood line (the vertical blue line through node A) with
no electric field applied. The dashed blue line in Fig. 2 depicts
the following relation for a decay length xDecay:

xDecay

xDH


 s
xDH

� �w

; (76)

1o w r 2, (77)

according to previous simulation and theoretical studies;20,29–31

the experimental results of wE 3 in RTILs are beyond the scope
of this study. It follows from eqn (77) that eqn (76) reads

xDecay 
 n
1�w
2 ;

1� wo 0:

(78)

Eqn (78) implies that the decay length xDecay of damped
oscillations for correlations becomes longer despite increasing
%n, which has been referred to as underscreening behavior
without an electric field.

Remarkably, the scaling relation given by eqn (76) and (78)

applies to the �ks-dependence of xð�1ÞDecay=x
ð�1Þ
DH at the Kirkwood

crossover; the exponent w appears close to 1.4 as will be shown
in Fig. 3(b).20,29–31 Reflecting this similarity between the expo-
nents w of the underscreening behavior and the electric-field-

induced shift for xð�1ÞDecay, the dashed blue line in Fig. 2 is drawn

as an extension of the green arrow from node A (E = 0) to node B
(E a 0).

Last, we focus on the vertical green line through node B in
Fig. 2, indicating the condition of the electric-field-induced
Kirkwood crossover from a uniform state to a stripe state. In the
stripe state, we can observe a damped oscillatory decay of both
density–density and charge–charge correlation functions along
the direction of applied electric field in the anisotropic approxi-
mation (53). It is to be noted here that the stripe state is

specified using the averaged correlation functions, DCstrrðxÞ

and CstqqðxÞ, which by definition smear out density and charge

distributions on cross sections perpendicular to the applied
electric field (see eqn (64) and (65)).

The emergence of anisotropic density and charge modulations
is consistent with the previous results as follows: Theoretically,
the SDFT using the Gaussian charge smearing model35,40 has
provided numerical results of two-dimensional correlation func-
tions showing a tendency to form alternating chains of cations
and anions along the field direction.13 Also, according to
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simulation and experimental studies on oppositely charged
colloids, the electric-field-driven mixtures have been found to
form bands non-parallel to the field direction, other than lanes
in the electric field direction, under some conditions on various
dynamic phase diagrams of steady states with AC or DC fields
applied.17,18 Our present findings of the emergence of stripe state
thus shed light on these anisotropic inhomogeneities as related to
crossover phenomena of steady-state correlations.

D. Numerical solutions to eqn (66)

Fig. 3(a) shows the electric-field effects on the Kirkwood cross-

over in terms of the smeared Debye–Hückel length xð�1ÞDH and a

decay length xð�1ÞDecay at the Kirkwood crossover. As detailed in

Section IV, we have obtained these results using both the
Gaussian charge smearing model35,40 (or the HNC approxi-
mation for one-component ionic fluids42) and the modified
MSA model for the DCF,43 or its essential function o(k) given by
eqn (12). The former model is depicted by green lines, whereas
the latter by red lines. All of the results in Fig. 3(a) exhibit
downward trends in accordance with analytical observations
made in Section IV.

Furthermore, Fig. 3(a) allows us to make quantitative com-
parisons between the present two models for the DCF. First, it

is confirmed from the values of xð�1ÞDH at E = 0 in Fig. 3(a) that the
numerical results correctly reproduce the Kirkwood crossover
points previously obtained for the Gaussian charge smearing
model34,35 and the modified MSA model.29–31,34 Second,
Fig. 3(a) shows that the electric-field-induced shifts of

s=xð�1ÞDH are similar to each other. Remembering that n� ¼
1=f8plBðxð�1ÞDH Þ2g by definition (36), it is seen from the variations

of s=xð�1ÞDH in Fig. 3(a) that, irrespective of the models adopted,
the crossover densities at pEs = 3.0 are evaluated to be less than
half of those at E = 0. Last, we turn our attention to the

relationship between xð�1ÞDecay and 1=xð�1ÞDH as a function of either

%n* or E. For a fixed strength of applied electric field, the decay

length xð�1ÞDecay becomes shorter as the ionic solution density %n*,

or s=xð�1ÞDH , becomes larger, which is consistent with the previous
results conventionally found for concentrated electrolytes prior
to the Kirkwood crossover without an applied electric field.30–33

The electric-field dependencies, on the other hand, exhibit an

opposite relationship between xð�1ÞDecay and xð�1ÞDH : the downward

trends in Fig. 3(a) indicate that both xð�1ÞDecay and 1=xð�1ÞDH are

smaller as E is larger.
Fig. 3(b) demonstrates this opposite tendency using a log–

log plot of xð�1ÞDecay=x
ð�1Þ
DH vs. s=xð�1ÞDH : it is seen from Fig. 3(b) that

xð�1ÞDecay

xð�1ÞDH


 s

xð�1ÞDH

 !w

(79)

for an exponent w larger than unity. The dotted line is a guide to
the eye, indicating that w is close to 1.4 and is consistent with
the relation 1 o w r 1.5 previously obtained from simulation

results on underscreening behaviors in RTILs beyond the Kirk-
wood line with no electric field applied.20,29–31

E. The 2D inverse Fourier transforms for assessing the
anisotropic approximation (53)

The last subsection of Section III presents the results of the 2D
inverse Fourier transforms using heat maps, which would help
us not only to understand the above analytical results concre-
tely but also to assess the anisotropic approximation (53). We

perform the 2D inverse Fourier transform of DCstrrðkx; kyÞ by

setting kz = 0 similar to the expressions (61), (62) and (64):

DCstrrðkx; kyÞ ¼
ðð

dxdyDCstrrðx; yÞe�ikxx�ikyy; (80)

DCstrrðx; yÞ 	
ð
dzDCstrrðrÞ: (81)

In other words, the inverse Fourier transform provides the

mean correlation function DCstrrðx; yÞ as follows:

DCstrrðx; yÞ ¼
1

ð2pÞ2
ðð

dkxdkyDCstrrðkx; kyÞeikxxþikyy: (82)

The 2D results of the mean correlation function DCstrrðx; yÞ can

reflect the 3D behaviors of density–density correlations when
the translational symmetry of DCstrrðrÞ is preserved with respect

to the z-direction and the correlation functions on the xy cross-
sections are indistinguishable at two different z values.

The setup in Fig. 1 is a plausible example to satisfy such
translational symmetry. The upper figure of Fig. 1 indicates
that the plate-plate distance is sufficiently smaller than the size
in the z-direction, and yet we suppose that the finite-size effects
are negligible because the plate-plate distance is much larger
than the sphere diameter as mentioned in Section IIA. Such a
system could serve as a platform for investigating the 2D
inverse Fourier transforms of the 3D primitive model.

We also compare the 1D results of the mean correlation

functions, DCstrrðx; y0Þ at a fixed y-coordinate value of y0 and

DCstrrðxÞ defined by eqn (64), which are related respectively to

the 2D mean correlation function DCstrrðx; yÞ defined by eqn (81)

as follows:

DCstrrðx; y0Þ ¼
ð
dyDCstrrðx; yÞdðy� y0Þ; (83)

DCstrrðxÞ ¼
ð
dyDCstrrðx; yÞ; (84)

revealing that DCstrrðx ¼ 0; y0ÞoDCstrrðx ¼ 0Þ because of

Cstrrðx ¼ 0Þ ¼ DCstrrðx ¼ 0; y0Þ
Ð
dyDCstrrðx ¼ 0; yÞ (see Fig. 5 for

confirmation).
Below we provide results of the inverse Fourier transforms in

Fig. 4–6, demonstrating real-space behaviors of the density–
density correlation function in a high-density region such that
�ks exceeds the Fisher–Widom-like crossover31,36,44 as well
as the Kirkwood crossover:32–36 �ks 4 �k(*2)s (4�k(*1)s) is
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investigated (remember the discussion at the end of Section IIB).
We see from Fig. 4 that stripe states illustrated in Fig. 2 are
observed more clearly as �ks is larger at a fixed strength of
electric field. In Fig. 5 and 6, we validate the anisotropic

approximation (53) from comparing DCstrrðx; y0Þ and DCstrrðxÞ
(see also eqn (83) and (84)). Furthermore, Fig. 7 shows the
emergence of a lane structure with the increase of electric field
strength from pEs = 0.1 to 1.0 at a high value of �ks = 2.78.

Fig. 4 shows how the density–density correlation behaviors
vary depending on the ionic concentration and electric field
strength. The difference between Fig. 4(a) and (b) is the ionic
concentration at the same electric field of pEs = 0.5. Meanwhile,
the difference between Fig. 4(b) and (c) is the strength of
electric field at the same ionic condition of �ks = 2.6. Fig. 4(b)
can be a reference result for investigating the effects of ionic
concentration and electric field strength. Fig. 4(b) exhibits the
oscillatory decay behaviors in the external field direction on an
xy plane, which is typical of density–density correlations in the
stripe state.

When �ks is reduced from 2.6 to 2.2 without changing
the electric field strength, we obtain the result of Fig. 4(a).
Comparison between Fig. 4(a) and (b) indicates the following.
First, we can observe the oscillatory decays in the external field
direction for both values of �ks when setting the electric field

strength to be pEs = 0.5. Furthermore, Fig. 4(a) shows that the
correlation function becomes almost zero for x Z 5s: The
density–density correlation function becomes equal to 2 %nd(r)

Fig. 4 Comparison between the 2D results of DCstrrðx; yÞ for different
conditions on ionic condition and electric field strength. The color bar
on the right hand side, which is common to the three heat maps,

represents the value of DCstrrðx; yÞ at a location (x/s, y/s) measured in units

of sphere diameter s. While the difference between Fig. 4(a) and (b) is ionic
concentration, or �ks, at an identical electrical field, an electric field effect is
seen from comparing Fig. 4(b) and (c) at a same ionic concentration:
(a) (�ks, pEs) = (2.2,0.5); (b) (�ks, pEs) = (2.6,0.5); (c) (�ks, pEs) = (2.6,1.5).

Fig. 5 Comparison between the 1D results of DCstrrðx; y0Þ at a fixed

y-coordinate value of y0 and DCstrrðxÞ defined by eqn (64). The density–

density correlation functions are plotted as functions of x/s, the separation
distance in the applied field direction measured in units of sphere
diameter s. At an identical electric field strength pEs = 0.5, two ionic
concentrations, �ks = 2.2 and 2.6, are considered in both figures: (a) the

green and red solid lines depict the behaviors of DCstrrðx; y0 ¼ 0Þ at �ks =

2.2 (green) and 2.6 (red), respectively, whereas the red dotted line repre-

sents DCstrrðx; y0 ¼ 5sÞ at �ks = 2.6; (b) the green and red solid lines depict

the behaviors of DCstrrðxÞ at �ks = 2.2 and 2.6, respectively.

Fig. 6 The green and red lines are the same results as those in Fig. 5(b):
we show DCstrrðxÞ over the range, 0 r x/s r 20, at �ks = 2.2 (green) and
2.6 (red) in the presence of applied electric field (pEs = 0.5). The dashed
lines correspond to the best fit of eqn (85).
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for x Z 5s in contrast to the long-range correlations seen in
Fig. 4(b). The different behaviors of density–density correla-
tions suggest that the smaller �ks is, the shorter the decay length
becomes. In other words, comparison between Fig. 4(a) and (b)
reveals an underscreening behavior19,20,29–31 beyond the Kirk-
wood condition as depicted in the schematic of Fig. 2. Fig. 4(c)
further demonstrates that alignment of segregation band to the
external field direction becomes clear by increasing the electric
field strength to pEs = 1.5 at �ks = 2.6.

Fig. 4 has found an external field condition (pEs = 0.5) that
creates an anisotropic density modulation reflecting the stripe
state as depicted in Fig. 2. This finding has justified the
anisotropic approximation (53) from a qualitative point of view.
We make below a quantitative assessment of the anisotropic
approximation (53). To this end, we further investigate the
extent to which the one-variable correlation function represents
the results of Fig. 4 using Fig. 5 and 6.

Fig. 5 compares the x-dependencies of the 2D correlation

function DCstrrðx; y0Þ at y0, a fixed y-coordinate value, with the

behaviors of the one-variable correlation function DCstrrðxÞ defined

by eqn (64). Both solid lines in Fig. 5(a) show the x-dependencies
at y0 = 0. The same external field condition pEs = 0.5 is used in
both results of Fig. 5(a) and (b), and the ionic conditions for the
green and red lines are identical in Fig. 5(a) and (b): the green and
red lines represent the results at �ks = 2.2 and 2.6, respectively.

It is noted that the value of the vertical axis in Fig. 5(a) is
one-tenth of that in Fig. 5(b) due to the different definitions of

the two correlation functions as clarified by eqn (83) and (84).
Nevertheless, the behaviors bear resemblances. First, these two

functions, DCstrrðx; y0Þ and DCstrrðxÞ, exhibit oscillatory decay

behaviors, and we will make a quantitative comparison using
Fig. 6. They also share the feature of correlation value that
becomes smaller with the decrease of ionic concentration from
�ks = 2.6 to 2.2. Furthermore, we observe that the oscillations
disappear faster for the green line than for the red line in both
Fig. 5(a) and (b), which corresponds to the underscreening
behavior suggested by Fig. 4.

The solid lines in Fig. 5(a) are the results at a fixed y-coordi-
nate: y0 = 0. The specific value of y0 raises the question as to
whether or not the above similarity of solid lines in Fig. 5(a) and
(b) is a coincidence. To address this question, the red dashed
line shows the x-dependency of the two-variable function at
y0/s = 5 when pEs = 0.5 and �ks = 2.2. We can see that the period
of the dashed red line is close to that of the solid red line.
However, the initial phase is different from that at y0/s = 0, and
the correlation value is reduced considerably even at x/s = 0 as
y0/s varies from 0 to 5. The latter difference implies that the

x-dependency of DCstrrðx; y0Þ near y0/s = 0 greatly contributes to

the one-variable correlation function DCstrrðxÞ defined by

eqn (64), which is why the two solid lines in Fig. 5(a) reproduce
the one-variable function behaviors in Fig. 5(b).

Let us consider a simple asymptotic form determined by a
single decay length xDecay and oscillation period m:

DCstrrðxÞ ¼ Ae�x=xDecay cos
2px
m
þ da

� �
; (85)

which is fitted to the results of Fig. 5(b) instead of eqn (70).
While the solid lines in Fig. 6, which are the same as those of
Fig. 5(b), are shown over the range 0 r x/s r 20, the dashed
lines in Fig. 6 correspond to the best fit of eqn (85). The best-fit
parameter sets are as follows:(A, xDecay,m, da) = (0.6 � 10�2, 2.0,
5.6, 1.1) at �ks = 2.2, whereas (A, xDecay,m, da) = (1.3 � 10�2, 2.5,
3.8, 0.4) at �ks = 2.6. The best-fit periods, m = 5.6 and 3.8, reflect
the oscillatory behaviors seen from Fig. 6. Meanwhile, the best-
fit decay length xDecay extends from 2s to 2.5s with the increase
of �ks from 2.2 to 2.6, which is a quantitative result of under-
screening behavior. Evaluating the exponent w defined by
eqn (79) from this increase in xDecay, we have 2 o w o 3; it is
interesting to note that the present exponent is larger than the
equilibrium exponent (1 o w r 1.5) previously obtained from
the MSA of the 3D primitive model but is close to the exponent
experimentally obtained.19

Last, we consider the 2D inverse Fourier transforms of

DCstrrðx; yÞ when increasing �ks to 2.78. The strengths of the

applied electric field are pEs = 0.1 (Fig. 7(a)) and pEs = 1.0
(Fig. 7(b)). The heat maps in Fig. 7 reveal the oscillatory 2D
patterns due to the suppression of decaying behaviors. On the
one hand, even at the weak electric field strength of pEs = 0.1,
Fig. 7(a) shows that segregation bands of ions with the same
sign are deformed along the x-axis, the external field direction,
though the stripe state remains a good approximation in the

Fig. 7 Comparison between the 2D results of DCstrrðx; yÞ at different
electric field strengths: (a) pEs = 0.1 and (b) pEs = 1.0. The same ionic
condition �ks = 2.78 is adopted in both results.
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region of y/s r 5. On the other hand, at pEs = 1.0, Fig. 7(b)
demonstrates the emergence of lane structure formed by
aligned bands, revealing that the anisotropic approximation
(53) becomes invalid far beyond the electric-field-induced Kirk-
wood crossovers.

IV. Details on the determination of the
electric-field-induced Kirkwood
crossovers in the anisotropic
approximation

We perform the correlation function analysis, especially focus-
ing on the pole eqn (66). In Section IVA, we see that discrimi-
nant analysis of a quadratic equation becomes available to
investigate the solution to eqn (66), irrespective of the function
forms of o(k), as a result of the small kxs-expansion of the key
function o(k). Section IVB provides concrete results of both the
Gaussian charge smearing model and the modified MSA model
for clarifying how the results in Fig. 3 are obtained.

A. A general approximation of eqn (66) for evaluating the
Kirkwood crossover point

Expanding o(k) with respect to k(1)
x s, we have a general form,

o(k(1)
x ) E 1 � a1(k(1)

x s)2 + a2(k(1)
x s)4, (86)

as seen from eqn (12); for instance, a1 = 1/2 and a2 = 1/8 for the
Gaussian charge smearing model,35,40 and a1 = 1/2 and a2 = 1/24
for the modified MSA model.43 Eqn (66) then reduces to the
quadratic equation for S 	 ðkð1Þx sÞ2:

a2k2s2S2 þ ð1� a1k2s2ÞS þ k2s2 þ ðpEÞ2s2 ¼ 0: (87)

It follows from eqn (68) that

(k(1)
x s)2 = x2 � y2 + 2ixy (88)

where x and y are related to the decay length x(1)
Decay and

wavelength m(1) as defined in eqn (69). Eqn (69) and (88) imply
that discriminant analysis of eqn (87) is found useful to
determine the Kirkwood crossover point where the correlation
functions change from monotonic (m(1) = 0) to oscillatory
(m(1) a 0) decay. As mentioned in eqn (54), the imaginary
solution 2ixy disappears at �k(*1)s because of x = 0, or m(1) - N:
the Kirkwood crossover occurs when exceeding �k(*1)s.

We find approximate forms of the solution to the discrimi-
nant equation of eqn (87) as follows:

kð�1Þs
� 2

¼ 1� ffiffiffiffiffi
a2
p ðpEÞ2s2
a1 þ 2

ffiffiffiffiffi
a2
p ðpEs� 1Þ (89)

! 0 ðpEs� 1Þ; (90)

see Appendix E for these derivations. Plugging the modified
MSA coefficients, a1 = 1/2 and a2 = 1/24, into the relation (89) for
E = 0, we have

kð�1Þs ¼ 1

a1 þ 2
ffiffiffiffiffi
a2
p

� �1=2

� 1:05; (91)

which is in good agreement with the Kirkwood crossover values
previously obtained for the primitive model in the absence of
applied electric field.29–33

Eqn (89) and (90) imply that the Debye–Hückel length xð�1ÞDH ¼
1=kð�1Þ at the Kirkwood crossover becomes longer as E is larger.

Fig. 8 Comparison between Fig. 2 (a schematic summary) and numerical
results of the modified MSA model. (a) The graphical representation of the
solution to u(y*) = v(y*) given by eqn (105) and (106), respectively. Eqn (105)

provides ks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðy ¼ s=xð1ÞDecayÞ

q
, the x(1)

Decay-dependence of �ks, which varies

depending on the electric field strength measured by pEs. The colored solid
lines represent these dependencies for pEs = 0 (green), pEs = 1.5 (orange), and
pEs = 3 (red). Meanwhile, the blue dashed line shows another dependence of

�ks on x(1)
Decay/s which is given by ks ¼

ffiffiffiffiffiffiffiffiffi
vðyÞ

p
(see eqn (106)). The three

intersection points are indicated by brown circles, giving both the Debye–

Hückel lengths xð�1ÞDH at the electric-field-induced crossovers and the Kirkwood

decay lengths xð�1ÞDecay at different field strengths. (b) Numerical results summar-

ized in Fig. 2. In this figure, the �ks-dependencies of x(1)
Decay are depicted by the

solid lines colored green (pEs = 0), blue (pEs = 1), orange (pEs = 1.5), and red
(pEs = 3), from top to bottom, on a log–log plot of x(1)

Decay/xDH = �kx(1)
Decay vs. s/

xDH = �ks. The brown circles mark the termination points of these lines
representing the Kirkwood crossover points at each electric-field strength,
and the rightmost circle A corresponds to node A in Fig. 2, the Kirkwood
crossover point at E = 0. The location shift of brown circles with the increase of
E is indicated by the dashed green arrow, showing an electric-field-induced
shift of the Kirkwood crossover. For comparison, the dotted line delineates the

scaling relation, xð�1ÞDecay=x
ð�1Þ
DH 
 ðs=x

ð�1Þ
DH Þ1:4, as well as that in Fig. 3(b).
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Namely, the crossover density n� ¼ 1=f8plBðxð�1ÞDH Þ2g becomes
lower with the increase of E; eqn (90) predicts that both
charge–charge and density–density oscillations are observed
even in a dilute electrolyte upon applying a high electric field.

B. Analytical and numerical results

Gaussian charge smearing model.35,40 First, we consider the
Gaussian charge smearing model. This model is represented by

oðkð1Þx sÞ ¼ e�ðk
ð1Þ
x sÞ2=2 in eqn (12). Then, eqn (66) is rewritten as

2te
k
ð1Þ
x s

� �2
2 þ k2s2 ¼ 0; (92)

2t = (k(1)
x s)2 + (pE)2s2. (93)

It is convenient to transform eqn (92) and (93) to

ett ¼ �k
2s2

2
e
ðpEÞ2s2

2 ; (94)

2t = x2 � y2 + (pE)2s2 + 2ixy, (95)

which can be rewritten as

t ¼ W �k
2s2

2
e
ðpEÞ2s2

2

� �
; (96)

using the Lambert function W35 defined by t ¼ WðtetÞ.
Focusing on the principal branch of the Lambert function,35

it is found that the Kirkwood crossover point satisfies the
relations,

ðkð�1ÞsÞ2
2

e
ðpEÞ2s2

2 ¼ 1=e; (97)

t* = �1, (98)

similar to those at E = 0. Eqn (97) transforms to

kð�1Þs ¼ e�
ðpEÞ2s2

4

ffiffiffi
2

e

r
(99)

or

n� ¼ 1

4pp2lBs2

� �
e�
ðpEÞ2s2

2
�1 (100)

for the crossover density %n*. Eqn (99) verifies the above approx-
imate result (90), whereas eqn (100) enables us to make an
analytical prediction that the increase of E results in the
decrease of %n*. Inserting eqn (98) into eqn (95), we have

�2 ¼ � s

xð�1ÞDecay

 !2

þðpEÞ2s2; (101)

or

xð�1ÞDecay

s
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ ðpEÞ2s2
p ; (102)

because of x = 0 at the Kirkwood crossover. Eqn (100) and
(102) state that, as E is larger, Coulomb interactions are more
short-ranged despite the decrease in the Kirkwood crossover
density %n* given by eqn (100). In other words, our target mode

k
ð�1Þ
x describes an aspect of electric-field-induced screening

which is enhanced by the applied electric field (see also the
last paragraph of Section IIIA for the underlying physics).

The modified MSA model.43 Next, we adopt o(k) = cos(k(1)
x s)

and the strong-coupling approximation of the modified MSA
model (see Section IVB). Bearing in mind that cos(k(1)

x s) =
cos x cosh y � i sin x sinh y, eqn (66) reads

�k2s2cos x cosh y = y2 � (pE)2s2 � x2, (103)

�k2s2 sin x sinh y = 2xy, (104)

for the real and imaginary parts, respectively. The Kirkwood
crossover occurs in the limit of x - 0 (or m(1) - N). In this
limit, eqn (103) and (104) reduce to

ðkð�1ÞsÞ2 ¼ uðy�Þ ¼ ðy
�Þ2 � ðpEÞ2s2
cosh y�

; (105)

¼ vðy�Þ ¼ 2y�

sinh y�
; (106)

for y� ¼ s=xð�1ÞDecay.
Fig. 8(a) shows the curves of ks ¼

ffiffiffiffiffiffiffiffiffi
uðyÞ

p
and ks ¼

ffiffiffiffiffiffiffiffiffi
vðyÞ

p
as

a function of y = s/x(1)
Decay including the Kirkwood crossover

value y*. While there is a single line of ks ¼
ffiffiffiffiffiffiffiffiffi
vðyÞ

p
in Fig. 8(a),

the curves of ks ¼
ffiffiffiffiffiffiffiffiffi
uðyÞ

p
are depicted using different values of

pEs = 0, 1.5 and 3. We can see from Fig. 8(a) that the
intersection points of these curves (three brown circles located
at the intersections in Fig. 8(a)) is determined by u(y*) = v(y*)

and is located at the maximum of ks ¼
ffiffiffiffiffiffiffiffiffi
uðyÞ

p
as a function of

y; actually, it is easily confirmed that u(y*) = v(y*) is nothing but

the maximum condition for ks ¼
ffiffiffiffiffiffiffiffiffi
uðyÞ

p
. We find from a series

of intersection points ðy�;
ffiffiffiffiffiffiffiffiffiffiffi
uðy�Þ

p
Þ for different field strengths

in Fig. 8(a) that the modified MSA model43 exhibits a similar
trend observed in the above Gaussian charge smearing model:35

the maxima of ks ¼
ffiffiffiffiffiffiffiffiffi
uðyÞ

p
decrease with increase of E. That is,

the Debye–Hückel length xð�1ÞDH at the electric-field-induced cross-

over is larger as the decay length xð�1ÞDecay at the Kirkwood crossover

is smaller due to the increase of E. These dependencies are in
qualitative agreement with eqn (99) and (102) of the Gaussian
charge smearing model.

Relationship between the results in Fig. 8 and the present
results given by eqn (99), (102), (105) and (106). Thus, we have
obtained the formulation to find the results in Fig. 8(a). On the

one hand, eqn (99) and (102) yield s=xð�1ÞDH (or �k(*1)s) and xð�1ÞDecay=s

of the Gaussian charge smearing model, respectively. On the
other hand, eqn (105) and (106) are solved numerically to

find kx
(*1)s, or the inverse of xð�1ÞDecay=s in the modified MSA,43

and we can easily calculate �k(*1)s from xð�1ÞDecay=s using eqn (105).

The same results as those of Fig. 8(a) are presented on a log–log
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plot in Fig. 8(b), further indicating that, in the range of

10�1 os=xð�1ÞDH o 100, the s=xð�1ÞDH -dependencies of xð�1ÞDecay=x
ð�1Þ
DH

exhibit a scaling relation xð�1ÞDecay=x
ð�1Þ
DH 
 ðs=x

ð�1Þ
DH Þw with w being

close to 1.4, which is similar to eqn (76) previously found for
concentrated electrolytes.20,29–31

V Discussion and conclusions

This paper has demonstrated the usefulness of the SDFT13–15

on concentrated electrolytes under steady electric fields, which
is summarized in Table 1 and Fig. 2. While Table 1 has
provided a detailed summary of our stochastic mPNP model
in comparison with previous mPNP models,5–15 we would like
to make additional three remarks related to the schematic
summary of Fig. 2.

(i) The weight function x(k) in terms of the Kirkwood
crossover

It has been proved that we can extend the mPNP models to
consider the stochastic process, thereby allowing us to obtain
stationary equal-time correlation functions which include the
key function o(k) as seen from eqn (43)–(48). To be noted, the
Kirkwood crossover does not occur without o(k) given by
eqn (12); therefore, it is indispensable to incorporate either
the finite-spread Poisson eqn (14) or the generalized Debye–
Hückel eqn (17) into the stochastic mPNP models for predicting
the onset of oscillatory decay of correlations.

(ii) Stripe states

An oscillatory state along the field direction (a stripe state) as
given in Fig. 2 is stationary as long as lane formation is not
favored. The stripe state is consistent with some previous
findings of inhomogeneous steady states such as alternating
chains of cations and anions along the applied field direction
in electrolytes13 and non-parallels bands in oppositely charged
colloidal mixtures17,18 (see the last paragraph of Section IIIC).
Incidentally, it has been found that the lane structure17 clearly
appears in concentrated electrolytes at a moderate condition
such that �ks E 1.6 and p2lB/s = 1 by adding to the mPNP
equations a fluctuating advection term due to interparticle
interactions.45

(iii) Fisher–Widom crossover between two Kirkwood
crossovers

Above the Kirkwood crossover condition of �ks4 �k(*1)s, we have

smeared correlation functions, DCstrrðxÞ and CstqqðxÞ, which are

given by the sum of oscillatory and monotonic decay functions
(i.e., eqn (74) and (75)). Furthermore, the monotonic decay
parts of correlation functions subsequently become oscillatory
when �ks goes beyond �k(*2)s which is related to the equilibrium
Kirkwood crossover value �k*s as eqn (55). This crossover
phenomenon suggests the possibility of simultaneous occurrence
of the Fisher–Widom crossover31,36,44 for density–density and
charge–charge correlations in the range of �k(*1)s r �ks r �k(*2)s

though the full phase diagram of steady states for electric-field-
driven electrolytes remains to be determined. For the concrete
understanding of anisotropic density modulations in stripe states,
Section IIIE presents various results on the 2D density–density
correlations beyond the Fisher–Widom crossover. As confirmed
from Fig. 4 and 7, there are some electric field conditions that
create stripe states formed by segregation bands transverse to the
external field direction.

It is still necessary to investigate whether experimental and
simulation studies can find an electric-field-induced shift of
the Kirkwood crossover from monotonic to oscillatory decay of
density–density and charge–charge correlations in the applied
electric field direction. Therefore, let us make three compar-
isons in terms of realizability.

Although the primitive model has been used for investigating
concentrated electrolytes, we would like to see the interaction
parameters of RTILs and colloidal nano-particle dispersions
as well as concentrated electrolytes. For instance, let us consider
(p, s, e, lB) = (1, 0.7, 10, 5.6) for RTILs46 and (10, 10, 80, 0.7)
for colloidal nano-particle dispersions as adequate parameters
of valence p, diameter s [nm], dielectric constant e, and
the Bjerrum length lB [nm] at room temperature T = 300 K.
Accordingly, we have p2lB/s = 8 (RTILs) and p2lB/s = 7 (nano-
particle dispersions), and the use of eqn (7) and (13) can be
justified because the relation (A25) barely holds.

Next, we evaluate a realistic range of electric field strength.
At pEs = 1.5, we have E E 5.5 � 107 V m�1 for the RTILs (i.e.,
(p, s) = (1,0.7)) and E E 3.8 � 105 V m�1 for the nano-particles
(i.e., (p, s) = (10,10)). These are plausible values according to
previous simulation and experimental studies as follows: mole-
cular dynamics simulations of RTILs have revealed that
E B 107 V m�1 corresponds to a boundary value beyond which
RTILs are reorganized into nematic-like order and exhibit
anisotropic dynamics,47 whereas, for colloidal dispersions, a
magnitude of E B 105 V m�1 is within the possible range when
referring to segregation of oppositely charged colloidal parti-
cles into bands perpendicular to the direction of external AC
field.17,18

Last, let us evaluate the electric-field-induced Kirkwood
crossover densities at pEs = 1.5. We have obtained that �k*s is
equal to 1.04 (pEs = 0) and that �k(*1)s E 0.82 (pEs = 1.5)
when adopting the modified MSA model.43 It follows that the
Kirkwood crossover density varies from 0.30 M (pEs = 0) to
0.19 M (pEs = 1.5) for an RTIL (1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide) diluted with propylene
carbonate where we set (p, s, e, lB) = (1,0.4,65,0.88).
The former density (0.30 M) agrees well with experimental
and simulation results19,20 with no electric field applied,
whereas the validity of density difference (0.30–0.19 =
0.11 M) due to the external electric field needs to be assessed
in future.
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Appendix A. Details on modifications of
the PNP model presented in Section II

We provide the detailed formulations of the results in Section II
by dividing this section into four parts: general formulation of
two-component fluids (Appendix A1), two modifications of the
Poisson equation (Appendix A2), formulations of stochastic
currents for electric-field-driven electrolytes (Appendix A3),
and outline of deriving stationary correlation functions at equal
times (Appendix A4). In Appendix A1, the functional-integral
representation of the Dean–Kawasaki model reveals that the
Gaussian approximation of the free energy difference between
non-equilibrium and equilibrium free energies yields the self-
energy-modified current of each component in mixtures. In
Appendix A2, we validate the approximate form (7) of inter-
action potential c(r, t) for the primitive model using the
modified MSA43 model, and also demonstrate for the modified
MSA model that the finite-spread Poisson equation obtained
from this expression (7) leads to the higher-order Poisson
eqn (15) due to the small ks-expansion. In Appendix A3, we
show that the self-energy-modified current given by eqn (3)–(6)
is obtained from combining the results in Appendix A2 and that
linearization of this current corresponds to the first-order
expansion of non-equilibrium chemical potential around a
uniform density %n. Appendix A4 explains that the stationary
condition (A45) imposed on a general matrix form of equal-
time correlation functions yields density–density and charge–
charge correlation functions given by eqn (43)–(48).

1 General formulation

Stochastic current in the Dean–Kawasaki model. The
stochastic equations for the density fields nl(r, t) (l = 1,2) have
been formulated based on the Dean–Kawasaki model.11,26 We
have, according to the Dean–Kawasaki model, the conservation
eqn (1) for nl(r, t) by introducing the stochastic current Jl(r, t):
the Dean–Kawasaki model provides a general form of the
stochastic current Jl(r, t) expressed as

J lðr; tÞ ¼ �Dnlðr; tÞrmlðr; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dnlðr; tÞ

p
zlðr; tÞ; (A1)

mlðr; tÞ ¼
dA½n�
dnlðr; tÞ

: (A2)

We can see from eqn (A1) and (A2) that there are two features of
the Dean–Kawasaki model, compared with the dynamic DFT
based on the deterministic density-functional equation: (i) the
deterministic current, the first term on the rhs of eqn (A1), is
nonlinear with respect to nl(r, t) in general and is determined by
a constrained free energy A½n�, instead of the equilibrium free
energy functional;37,38 (ii) addition of the stochastic current,
the second term on the rhs of eqn (A1), helps us to describe
fluctuating phenomena.

Functional-integral representation of constrained free
energy A½n�. It has been shown that the constrained free energy
A½n� as a functional of given density fields n(r, t) = (n1(r, t),
n2(r, t))T can be expressed by considering fluctuating potential
fields /(r, t) = (f1(r, t), f2(r, t))T, which are conjugate to n(r,t), in

addition to an adjusted potential field fdft
l (r, t) similar to that of

the equilibrium DFT.37,38 Extending the previous result24,28 to
the expression for two-component systems (see Appendix B for
details), we have

e�A½n� ¼
Y2
l¼1

ð
DflD½nl �e�F ½n;/�; (A3)

with the following constraint imposed by the canonical ensemble:

D½nl � ¼
1

ð
d3rnlðrÞ ¼ N

� �

0

ð
d3rnlðrÞaN

� �
;

8>>>><>>>>: (A4)

where the total number of either anions or cations is equally N.
The free-energy functional F[n, /] in the exponent of eqn (A3) is
defined using the grand potential of the primitive model with an
imaginary external field i/(r) applied, and can be divided into two
parts (see Appendix B for details):

F[n, /] = F[n,0] + DF[n, /]. (A5)

The free-energy functional F[n,0] in the absence of fluctuating
potential reduces to the intrinsic Helmholtz free energy, a key
thermodynamic quantity in the equilibrium DFT.37,38 It follows
that F[n,0] is related to the chemical potential meq in equili-
brium through the following stationary equation:

dF ½n; 0�
dnlðr; tÞ

¼ meq � jdft
l ðr; tÞ 	 m0l ½n�; (A6)

where a non-equilibrium chemical potential m0
l [n] is a func-

tional of n(r, t) because the external potential distribution
jdft

l (r, t) is adjusted to identify nl(r, t) with the equilibrium
density as is the case with the equilibrium DFT (see Appendix B
for details).37,38

Decomposition of the stochastic current given by eqn (A1). It
follows from eqn (A2)–(A6) that

ml[n] = m0
l [n] + mdl [n] � mN, (A7)

mdl ½n� ¼
dDF ½n;/�
dnlðr; tÞ

� �
f

	

Q2
l¼1

Ð
Dfl

dDF
dnl

� �
e�DF ½n;/�

Q2
l¼1

Ð
Dfle

�DF ½n;/�
;

(A8)

where mN corresponds to the Lagrange multiplier to enforce
the constraint D[nl] given by eqn (A4). Correspondingly,
the stochastic current Jl(r, t) can be decomposed into
three parts:

J lðr; tÞ ¼ J0
l ðr; tÞ þ Jd

l ðr; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dnlðr; tÞ

p
zlðr; tÞ; (A9)

where eqn (A1), (A7) and (A8) provide

J0
l ðr; tÞ ¼ �Dnlðr; tÞrm0l ½n�; (A10)

Jd
l ðr; tÞ ¼ �Dnlðr; tÞrmdl ½n�: (A11)
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While the expression (116) indicates that J0
l (r, t) is the conven-

tional current used in the deterministic density-functional
equation, the additional current Jdl (r, t) is obtained from
eqn (A2), (A7) and (A8).

Here we adopt the Ramakrishnan–Yussouf functional38 as
the equilibrium free energy F[n, 0], yielding

m0l ½n� ¼ ln nlðr; tÞ þ ð�1Þl�1pCðrÞ

�
ð
d3r0

X2
m¼1

clmðr� r0Þnmðr0; tÞ;
(A12)

with clm(r � r0) denoting the DCF between the l-th and m-th
ions. Eqn (A12) yields J0

l (r, t) for electric-field-driven electrolytes
in the presence of an applied steady potential C(r) as well as the
interaction potential,

clðr; tÞ ¼ �
ð
d3r0

X2
m¼1

clmðr� r0Þnmðr0; tÞ; (A13)

which is a time-varying potential due to the time dependence of
nm(r0, t). Combining eqn (A10), (A12) and (A13), we have

J0
l ðr; tÞ ¼ Dnlðr; tÞð�1Þl�1pE

�Dnlðr; tÞr ln nlðr; tÞ þ clðr; tÞf g;
(A14)

where the applied electric field E 	 �rC(r) generates, in units
of kBT, an external force (�1)l�1pE exerted on a cation (l = 1) or
an anion (l = 2).

Self-energy contribution.10,25 We evaluate the free-energy
difference DF[n, /] in the Gaussian approximation, or the
Gaussian expansion around the equilibrium free-energy func-
tional F[n, 0] with the density distributions being fixed at n(r, t).
Namely, DF[n, /] is expressed by the quadratic term of fluctuat-
ing /-fields:

DF ½n;/� ¼ 1

2

ðð
d3rd3r0/ðrÞTNðr� r0Þ/ðr0Þ; (A15)

where the N -matrix is given by

N ðr� r0Þ ¼
N 11ðr� r0Þ N 12ðr� r0Þ

N 21ðr� r0Þ N 22ðr� r0Þ

 !
; (A16)

N lmðr� r0Þ ¼ nlðrÞ dlmdðr� r0Þ þ hlmðr� r0Þnmðr0Þf g; (A17)

using the total correlation functions hlm (r � r0) between the l-th
and m-th ions. As detailed in Appendix C, combination of
eqn (A8) and (A15) yields eqn (9):

mdl ½n� ¼
uðr; tÞ
2
¼ 1

2
lim
r!r0

cllðr� r0Þ � hllðr� r0Þf g: (A18)

It follows from eqn (A11) and (A18) that

Jd
l ðr; tÞ ¼ � Dnlðr; tÞ

ruðr; tÞ
2

¼ �Dnlðr; tÞ
rcllð0Þ

2
;

(A19)

where use has been made of the identity, hll(0) = �1 indepen-
dent of nl(r, t), in the last equality.

2. Modified Poisson equations given by eqn (14) and (15)

The DCF form given by eqn (12) and (13). In the modified
MSA,43 the DCF is of the following form:

�clmðkÞ ¼
4p
k2

flmðkÞ; (A20)

flm(k) = f c
lm(k) + f h

lm(k), (A21)

f c
lm(k) = (�1)l+mp2lB cos(ks), (A22)

f hlmðkÞ ¼ �s cosðksÞ � sinðksÞ
ks

� �
; (A23)

where flm(k) is separated into two parts, f c
lm and f h

lm. Eqn (A21)
reduces to

flm(k) E f c
lm(k) = (�1)l+mp2lB cos(ks) (A24)

when

p2lB

s
� 1: (A25)

Namely, the above expression of the DCF given by eqn (12)
and (13) is verified in the modified MSA43 under the condition
(A25). It is noted that the approximation (A24) applies to the
primitive model because f c

lm(k) represents Coulomb interac-
tions including steric effects.15 The relation (A25) corresponds
to the strong-coupling condition for one-component plasma,
implying that the strong Coulomb interactions justify the
negligibility of f h

lm given by eqn (A23). In this paper, we have
supposed that, in general, the simplified form (13) applies to
aqueous electrolytes if only because of p2lB/s4 1 (see Section V
for a more detailed comparison between the relation (A25) and
experimental conditions).

Finite-spread Poisson equation: derivation of
eqn (14).13,15,24,39–41 The two interaction potentials, c1(r, t)
and c2(r, t), have been defined in eqn (A13); however,
the approximate form of the DCF given by eqn (13) justifies
that

c(r, t) = c1(r, t) = �c2(r, t). (A26)

Thus, the expression (7) of c(r, t) has been verified by eqn (A26),
and the approximate form (13) follows the notations of

c11(r, t) = c22(r, t) = c(r, t), (A27)

c12(r, t) = c21(r, t) = �c(r, t), (A28)

thereby leading to the finite-spread Poisson eqn (14).
Higher-order Poisson equation: derivation of eqn (15).5–10,21–24

We perform the small ks-expansion of o(k) in eqn (13), yielding

oðkÞ � 1� ðksÞ
2

2
; (A29)

irrespective of the model forms given by eqn (12). It follows from
eqn (7), (8), (12) and (13) that the Fourier transform of the Poisson
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equation reads

k2cðkÞ ¼ 4pp2lBoð�kÞqðk; tÞ

¼ ðpeÞ2
kBTe

1� ðksÞ
2

2

� �
qðk; tÞ;

(A30)

which is further reduced to

kBTe 1þ k2s2

2

� �
k2cðkÞ ¼ ðpeÞ2qðk; tÞ; (A31)

in the small ks-expansion: (1 � k2s2/2)�1 E 1 + k2s2/2. The real-
space representation of eqn (A31) is the higher-order Poisson
eqn (15).

3. Stochastic mPNP currents given by eqn (3) and (30)

Confirming the self-energy-modified PNP current given by
eqn (3). Eqn (A26) reads

cl(r) = (�1)l�1c(r). (A32)

Plugging this expression (A32) into eqn (A14), combination of
eqn (A9), (A14) and (A19) provides

J lðr; tÞ ¼ Dnlðr; tÞð�1Þl�1pE

�Dnlðr; tÞr ln nlðr; tÞ þ ð�1Þl�1cðr; tÞ þ
uðr; tÞ
2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dnlðr; tÞ

p
zlðr; tÞ:

(A33)

While eqn (A18) and (A27) with the notation of hll (r) = h(r) verify
the self-energy u(r, t) given by eqn (9)–(11), it has been con-
firmed in the preceding subsection that c(r, t) satisfies
eqn (15). Thus, we have proved that eqn (A33) is of the same
form as eqn (3) with eqn (4) and (6).

Derivation of linear mPNP current given by eqn (30).13–15 Let
nl(r, t) be the density difference:

nl(r, t) = nl(r, t) � %n. (A34)

To linearize the self-energy-modified current given by eqn (3),
we expand the chemical potential ml around n1(r, t) = n2(r, t) = %n
(or q 	 0) to the first order in nl(r, t):

ml ½n� ¼ ln nlðr; tÞ þ ð�1Þl�1cðr; tÞ þ
uðr; tÞ
2

¼ ml ½n� þ
X2
m¼1

ð
d3r0

dml ½n�
dnmðr0; tÞ

				
nm¼n

nmðr0; tÞ

¼ ml ½n� þ
nlðr; tÞ

n

þ
X2
m¼1

ð
d3r0

dUl ½n�
dnmðr0; tÞ

				
nm¼n

nmðr0; tÞ;

(A35)

with ml[ %n] denoting ml[ %n] = ml[( %n, %n)T]. Since we haveX2
m¼1

ð
d3r0

dUl ½n�
dnmðr0; tÞ

				
nm¼n

nmðr0; tÞ

¼ �ð�1Þl�1
ð
dr0cðr� r0Þqðr0; tÞ

¼ ð�1Þl�1cðr; tÞ;

(A36)

neglecting the contribution from the triplet DCF, eqn (A35)
simply reads

ml n½ � ¼ ml �n½ � þ nlðr; tÞ
�n
þ�ð�1Þl�1cðr; tÞ (A37)

Combining eqn (3) and (A37), the mPNP current becomes, to
the lowest order,

J1

J2

 !
¼ �D

rn1ðr; tÞ þ nrcðr; tÞ � n1ðr; tÞpE

rn2ðr; tÞ � nrcðr; tÞ þ n2ðr; tÞpE

 !

�
ffiffiffiffiffiffiffiffiffi
2Dn
p z1ðr; tÞ

z2ðr; tÞ

 !
:

(A38)

We also note that

rr(r, t) = r{n1(r, t) + n2(r, t)}, (A39)

rq(r, t) = r{n1(r, t) � n2(r, t)}. (A40)

Thus, eqn (A38)–(A40) lead to the stochastic currents, Jr = J1 + J2

and Jq = J1 � J2, given by eqn (30).

4 Equal-time correlation functions given by eqn (43)–(46)

Stationary condition of equal-time correlation matrix. The
compact form (32) of the stochastic equation is solved to
obtain13,15

hðk; tÞ ¼
ðt
�1

dse�DKðkÞðt�sÞ
� � ffiffiffiffiffiffiffiffiffi

4Dn
p

gðkÞ: (A41)

It follows from eqn (5) and (29) that

gðk; tÞgð�k; tÞT

 �

¼ ð2pÞ3 k2dðt� t 0Þ 0
0 k2dðt� t 0Þ

� �
: (A42)

Plugging eqn (A41) and (A42) into the definition (40) of the
equal-time correlation matrix, we have

Cðk; tÞ ¼
ðð
�1

dsds0e�DKðt�sÞDRe�DKyðt�s0Þ; (149)

where the relation (A42) generates the following matrix:

RðkÞ ¼ ð2pÞ3 4nk2 0
0 4nk2

� �
: (A44)

It has been shown that the stationary condition dCðk; tÞ=dt ¼ 0

for the expression (A43) reads13,15

KC þ CKy ¼ R: (A45)

The four matrix elements of C, or the four kinds of correlation
functions in eqn (40), can be determined by four simultaneous
equations arising from the above stationary condition (A45)
(see Appendix D for details).
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Density–density and charge–charge correlation functions at
equal times: derivation scheme of eqn (43)–(48). We are con-
cerned with the stationary density–density and charge–charge

correlation functions at equal times, Cstrr and Cstqq, among the

matrix elements of C. As detailed in Appendix D, the solution to
eqn (A45) reads

PðkÞ
CstrrðkÞ

CstqqðkÞ

0@ 1A ¼ ð2pÞ3G2ðkÞ 2nk2

2nk2

 !
; (A46)

where G2ðkÞ has been defined in eqn (45), and the matrix
elements of PðkÞ is given by

PðkÞ¼
k2G2ðkÞþkx

2ðpEÞ2 �kx2ðpEÞ2

�kx2ðpEÞ2 G1ðkÞG2ðkÞþkx
2ðpEÞ2

 !
: (A47)

Obviously, eqn (A46) and (A47) transform to eqn (43)–(48).

Appendix B. Details on the constrained
free energy A½n� of a given density
distribution n(r, t)

We consider the overdamped dynamics of ions with the total
number N of charged spheres being fixed. Hence, the con-
strained free-energy functional A½n� of a given density distribu-
tion nl(r, t) (l = 1,2) is defined for the canonical ensemble using
the contour integral over a complex variable w = em:28

e�A½n� ¼ 1

2pi

I
dw

wNþ1

� �2

� Tre�U½n̂�
Y2
l¼1

Y
r

d bnlðr; tÞ � nlðr; tÞ½ �
 !

;

(B1)

Tr ¼
X1
N¼0

1

N!

 !2Y2
l¼1

ð
drl1 � � �

ð
drlN ; (B2)

U½n̂� ¼
X2
l¼1

X2
m¼1

1

2

ðð
d3rd3r0bnlðrÞvlmðr� r0ÞbnmðrÞ�

�
ð
d3rbnlðrÞm�:

(B3)

In eqn (B1), the Dirac delta functional represents the constraint

on the original density distribution bnlðrÞ ¼PN
i¼1

d½r� rliðtÞ�. It has

been shown for one-component fluid that the constrained free
energy functional is expressed by the functional integral over a
fluctuating potential field. Similarly, we have

e�A½n� ¼ 1

2pi

I
dw

wNþ1

� �2Y2
l¼1

ð
Dfle

�F ½n;/�þ
Ð
d3rnlðrÞm

¼
Y2
l¼1

ð
DflD½nl �e�F ½n;/�;

(B4)

where

F ½n;/� �
X2
l¼1

ð
drnlðrÞm

¼ O½udft � i/� �
X2
l¼1

ð
drnlðrÞ jdft

l ðrÞ � iflðrÞ
� �

;

(B5)

and the superscript ‘‘dft’’ denotes the equilibrium DFT37

according to which the external field jdft
l (r) is used for ensuring

that the equilibrium density found from the grand potential
O[u] is equated with nl(r):

dO½u�
djlðrÞ

				
jl¼jdft

l

¼ nlðrÞ: (B6)

The free-energy functional F[n, 0] in the absence of fluctuating
/-field corresponds to the intrinsic Helmholtz free energy that
is related to the grand potential O[udft] through the Legendre
transform using the external field jdft

l (r):

F ½n; 0� �
X2
l¼1

ð
drnlðrÞm ¼ O½udft� �

X2
l¼1

ð
drnlðrÞjdft

l ðrÞ; (B7)

as well as the equilibrium DFT.

Appendix C. Derivation of ld
l given by

eqn (A18)

Let us introduce the potential–potential correlation matrix U

that represents the set of potential–potential correlation func-
tions defined by

Fðr� r0Þ ¼ /ðrÞ/Tðr0Þ

 �

f (C1)

¼ F11ðr� r0Þh if F12ðr� r0Þh if
F21ðr� r0Þh if F22ðr� r0Þh if

� �
; (C2)

where hFlm(r � r0)if is related to the DCF function
clm(r � r0) as

Flmðr� r0Þh if ¼ flðrÞfmðr0Þh if

¼ dlmdðr� r0Þ
nlðrÞ

� clmðr� r0Þ:
(C3)

The average, hfl(r)fm(r0)if, has been performed over the fluc-
tuating potential field as

flðrÞfmðr0Þh if¼

Q2
l¼1

Ð
DflflðrÞfmðr0Þe�DF ½n;/�Q2
l¼1

Ð
Dfle

�DF ½n;/�
; (C4)

following the expression (A8). Hence, eqn (C4) yields
eqn (C3) as far as the Gaussian functional form (A15) for
DF[n, /] is concerned. It is found from eqn (A17) and (C3)
that the Ornstein–Zernike equations for two-component
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liquids read

N ðkÞUð�kÞ ¼ I ; (C5)

indicating that the Fourier-transformed matrix U(�k) is the
inverse of density–density correlation matrix N ðkÞ.

Considering that N 12 ¼ N 21 for the density–density correla-
tion function N lmðr� r0Þ defined by eqn (A17), eqn (A15)
leads to

dDF ½n;/�
dn1ðrÞ

� �
f
¼ d

dn1ðrÞ

ðð
d3rd3r0

1

2
N 11ðr� r0ÞF11ðr� r0Þ

� �
f

þ d
dn1ðrÞ

ðð
d3rd3r0N 12ðr� r0ÞF12ðr� r0Þ

� �
f
:

(C6)

To evaluate the above functional derivatives, we introduce the
following notations: it follows from eqn (A17) that

d
dnlðrÞ

ðð
d3rd3r0N lmðr� r0Þ ¼

ð
d3r0N ð1Þlm ðr� r0Þ;

Nð1Þlm ¼ dlm dðr� r0Þ þ hlmðr� r0Þnmðr0Þf g

N ð1Þlm ¼ dlm dðr� r0Þf þ hlmðr� r0Þnmðr0Þ;

(C7)

with which we have

d
dnlðrÞ

ðð
d3rd3r0N lmðr� r0ÞFlmðr� r0Þ

� �
f

¼

Q2
l¼1

Ð
Dfle

�DF ½n;/� d
dnlðrÞ

Ð Ð
d3rd3r0N lmFlm

� �
Q2
l¼1

Ð
Dfle

�DF ½n;/�

¼
ð
d3r0 N ð1Þlm Flmh ifþN lm Fð1Þlm

D E
f

� �
;

(C8)

using F(1)
lm, a derivative of Flm, defined by eqn (C7) and (C8). At

the same time, it is also useful to consider the following
functional derivative:

ð
d3r0 Flmh ið1Þf ¼

d
dnlðrÞ

ðð
d3rd3r0 Flmh if

� �

¼ d
dnlðrÞ

dlmdðr� r0Þ
nlðrÞ

� clmðr� r0Þ
� �

¼ � dlmdðr� r0Þ
nl2ðrÞ

;

(C9)

where use has been made of the expression (C3) in the last two
equalities.

The unknown functional hF(1)
lmif is related to hFlmi(1)

f , given
by eqn (C9), asð

d3r0 Flmh ið1Þf ¼
d

dnlðrÞ

ðð
d3rd3r0 Flmh if

� �

¼ d
dnlðrÞ

Ð Ð
d3rd3r0

Q2
l¼1

Ð
DflFlme

�DF ½n;/�

Q2
l¼1

Ð
Dfle

�DF ½n;/�

8>>><>>>:
9>>>=>>>;

¼
ð
d3r0 Fð1Þlm

D E
f
� Flm

dDF ½n;/�
dnlðrÞ

� �
f

"

�
ð
d3r0 Fð1Þlm

D E
f

�
þ Flmh if

dDF ½n;/�
dnlðrÞ

� �
f

#

�
ð
d3r0 Fð1Þlm

D E
f
;

(C10)

stating that hF(1)
lmif can be equated with hFlmi(1)

f in the
approximation of hABif E hAifhBif for A = Flm and
B ¼ dDF ½n;/�=dnlðrÞ. Thus, we obtainð

d3r0N lm Fð1Þlm

D E
¼
ð
d3r0nlðrÞ dlmdðr�r0Þþhlmðr�r0Þnmðr0Þf g

� �dlmdðr�r0Þ
n2l ðrÞ

� �
¼ �dlm

1

nlðrÞ
þhlmð0Þ

� �
;

(C11)

from plugging eqn (C9) and (C10) into the second term in the
last line of eqn (C8).

Meanwhile, we haveð
d3r0N ð1Þlm Flmh if ¼

ð
d3r0½dlm dðr� r0Þþhlmðr� r0Þnmðr0Þf g

þhlmðr� r0Þnmðr0Þ�
dlmdðr� r0Þ

nlðrÞ
� clmðr� r0Þ

� �
:

(C12)

Hence, the combination of eqn (C11) and (C12) gives

1

2

ð
d3r0 N ð1Þ11 F11h ifþN 11 F11h ið1Þf

� 
¼ 1

2

1

n1ðrÞ
þ2h11ð0Þ� c11ð0Þ

�

�2

ð
d3r0h11ðr� r0Þn1ðr0Þc11ðr� r0Þ

� 1

n1ðrÞ
þh11ð0Þ

� ��

¼ 1

2
h11ð0Þ� c11ð0Þf g

�
ð
d3r0h11ðr� r0Þn1ðr0Þc11ðr� r0Þ;

(C13)
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and ð
d3r0 N ð1Þ12 F12h ifþN 12 F12h ið1Þf

� 
¼�

ð
d3r0h12ðr� r0Þn2ðr0Þc12ðr� r0Þ:

(C14)

Considering the Ornstein–Zernike equation,

h11ð0Þ¼ c11ð0Þþ
X2
m¼1

ð
d3r0h1mðr� r0Þnmðr0Þc1mðr� r0Þ; (C15)

the sum of eqn (C13) and (C14) leads to

dDF ½n;/�
dn1ðrÞ

¼ 1

2
h11ð0Þ� c11ð0Þf g

�
ð
d3r0h11ðr� r0Þn1ðr0Þc11ðr� r0Þ

�
ð
d3r0h12ðr� r0Þn2ðr0Þc12ðr� r0Þ

¼ 1

2
c11ð0Þ�h11ð0Þf g:

(C16)

Thus, the resulting form (A18) of mdl has been verified.

Appendix D. Solving the steady-state
eqn (A45)
1. Derivation of eqn (A46) and (A47)

We calculate the matrix elements of KC and CKy, using a
simplified form of

KðkÞ ¼ a ig
ig aþ b

� �
; (D1)

with a = k2, b ¼ k2oðkÞ and g ¼ kxpE. It follows that

KC ¼
aCstrr þ igCstrq aCstqr þ igCstqq

ðaþ bÞCstrq þ igCstrr ðaþ bÞCstqq þ igCstqr

0@ 1A; (D2)

CKy ¼
aCstrr � igCstqr ðaþ bÞCstqr � igCstrr

aCstrq � igCstqq ðaþ bÞCstqq � igCstrq

0@ 1A: (D3)

The sum of eqn (D2) and (D3) provides the steady-state
eqn (A45) which consists of the four kinds of equations for
correlation functions as follows:

2aCstrr þ ig Cstrq � Cstqr
� 

¼ ð2pÞ34nk2

2ðaþ bÞCstqq � ig Cstrq � Cstqr
� 

¼ ð2pÞ34nk2

ð2aþ bÞCstqr þ ig Cstqq � Cstrr
� 

¼ 0

ð2aþ bÞCstrq � ig Cstqq � Cstrr
� 

¼ 0:

8>>>>>>>>>>><>>>>>>>>>>>:
(D4)

It is easy to find from the last two equations of the above set
that Cstrq ¼ �Cstqr and

Cstrq � Cstqr ¼
2ig

2aþ b
Cstqq � Cstrr
� 

: (D5)

Substituting eqn (D5) into the first two equations of eqn (D4),
we have

aCstrr �
g2

2aþ b
Cstqq � Cstrr
� 

¼ ð2pÞ32nk2

ðaþ bÞCstqq þ
g2

2aþ b
Cstqq � Cstrr
� 

¼ ð2pÞ32nk2;

8>>>><>>>>: (D6)

which reads

1

2aþ b
PðkÞ

Cstrr
Cstqq

 !
¼ ð2pÞ32n k2

k2

� �
; (D7)

and

PðkÞ ¼
að2aþ bÞ þ g2 �g2

�g2 ðaþ bÞð2aþ bÞ þ g2

 !
: (D8)

In the matrix elements, we note that 2aþ b ¼ G2ðkÞ and
aþ b ¼ G1ðkÞ. Hence, the above expressions (D7) and (D8) are
found to be equivalent to eqn (A46) and (A47).

2 Derivation of eqn (49)

Eqn (43)–(46) are combined into a single form,

1

ð2pÞ3
CstrrðkÞ

CstqqðkÞ

0@ 1A ¼ 2nk2

G2ðkÞ k2G1ðkÞ þ k2xðpEÞ2
� �

�
G1ðkÞG2ðkÞ þ 2kx

2ðpEÞ2

k2G2ðkÞ þ 2kx
2ðpEÞ2

 !
:

(D9)

The three propagators, G1ðkÞ, G2ðkÞ and k2 þ 2kx
2ðpEk�1Þ2, can

be simply approximated by k2 when considering the small
wavevector region of kxk�1 � 1 at a moderate field strength
of pEk�1 
 1. This approximation allows eqn (D9) to be
reduced to

1

ð2pÞ3
CstrrðkÞ

CstqqðkÞ

0@ 1A � 2nk2

k2 k2 þ kx2ðpEk�1Þ2f g

�
k2

k2 þ 2kx
2ðpEk�1Þ2

 !
;

(D10)

whose rearrangement leads to eqn (49).

Appendix E. Derivation of eqn (89) and
(90)

The discriminant analysis of eqn (87) provides the determining

equation for the Debye–Hückel length kð�1Þ on the Kirkwood

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
M

ay
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/9
/2

02
5 

10
:3

0:
51

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sm01811f


4302 |  Soft Matter, 2022, 18, 4280–4304 This journal is © The Royal Society of Chemistry 2022

crossover:

1� a1 kð�1Þ
� 2

s2
� �2

� 4a2 kð�1Þ
� 2

s2 kð�1Þ
� 2

s2 þ E2
� �

¼ 0;

(E1)

with E2 	 ðpEÞ2s2. Eqn (87) reads the following quadratic
equation,

a21 � 4a2
� �

X2 � 2 a1 þ 2a2E2
� �

X þ 1 ¼ 0; (E2)

for X ¼ kð�1Þs
� �2

. The solution X to eqn (E2) is

X ¼ 1

a12 � 4a2
a1 þ 2a2E2 � 2

ffiffiffiffiffi
a2
p ð1þ a1E2 þ a2E4Þ1=2

h i
: (E3)

At a low field strength of E � 1, the numerator on the rhs of
eqn (E3) is approximated by

a1 þ 2a2E2 � 2
ffiffiffiffiffi
a2
p ð1þ a1E2 þ a2E4Þ1=2

� a1 þ 2a2E2 � 2
ffiffiffiffiffi
a2
p

1þ a1E2
2

� �
¼ a1 � 2

ffiffiffiffiffi
a2
pð Þð1� ffiffiffiffiffi

a2
p E2Þ;

(E4)

whereas we have

a1 þ 2a2E2 � 2
ffiffiffiffiffi
a2
p ð1þ a1E2 þ a2E4Þ1=2

� 2a2E2 � 2
ffiffiffiffiffi
a2
p ða2E4Þ1=2 ¼ 0;

(E5)

for the high field strength of E � 1. While the approximate
form (E4) of the numerator results in the expression (89), the
limiting result (90) is valid due to eqn (E5).
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Stat., Nonlinear, Soft Matter Phys., 2004, 70, 012401;
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(e) V. Démery, O. Bénichou and H. Jacquin, New J. Phys.,
2014, 16, 053032; ( f ) P. H. Chavanis, Entropy, 2019,
21, 1006.

27 (a) T. Leonard, B. Lander, U. Seifert and T. Speck, J. Chem.
Phys., 2013, 139, 204109; (b) H. Jacquin, B. Kim, K. Kawasaki
and F. van Wijland, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2015, 91, 022130; (c) N. Bidhoodi and S. P. Das, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2015, 92, 012325;
(d) D. S. Dean, B. S. Lu, A. C. Maggs and R. Podgornik, Phys.
Rev. Lett., 2016, 116, 240602; (e) M. Krüger and D. S. Dean,
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