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Frame tension governs the thermal fluctuations of
a fluid membrane: new evidence

Marc Durand

Two different tensions can be defined for a fluid membrane: the internal tension, g, conjugated to the real

membrane area in the Hamiltonian, and the frame tension, t, conjugated to the projected (or frame) area.

According to the standard statistical description of a membrane, the fluctuation spectrum is governed by

g. However, using rotational invariance arguments, several studies argued that the fluctuation spectrum

must be governed by the frame tension t instead. These studies disagree on the origin of the result

obtained with the standard description yet: either a miscounting of configurations, quantified with the

integration measure, or the use of a quadratic approximation of the Helfrich Hamiltonian. Analyzing the

simplest case of a one-dimensional membrane, for which the arc length offers a natural parametrization,

we give a new proof that the fluctuations are driven by t, and show that the origin of the issue with the

standard description is a miscounting of membrane configurations. The origin itself of this miscounting

depends on the thermodynamic ensemble in which calculations are made.

1 Introduction

Bilayer membranes are quasi-two-dimensional fluid sheets
formed by spontaneous self-assembly of lipid molecules in water.
They are of utmost importance for the proper functioning of living
cells, as they spatially separate intracellular compartments and
present a boundary to the extracellular environment. Their
mechanical properties play a key role in many cellular processes
like motility, proliferation and endocytosis. Hence, a physical
understanding of the bilayer membrane and its mechanics is
necessary for the proper understanding of biological cells, and
has motivated a long series of investigations. In particular, a
number of questions have been raised regarding the definition of
the tension of a fluid membrane, stirring up much debate among
physicists.

The elasticity of a fluid membrane is traditionally studied in
the framework of the Helfrich effective Hamiltonian:1,2

H ¼
ð
A

dA gþ k
2
H2 þ k

2
G

� �
: (1)

Here the integral runs over the surface area A of the membrane,
H and G are the mean and Gaussian curvatures, while k and �k
are the bending rigidity and the Gaussian rigidity, respectively.
According to the Gauss–Bonnet theorem, the surface integral
over the Gaussian curvature G can be written as a constant plus
a boundary term which, for larger membranes, is negligible in
comparison with the gA term.

It must be noted that eqn (1) applies to a fluid membrane with
fluctuating area A: either the membrane is incompressible but
exchanges lipid molecules with a reservoir, and then the intrinsic
(or internal) tension g is essentially the chemical potential of the
reservoir of molecules;3 or the membrane is compressible but
contains a fixed number of molecules, and then g is the mechan-
ical tension associated with the departure of the lipid surface
concentration from the equilibrium configuration.4

The intrinsic tension g must not be confused with the
frame tension t, which corresponds to the force per unit length
that the interface would exert on a surrounding frame whose
area Ap is kept fixed, and which is the actual mechanically
accessible quantity. Intrinsic and frame tensions are clearly
different for a fluctuating membrane: g is the conjugate vari-
able to its surface area A, while t is the conjugate variable to its
area projected on the frame Ap = Lp � Lp. The latter is then a
thermodynamic quantity which depends on the entropy of the
membrane, and can be seen as the renormalized version of the
former.

When the membrane fluctuates only weakly about a plane,
its statistical properties are treated analytically, based on the
following set of assumptions:

1. Monge parametrization: the membrane position is described
in terms of its height h(x, y) above the underlying reference plane as
a function of the orthogonal coordinates x and y, thereby excluding
conformations in which the surface forms overhangs. The area of

the membrane is then A ¼
Ð Ð

Ap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrhÞ2

p
dxdy.

2. Assuming small fluctuations, the energy of the membrane
is described with the quadratic approximation of the Helfrich
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Hamiltonian eqn (1) (omitting the contribution of the Gaussian
curvature):

H ’
ð
Ap

dxdy g 1þ 1

2
ðrhÞ2

� �
þ k

2
ðr2hÞ2

� �
: (2)

3. Monge integration measure: the membrane partition func-
tion X is obtained by summing over all interface configurations,
which mathematically expresses as a functional integral:

X ¼
ð
e�bH½h�D½h�: (3)

Defining an integration measure D½h� requires discretization of
the interface.5 Here, the membrane is discretized in Np � Np

patches with constant dimension ap (with Np = Lp/ap c 1) on the

reference frame, and the integration measure is D½h�Monge �

QNp�1

m;n¼1
dhmn=‘ where c, the quantum of height fluctuation, is a

characteristic length introduced to render the integration
measure properly dimensionless.

In the rest of the present paper, we will refer to this set of
assumptions as the Monge model (although this is more than
just the Monge parametrization, obviously).

A third tension has been introduced in the literature, named
fluctuation tension r, and defined as the q2-coefficient in the
membrane fluctuation spectrum:

hj~hðqÞj2i ¼ kBT

Ap rq2 þ Oðq4Þð Þ: (4)

Using very general arguments based on the rotational invar-
iance of the free energy of an incompressible membrane, Cai
et al.3 came to the conclusion that the fluctuation tension must
coincide with the frame tension: r = t. This result was then
extended to the case of a compressible membrane by Farago.4

Yet, evaluation of the height fluctuations based on the Monge
model yields r = g instead (see Section 2). The reason advanced
to explain this discrepancy differs with authors: Farago,4 then
Schmid,6 attributed this issue to the use of the approximated
Hamiltonian eqn (2) in the Monge model, which does not
satisfy rotational invariance. For Cai et al.3 on the other hand,
the issue comes from the non-rotational invariance of the
integration measure D½h�Monge. Hence, for Farago and Schmid,

if one uses the exact Helfrich Hamiltonian but keeps the Monge
measure in the calculations, one should recover r = t, while for
Cai et al., the integration measure must be modified. In their
study,3 the latter derives the corrective terms to the integration
measure in order to recover r = t, while still using the approxi-
mated Hamiltonian eqn (2). In spite of the results presented in
these different studies, expressions of eqn (4) with both r = t3,6–12

and r = g13–16 are still commonly found in the devoted literature,
and still nowadays the exact relation between the different
membrane tensions is the object of numerical investigations.17,18

Elucidating whether the fluctuation tension r matches the frame
tension t, or the intrinsic tension g, or none of them, is not just a
purely academic question: it is also crucial for experimental19–21

and particle-based numerical13,22–25 investigations dealing with
membrane fluctuations. The intrinsic tension, introduced within
the Helfrich Hamiltonian, is not a quantity which is directly
measurable; its determination relies on the accurate theoretical
relationship with the frame or fluctuation tension.

In the present paper, focusing on the simpler case of a one-
dimensional (1D) membrane embedded in the plane (or equiva-
lently, a two-dimensional membrane which fluctuates along one
direction only), we provide a new demonstration that the
membrane fluctuations are governed by the frame tension. This
demonstration enforces previous arguments advanced to justify
that r = t, and then increases our confidence in the final result.
Moreover, our analysis allows clearly pointing out the inconsisten-
cies in the Monge model: in agreement with Cai et al., we show that
they are caused by an inaccurate integration measure, rather than
the use of the approximated Hamiltonian. Nonetheless, restoring
rotational invariance of the integration measure is not mandatory
to recover r = t from calculations: a consistent expansion of the
Hamiltonian and the measure leads to the correct result.

The outline of the paper is as follows: in Section 2, we give one
more evidence than the Monge model has some consistency
issues: analyzing the fluctuations of a 1D incompressible
membrane either with fluctuating physical length L but fixed
projected length on the frame Lp, or with fixed L but fluctuating
Lp, we show that the Monge model does not satisfy equivalence of
thermodynamic ensembles, in contradiction with the fundamen-
tals of statistical physics. Specifically, we obtain r = g in the first
ensemble, while r = t in the second ensemble. In Section 3 we
discuss the coarse-graining procedure based on which the Monge
model is built, highlighting the origin of the troubles with this
model: the choices made for the expression of the coarse-grained
Hamiltonian (or its quadratic approximation) and that of the
integration measure are not compatible choices to build a free
energy that satisfies rotational invariance. In Section 4 we develop a
coarse-grained model for a 1D membrane, for which a rotationally
invariant integration measure is built from first principles. Using a
consistent expansion of this measure and the Hamiltonian, we
obtain r = t for a membrane with fluctuating length and then
recover ensemble equivalence. In Section 5 we show that to obtain
this result, the only correction needed for the Monge model is to
take into account the fluctuating character of the number of
patches in the integration measure. We then discuss the situation
of a compressible membrane with a fixed number of molecules. We
show that here again, the Monge integration measure must be
modified to recover r = t. We also discuss the case of an interface
between two fluids, which has no bending rigidity and so is
stabilized by surface tension only. In that case the intrinsic tension
and frame tension cannot be distinguished for small fluctuations.

2 One more evidence of Monge model
inconsistency: non-equivalence of
ensembles

We start our analysis by calculating the average square height
and average length of a 1D incompressible membrane within
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two different statistical ensembles using the Monge model, and
show that the expressions are different in the thermodynamic limit,
in contradiction with the fundamentals of statistical physics.

2.1 (T, Lp, c) ensemble

We first consider an incompressible membrane in the ensem-
ble (T, Lp, g) where temperature T, projected length Lp and
intrinsic tension g are fixed (see Fig. 1a). The 1D version of
Helfrich Hamiltonian eqn (1) is

H ¼
ðL
0

ds gþ k
2
CðsÞ2

n o
; (5)

(where C(s) is the local curvature along arc length s, and L is the
length of the membrane), and its quadratic approximation is
written as

H ¼ gLp þ
ðLp

0

dx
g
2

dh

dx

� �2

þk
2

d2h

dx2

� �2
( )

: (6)

In agreement with the Monge model, we consider a discre-
tized version of the membrane made of Np c 1 patches whose
x coordinates are distributed evenly, with projected distance
ap = Lp/Np. Assuming fixed boundary conditions h (x = 0) = h (x =
Lp) = 0, we expand h(x) as a sine Fourier series:

hðxÞ ¼
XNp�1

n¼1

~hn sin
npx
Lp

� �
: (7)

The Hamiltonian eqn (6) can be rewritten in terms of the h̃n as:

H ¼ Lp gþ 1

4

XNp�1

n¼1
gqn2 þ kqn4
� �

~hn
2

 !
; (8)

where qn = np/Lp.
We then evaluate the partition function of the membrane

XMonge ¼
Ð
e�bHD½h�Monge, with D½h�Monge �

QNp�1

n¼1
dhn=‘ �

Jh!~h

QNp�1

n¼1
d~hn=‘. We introduced in the last equality Jh-h̃, the

Jacobian associated with the change of variables from the real
to reciprocal space. Because of the linear relationship between
the two sets of variables (eqn (7)), we know that Jh-h̃ is
constant. Its value can be obtained, e.g., by calculating a simple

Gaussian integral in both direct and reciprocal spaces. We show in
Appendix A that, with our choice for normalization of Fourier
coefficients, one has Jh-h̃ = ((Np � 1)/2)Np/2. Summing over all
Fourier components h̃n finally yields

XMonge ¼ Jh!~he
�bgLp

YNp�1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

bLp‘2ðgqn2 þ kqn4Þ

s
: (9)

Let us emphasize again that the number of molecules that
compose the interface fluctuates, so XMonge is really a grand-
canonical partition function. Assuming the moderate tension

and/or thermodynamic limit
ffiffiffiffiffiffiffiffi
k=g

p
� Lp

	 

; and using a contin-

uous description of Fourier modes, we get

lnXMonge¼�bLp gþkBT

2p

ðp=ap
0

ln
bap‘2

2p
ðgq2þkq4Þ

� �
dq

 !
: (10)

Note that the introduction of the Jacobian Jh-h̃ ensures that
lnXMonge is extensive at the thermodynamic limit: lnXMonge p

Lp. It will also affect the expression of the frame tension t.
We then obtain the average squared amplitude of height

straightforwardly:

~hn
2

D E
¼ �kBT

@ lnXMonge

@an
¼ 2kBT

Lpðgqn2 þ kqn4Þ
; (11)

where an = Lp (gqn
2 + kqn

4)/4. Actually, defining the fluctuation
tension from the mean square amplitude of the Fourier mode is
not very convenient when it comes to comparing between
different thermodynamic ensembles, because the wavenumber
does not necessarily follow the same discretization in different
ensembles (e.g., multiples of p/Lp in the ensemble where Lp

is fixed, and multiples of p/L in the ensemble where L is fixed).
As a consequence, the variable h̃n does not correspond to the
same wavenumber value in different ensembles. To avoid this
complication, we express the average of real variables such as
the average squared height hh2i or equivalently, the average
membrane length hLi = Lp(1 +hh02i/2), which can be deduced
directly from the partition function as:

Lh i ¼ � kBT
@ lnXMonge

@g

¼ Lp 1þ kBT

2p

ðp=ap
0

dq

gþ kq2

 ! (12)

Fig. 1 Two different thermodynamic ensembles used to calculate the height and length fluctuations of an incompressible membrane: (a) (T, Lp,g)
ensemble; and (b) (T, t, L) ensemble.
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¼ Lp 1þ kBT

2p
ffiffiffiffiffi
kg
p arctan

p
ap

ffiffiffi
k
g

r� �� �
: (13)

Eqn (11) and (13) are the 1D versions of the expressions of hh̃n
2i

and hAi derived for a 2D membrane with the Monge model.3,26

As mentioned above, within this description the fluctuation
tension matches the intrinsic tension: r = g. In ref. 6, the

expression of L has been derived assuming
ffiffiffiffiffiffiffiffi
k=g

p
� ap;

whereas eqn (13) assumes
ffiffiffiffiffiffiffiffi
k=g

p
� Lp. Hence, both expres-

sions converge to the same following formula within the range

ap �
ffiffiffiffiffiffiffiffi
k=g

p
� Lp:

Lh i ’ Lp 1þ kBT

4
ffiffiffiffiffi
kg
p

� �
: (14)

The frame tension is given by

t ¼ � kBT
@ lnXMonge

@Lp






T ;g

¼ gþ kBT

2p

ðp=ap
0

ln
bap‘2

2p
ðgq2 þ kq4Þ

� �
dq

(15)

¼ gþ kBT

2p
p
ap

ln
bap‘2

2pe4
g p=ap
� �2þk p=ap

� �4	 
� ��
(16)

þ2
ffiffiffi
g
k

r
arctan

p
ap

ffiffiffi
k
g

r� ��
: (17)

In the range ap �
ffiffiffiffiffiffiffiffi
k=g

p
� Lp; verified by most membranes,

this expression simplifies to:

t ¼ g 1þ kBT

2gap
ln

p3k‘2

2e4ap3kBT

� �� �
: (18)

Although the condition
ffiffiffiffiffiffiffiffi
k=g

p
� ap is not required for our

purpose, it is easy to see in this regime that g differs from t:
According to eqn (14), the small fluctuation approximation is

satisfied whenever kBT=
ffiffiffiffiffi
kg
p � 1. Since

ffiffiffiffiffiffiffiffi
k=g

p
� ap, kBT/apg

can have any finite value. According to eqn (18), one then has
t a g in general (anticipating that c B ap, as we will argue in
Section 4, the argument of the ln function is c1, and so t4 g).
The specific case of an interface between two immiscible fluids,
for which k = 0, will be discussed in Section 5.3.

Note that including quartic terms in the expansion of the
Helfrich Hamiltonian would lead to corrective terms into the
fluctuation spectrum and thus in the expression of r. Using
Wick’s theorem, it is found that r ¼ g 1þ O kBT=gLð Þð Þ.3,27

Clearly, these corrective terms cannot yield r = t, as this was
already emphasized by Cai et al. In the rest of the manuscript
we will not consider these corrections coming from the quartic
terms in H.

2.2 (T, s, L) ensemble

The same incompressible membrane is now treated within the
(T, t, L) ensemble, in which the frame tension t and the
membrane length L are fixed, while the projected length Lp

fluctuates. The effective Hamiltonian associated with this

ensemble is derived from H using a double Legendre trans-
form:

H0 ¼H� gL� tLp (19)

¼ k
2

ðL
0

C2ðsÞds� t
ðL
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dh

ds

� �2
s

ds; (20)

and its quadratic approximation can be written as:

H0 ¼ �tLþ
ðL
0

ds
t
2

dh

ds

� �2

þk
2

d2h

ds2

� �2
( )

: (21)

Note that we have parametrized the height with the arc length s
rather than x, because L – and not Lp – is fixed here. Still using
fixed boundary conditions h (s = 0) = h (s = L) = 0, we expand the

membrane height as hðsÞ ¼
PN�1
n¼1

~hn sin nps=Lð Þ. The approxi-

mated Hamiltonian can then be rewritten as:

H0 ¼ �L t� 1

4

XN�1
n¼1

tqn2 þ kqn4
� �

~h2n

 !
; (22)

where qn = np/L. After integrating the canonical partition

function Z ¼ ðN=2ÞN=2
Ð
exp �bH0ð Þ

QN�1
n¼1

d~hn=‘ over the variables

h̃n, and still assuming moderate tension or thermodynamic

limit
ffiffiffiffiffiffiffiffi
k=g

p
� L

	 

, we obtain

lnZ ¼ bL t� kBT

2p

ðp=a
0

ln
ba‘2

2p
ðtq2 þ kq4Þ

� �
dq

 !
; (23)

where a = L/N is the patch length. It comes straightforwardly

~hn
2 ¼ 2kBT

Lðtqn2 þ kqn4Þ
: (24)

Note that this expression is identical to eqn (11) with the
substitution g - t and Lp- L. From this observation, ref. 6
(see footnote 5 herein) argued that the fluctuation tension
should be renormalized as r= (Lp/L)t. However, as we already
emphasized above, we compared the square amplitudes of
height for two different wavenumbers in the two ensembles,
since here qn = np/L a np/Lp. Hence, hh̃n

2i does not correspond
to the same quantity in both ensembles. Instead, we compare
the relation between the membrane and frame length in both
ensembles:

Lp

� �
¼ kBT

@ lnZ

@t
¼ L 1� kBT

2p

ðp=a
0

dq

tþ kq2

 !
(25)

¼ L 1� kBT

2p
ffiffiffiffiffi
kt
p arctan

p
a

ffiffiffi
k
t

r� �� �
: (26)

which can be inverted, in the regime of small fluctuations (L �
Lp)/Lp { 1, as:

L ¼ Lp

� �
1þ kBT

2p
ffiffiffiffiffi
kt
p arctan

p
a

ffiffiffi
k
t

r� �� �
: (27)
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The internal tension g = kBTq ln Z/qL|T,t can be expressed
here as

g ¼ t� kBT

2p

ðp=a
0

ln
ba‘2

2p
ðtq2 þ kq4Þ

� �
dq: (28)

Eqn (27) then implies that here r = t! Moreover, following the
same arguments as in Section 2.1, one can easily realize from
eqn (28) that g a t for finite values of kBT/at.

Note that we took care to distinguish the patch length
(named ap and a, respectively) in the two ensembles. It could
be argued that the difference between these two cutoffs exactly
compensates for the apparent difference in the expression of
the average squared height or average length obtained in the
two ensembles. A relation between a and ap can be set by
imposing ensemble equivalence for the average energy Hh i:
according to the equipartition theorem, each quadratic term in
eqn (8) and (22) contributes kBT/2 to the average energy. Thus,
the equivalence of the ensemble requires that the numbers of
modes in both ensembles, respectively Np = Lp/ap and N = L/a,
are equal. Clearly, with this relation eqn (24) and (27) do not
match eqn (11) and (13). Therefore, the ensemble equivalence
is not satisfied for the average squared height or average length,
in the thermodynamic limit (L, Lp - N), in contradiction with
the fundamentals of statistical physics.

Let us emphasize that we assumed Lp

ffiffiffiffiffiffiffiffi
g=k

p
� 1 in the

calculations, so we are not in the vanishing tension regime,
and the equivalence of ensembles is not questionable here.6

Indeed, eqn (27) (or 13) shows that in this regime, L and Lp are
extensive variables which are linearly related for a fixed tension.
In the next two sections we identify the origins of the paradox
we pointed out, and show that r = t is the correct result.

3 Tracking the Monge model
inconsistencies

The description of a membrane at the mesoscopic scale – where
it appears as a continuous sheet – relies on a coarse-graining
construction from its description at the atomic level. To under-
stand the origin of the issue pointed above, it is useful to come
back to the coarse-graining construction at the roots of the
Monge model. As before, we consider a 1D incompressible
membrane with a fluctuating number of molecules. Our
starting point is then the classical grand-canonical partition
function of the lipid molecules that form the membrane. After
integrating over the molecules’ momenta, it can be written as:

X ¼
X
N

ebm0N

N!

ð
. . .

ð
e�bU raf gð Þ

YN
a¼1

d2ra

l2
;

where N is the (fluctuating) number of molecules, ra = (xa,ya)
are their position vectors, m0 is the chemical potential of the
reservoir of molecules, U ({ra }) is the intermolecular potential,
and l is the thermal de Broglie length.

We now want to sum over all microstates corresponding to
the same membrane shape. In a first step, we define a discrete
interface by introducing Np �N points (but Np c 1), whose

locations are the coarse-grained degrees of freedom (dof) that
define the membrane shape. In the Monge model, these points
are distributed evenly on the reference axis x, with fixed pro-
jected distance ap, and the height hn of point n (1 r n r Np) is
defined as the height of the center of mass of the molecules
whose x coordinate lies within [nap,(n + 1) ap[. Note that this is
not the only coarse-grained model we could build, e.g., rather
than points evenly distributed along the reference frame, we
could have chosen them evenly distributed along the membrane
geometric support. Grouping all microscopic configurations
with the same heights {hn}, the partition function can be
rewritten as:

X ¼
ð
� � �
ð
e�bH

?ðfhngÞ
YNp�1

n¼1
dhn=‘ð Þ; (29)

where H?ðfhngÞ is defined through:

e�bH
?ðfhngÞ ¼

X
N

ebm0N

N!

ð
� � �
ðYN
a¼1

d2ra

l2
e�bU raf gð Þ

�
YNp

n¼1
‘ � d hn � yn fragð Þð Þ:

(30)

In this equation yn ({ra}) is the height of the center of mass of the
patch n, expressed in terms of the molecule coordinates ra:

yn fragð Þ ¼

P
a
PnðxaÞyaP

a
PnðxaÞ

; (31)

where Pn is the boxcar function, defined as

PnðxÞ ¼
1; if x 2 nap; ðnþ 1Þap

� �
0; else:

(
(32)

Within the context of a continuum model, the quantum of
height fluctuations c introduced in eqn (29) may be thought of
as an arbitrary coarse-graining length for vertical displacements,
so that the height of a patch center must be increased or
decreased by an amount c or greater before its new height is
treated as distinct from its old one in the sum over membrane
configurations.28 At the microscopic level, c is actually related to
the range of the interaction potential U({ra}) between molecules.

In the continuous limit (Np -N, ap - 0), X is expressed as
a functional integral

X ¼
ð
e�bH½h�D½h�; (33)

where H½h� is the Helfrich Hamiltonian (eqn (5)) and D½h� is the
measure for functional integration, which should physically
correspond to an integration over all interface configurations,
not counting any configuration twice. Comparing eqn (29) and
(33), it is tempting to identify H½h� with H?ðfhngÞ, and the

integration measure D½h� with D½h�Monge �
QNp�1

n¼1
dhn=‘ð Þ. This is

actually the identification made in the Monge model. However,
other choices are possible: we can introduce any function
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f({hn}) and make the identification D½h� � f ðfhngÞ
QNp�1

n¼1
dhn=‘ð Þ,

H½h� �H?ðfhngÞ þ kBT ln f ðfhngÞ. At this point, it may seem
artificial or useless to introduce such a function, as the two
terms cancel each other. However, the expression of H½h�
(eqn (5)) is obtained from an independent reasoning, based
on symmetry and invariance properties, and not through
the identification with the microscopic description above.1

Therefore, the f function appears in the measure only, and it
is important to have the correct one to evaluate X correctly.
Both H½h� and D½h� are quantities that should depend solely
on the interface shape, and not on the way the surface is
parametrized. They should also be invariant under translation
and rotation, as X. These properties restrain the possible
expressions for f. Actually, there is something wrong with the
choice made within the Monge model (f � 1): the Hamiltonian
H? does not satisfy rotational invariance, because of the Delta
Dirac terms in eqn (30), and thus should not be identified with
the (rotationally invariant) Helfrich Hamiltonian H½h�.
Likewise, the measure D½h�Monge does not satisfy rotational

invariance, as pointed out by Cai et al.3 Hence, there is a clear
inconsistency in the Monge model: in one hand, the model
uses the rotationally invariant Helfrich Hamiltonian for the
continuous description of the interface, implying a non-trivial

function f to ensure that e�bH
?ðfhngÞ=f ðfhngÞ is rotationally

invariant. On the other hand, the naive integration measure
is used in the model sets f ({hn}) = 1. Stated differently,
identifying H? with the Helfrich Hamiltonian (or its quadratic
approximation) and using D½h�Monge as integration measure are

incompatible choices to make X rotationally invariant. It is also
clear that replacing the Helfrich Hamiltonian with its quadratic
approximation cannot be the (only) cause of the rotational non-
invariance of X, contrary to what has been argued in previous

studies:4,6 the f function that makes e�bH
?ðfhmngÞ=f ðfhmngÞ is still

different from 1.
To restore the rotational invariance of X, Cai et al.3 intro-

duced two corrective terms to the Monge measure. The first
one, named the Faddeev-Popov term, corrects the fact that the
Monge measure D½h�Monge induces over-counting of configura-

tions of a fluid membrane. Indeed, the infinitesimal vertical
displacement dhn of point n has a component which is locally
tangent to the bilayer. At first order, this locally tangent
displacement does not change the shape of the membrane,

and then should be disregarded to avoid multiple counting of
the same configuration.29 The Faddeev-Popov term regularizes
this overcounting by removing the locally tangential component
from the measure. However, Cai et al. acknowledged that this
term is still not sufficient to restore the rotational invariance of
X. They introduced a second term, named the Liouville term, to
meet this requirement. The interpretation of this term is less
obvious, but the above derivation of the coarse-graining proce-
dure helps us to gain insight on its origin: we passed from
a fined-grained description where the number of molecules
fluctuates, to a coarse-grained description, where the number
Np of membrane patches is fixed (while their masses fluctuate).
But Np – or equivalently the projected distance ap = Lp/Np – has
been chosen arbitrarily. Its value should be related to the average
of the fluctuating number of molecules that form the interface.
An alternative approach, which we will develop in the next
section, is to let this number of patches fluctuate by grouping
a fixed number of molecules on every patch.

Note that Cai et al. determined the expression of the Liouville
term by imposing r = t, which is required by the rotational
invariance of X. Hence, the equality r = t is not an outcome of
the correction, but a requisite instead. In the next Sections we
show that a consistent expansion of the Hamiltonian and the
measure – what requires to take the fluctuating character of the
number of patches into account – allows us to obtain r = t.

4 Fixing Monge model: a self-similar
coarse-graining

The previous section showed that the Monge model is built on
the passage from a fined-grained description in which the
number of molecules (with fixed masses) fluctuates to a
coarse-grained description in which the number of patches
(with fluctuating masses) is fixed. No relation is set on the
number of such patches and the average number of molecules
in the membrane. We develop here an alternate coarse-graining
in which each patch contains a fixed number of molecules
(see Fig. 2). The number of patches N is then a fluctuating
variable, and considering that the membrane is incompressi-
ble, the average number of patches is here trivially related to
the average number of molecules in the membrane. This ‘‘self-
similar’’ coarse-graining does not alter the system description:
like in the fine-grained description, the membrane is made of a

Fig. 2 Coarse-grained models of an incompressible lipid bilayer in the (T, Lp,g) ensemble. (a) Monge model, in which every patch has a fixed projected
length ap, and contains a fluctuating number of molecules; and (b) self-similar coarse-grained description, in which every patch has a fixed length a and
contains a fixed number of molecules.
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fluctuating number of particles (the patches) with fixed masses,
and distributed evenly along the membrane physical length.
Furthermore, since patches are all identical, a chemical
potential of the patches m can be defined unambiguously,
and is related to the chemical potential of molecules m0 through
m =m0Ga, where a is the size of a patch and G is the linear
density of molecules. The definition of a unique chemical
potential is less obvious within the Monge model, where
patches do not have constant sizes. The intrinsic tension g of
the membrane is defined as g = �m/a.

For a 1D incompressible membrane, patches can only rotate
and translate. This is why the 1D case is much simpler than its
two-dimensional counterpart, whose patches also deform from
one configuration to another, as changes in the membrane
conformation are generally not isometric. A coarse-grained
configuration of the 1D membrane is then specified by the
number of patches it contains N, and the orientation yn of each
one of them. However, the variables yn cannot vary indepen-
dently as the projected membrane length of the x and y axes are
fixed. Each coarse-grained conformation of the membrane is
counted only once in the evaluation of the grand-canonical
partition function by summing uniformly over the patch orien-
tations which are compatible with these constraints. Grouping
all fine-grained configurations corresponding to a given value
of the variables yn, the grand-canonical partition function
becomes:

X ¼
X
N	N0

ð
e�bH

?ðfyngÞDN ½y�; (34)

where N0 = Lp/a is the minimal number of patches, and

DN ½y� � d a
XN�1
k¼0

cos yk � Lp

 !
d a

XN�1
k¼0

sin yk

 !YN�1
n¼0

dyn: (35)

In the continuous limit (N - N, a - 0, with Na = L), the
membrane is parametrized by the local tangent angle y (s)
along the curvilinear coordinate s (s A [0, L]). Clearly, the
measure DN ½y� is invariant by rotation of the reference frame.
Subsequently the coarse-grained Hamiltonian H?ðfyngÞ is also
rotationally invariant and can be identified with the Helfrich
Hamiltonian eqn (5), which can be rewritten in terms of y (s) as

H ¼
ðL
0

ds gþ k
2

dy
ds

� �2
( )

: (36)

In order to evaluate X, we now assume small fluctuations:
cos yk C 1 � yk

2/2. In the continuous limit, the two constraints
can be rewritten as

L�
ðL
0

y2ðsÞ
2

ds ¼ Lp;

ðL
0

yðsÞds ¼ 0:

Note that this expansion breaks the rotational invariance of the
measure DN ½y�, but is consistent with the expression of the
Helfrich Hamiltonian eqn (36), which is limited to quadratic
terms in y (s). Expressing the first constraint with the help of

the identity

dðxÞ ¼ 1

2pi

ðþi1
�i1

eoxdo; (37)

the partition function can be rewritten as:

X ’
ð
L	Lp

dL

a
e�bgL

ð
DN0 ½yðsÞ�e

�b
k
2

Ð L
0
y
02ðsÞds

ðþi1
�i1

do
2pi

eoðL�LpÞe
�
o
2

Ð L
0
y2ðsÞds

" # (38)

where DN0 ½yðsÞ� � d
P
k

yk

� � QN�1
n¼0

dyn. Introducing the Fourier

expansion yðsÞ ¼
PN�1
p¼1

~yp cos pps=Lð Þ; in which the zeroth order

term has been eliminated to satisfy the second constraint,
we get:

X ’
ð
L	Lp

dL

a
e�bgL

ðþi1
�i1

do
2pi

eoðL�LpÞ

� Jy!~y

ðYN�1
p¼1

d~yp exp �
L

4
ðbkq2p þ oÞ

XN�1
p¼1

~y2p

" #
:

(39)

We show in Appendix B that the Jacobian associated with the
change of variables is still Jy-~y C (N/2)N/2 when N = L/a c 1.
Here again, taking the Jacobian into account ensures that lnX
is an extensive quantity for large membranes, and will also
affect the expression of the frame tension t. After integrating

over the ~yp variables, we get:

X ¼
ð
L	Lp

dL

a

ðþi1
�i1

do
i2p

egðo;LÞ (40)

where g (o, L) = �bgL + o (L � Lp) � Lu (o), with

uðoÞ ¼
Ð p=a
0 ln

a

2p
ðoþ kbq2Þ

h i
dq=2p. Here again, we assumedffiffiffiffiffiffiffiffi

k=g
p

� L so that the lower bound in the integral is C0.
This double integral can be evaluated in the thermodynamic

limit (L, Lp - N) thanks to the saddle point approximation:

X / egðo
?;L?Þ where o? and L?, the values of o and L that

extremize g (o, L), are given implicitly by:

ðL? � LpÞ � L?u0ðo?Þ ¼ 0; (41)

and

o? ¼ uðo?Þ þ bg: (42)

Using this last equation, we get: lnX ¼ gðo?;L?Þ ¼ �o?Lp.
From eqn (42), we also see that o? is independent of Lp, so
the frame tension is t ¼ �kBT@ lnX=@Lp ¼ kBTo?. Substituting
this relation into eqn (42) finally yields:

g ¼ t� kBT

2p

ðp=a
0

ln
ba
2p
ðtþ kq2Þ

� �
dq (43)
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and

lnX ¼ �Lpb gþ kBT

2p

ðp=a
0

ln
ba
2p
ðtþ kq2Þ

� �
dq

 !
: (44)

Eqn (44) is identical to eqn (10) derived with the Monge model,
just by replacing g with t and taking c = ea/p. The quantum of
height fluctuations is then of the order of magnitude of a patch
size (which is a few molecule sizes), while Morse et al.3,30 argued
it should be of the order of the de Broglie length (which is
smaller than the molecule size). However, if we had introduced
a quantum of angle fluctuations Y in the integration measure, i.e.:

D
0
N ½yðsÞ� � d

P
n

yn

� � QN
n¼1

dyn=Yð Þ; we then would end up with

c =Yea/p.
Eqn (43) can be inverted for small fluctuations

kBT=
ffiffiffiffiffi
kg
p � 1

� �
. The frame tension is thus

t ¼ gþ kBT

2p

ðp=a
0

ln
ba
2p
ðgþ kq2Þ

� �
dq 1þ O

kBTffiffiffiffiffi
kg
p
� �� �

; (45)

in agreement with previous studies.3,4,7,31

The average length is Lh i ¼ �kBT@ lnX=@g ¼ kBTLp@o?=@g.
Deriving eqn (42) with respect to g gives:
@o?=@g ¼ u0ðo?Þ@o?=@gþ b. Together with eqn (41) yields
@o?=@g ¼ bL?=Lp, and thus L ¼ L?: the average and most
probable values coincide, as expected. eqn (41) can then be
rewritten as

Lp ¼ Lh i 1� kBT

2p

ðp=a
0

dq

tþ kq2

 !
: (46)

This equation is identical to eqn (26) derived in the (T, t, L)
ensemble. Assuming small fluctuations, the relation is
inverted as

Lh i ¼ Lp 1þ kBT

2p

ðp=a
0

dq

tþ kq2

 !
: (47)

Eqn (47) is then identical to eqn (12) with the substitution g - t
(and the undetermined length ap replaced with the physical
patch length a). Using the same substitution in eqn (11), the
height fluctuations are characterized by:

~hn
2

D E
¼ 2kBT

Lpðtqn2 þ kqn4Þ
: (48)

These results prove that the fluctuation tension r does
coincide with the frame tension t, in agreement with those of
Cai et al. It is also worth noticing that eqn (46) suggests a linear
scaling of hL � Lpi with hLi rather than Lp when departing from
the regime of small fluctuations, in agreement with the numer-
ical findings of ref. 6.

5 Discussion
5.1 Varying patch number is mandatory to recover r = s

Starting from a coarse-grained description in which both the
Hamiltonian and the measure are rotationally invariant, we

were able to recover r = t for an incompressible membrane
within the (T, Lp, g) ensemble. However, let us emphasize again
that to obtain this result, we used a quadratic expansion of the
measure DN ½y�, thereby breaking its rotational invariance.
Moreover, the approximation sin y (s) C y (s), cos y (s) C 1 �
y (s)2/2 used in the measure is equivalent to assume that y (s)
and h (s) are linearly related: y (s) C dh/ds. Therefore, the

associated measures are also linearly related: D
0
N ½y� �

Jy!h‘
NDN ½h� (the factor cN has been introduced to make the

measure dimensionless), with Jy-h = 1/aN (the derivation of this
Jacobian is reported in Appendix C). Accordingly, the Faddeev–
Popov corrective term, which is a correction to the linear
relationship between the two measures, and whose expression
is derived in Appendix C, is a second order correction to the
expression of t, in agreement with Cai et al.3 Moreover, inserting
y (s) C dh/ds in eqn (36) breaks the rotational invariance of the
Hamiltonian. Yet, substituting y (s) - dh/ds (and using c = ea/p)
in the grand-canonical partition function (eqn (38)) will not
change its final expression (eqn (44)). Hence, the use of an
approximated Hamiltonian cannot explain the Monge model
inaccuracies and the non-equivalence of ensembles discussed in
Section 2 either. This should come as no surprise: ensemble
equivalence is a very general feature of standard statistical
physics and does not makes any assumption on the realism
of the Hamiltonian. It can also be noticed that in the ensemble
(T, t, L), we obtained (Section 2.2) r = t while using both an
approximated measure and an approximated Hamiltonian.

Therefore, the only remaining reason why the Monge model
in the (T, Lp, g) does not give the right value for r is because it
disregards the inherent fluctuation of the number of patches.
This correction can be identified with the Liouville corrective
term introduced in ref. 3. Note that the saddle point approxi-
mation we used in our derivation allows us to replace the sum
over the patch number with a fixed ad-hoc patch number N?,
and can be interpreted as a correction (so-called Liouville
correction) to the Monge measure. However, for calculating
accurately other quantities, such as hh4i, the other corrections
to the Monge model (expansion of H to higher terms, and
Faddeev-Popov term) might be mandatory.

5.2 The case of a compressible membrane

At this point, one question still remains: we mentioned in the
introduction that the same Helfrich Hamiltonian also applies
to compressible membranes with fluctuating surface area but a
fixed number of molecules; the term gA then corresponds to a
stretching energy.32 This is the point of view adopted by Farago
and Pincus.4,26 For a 1D membrane, the relevant thermo-
dynamic ensemble is the ensemble of fixed temperature, number
of patches and projected length, (T, N, Lp). How can we then
explain that the result obtained with the Monge model (r = g) is
still not correct in this ensemble? Clearly, the issue cannot
be associated with a fluctuating number of patches as in the
ensemble. Farago,4 then Schmid,6 invoked the lack of rotational
invariance of the approximated Hamiltonian to explain the inac-
curacies in the Monge model. Yet, we obtained r = t in the (T, L, t)
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and (T, Lp, g) ensembles while using the very same approximated
Hamiltonian, and all three ensembles should be equivalent in
the thermodynamic limit. More likely, the issue originates from
the measure D½h�Monge that still does not properly enumerate the

membrane configurations: because the allowed displacements of
the patches are those which keep uniform patch length, we
should consider all the possible membrane conformations for
a given patch length a, and sum over all possible values of a.
The partition function can then be written as:

X ¼
ð1
Lp=N

da

ð
e�bH½y�DN ½y�; (49)

where DN ½y� and H[y] are given by eqn (35) and (36), respectively.
Taking the fluctuating character of the patch size a is thus
essential to get the correct result, in the same way as the
fluctuation of the patch number is essential to recover r = t in
the (T, Lp, g). Indeed, in both cases this boils down to sum over
membrane length L, and the partition function (49) is in fact
identical to eqn (38).

5.3 The case of a fluid interface

We finally focus our attention on the case of an interface
between two immiscible fluids, and ask ourselves whether
internal and frame tensions should be distinguished. With
the difference of a membrane, an interface between two
immiscible fluids has no bending rigidity (k = 0).2 The interface
is stabilized by the surface tension only, whose origin comes
from a non-affinity between the molecules of the two bulk
phases,33 and therefore is very different from – and usually
much larger than – a typical tension value in a membrane. The
high tension criterion kBT/ta� 1, which is required to be in the
small fluctuation regime (eqn (27)) when k - 0, is then
satisfied. According to eqn (45), t and g are then equal up to
OððkBT=taÞ2Þ and so can be used indifferently in the expres-
sions of the height and length fluctuations of a fluid interface.

6 Conclusions

In summary, starting from the description of a membrane at
the molecular level, we first revealed the inconsistencies lying
in the foundations of the Monge model to describe the statis-
tics of an incompressible membrane: the choices made for the
expression of the coarse-grained Hamiltonian (or its quadratic
approximation) and that of the integration measure are not
compatible choices to build a free energy that satisfies
rotational invariance. By analyzing the simpler case of a 1D
membrane, for which an integration measure that satisfies
rotational invariance can be built from first principles, we found
in agreement with previous studies that the lack of rotational
invariance of the measure used in the Monge model has two
origins itself: first, it assumes a fixed number of patches, while
for an incompressible membrane with fluctuating length the
number of patches must fluctuate; and second, for a given
number of membrane patches, there is an over-counting of
membrane configurations because the size of a patch is allowed

to vary with this linear measure. Finally, using a consistent
expansion of the measure and the Hamiltonian, we were able
to prove that the frame tension t drives the thermal fluctuations
of a membrane. Our analysis then shows that to obtain this
result, the rotational invariance of the Hamiltonian is not
necessary, and one can use its quadratic approximation. Only
the measure used in the Monge model must be amended, in
agreement with Cai et al., although its rotational invariance is
not required either. In fact, the only correction that must be
taken into account is the fluctuating character of the membrane
length. We believe that the multiplicity of the arguments
advanced to justify that r = t will reinforce the conviction in
these results, and hence will encourage the use of the correct
expressions in future studies. As a final note, let us emphasize
that the Helfrich model represents a simplified version of a real
membrane; in particular it is described as an infinitely thin
sheet, and energy does not depend on the local lipid concen-
tration along the membrane. All the discussion about whether
r = t or not is restricted in the context of this specific theoretical
framework. But real membranes are more complex, and recent
particle-based numerical simulations taking into account the
fluctuations of lipid concentration and membrane thickness
have been performed in recent years.22,23 These simulations
have shown that for membranes under very strong stretching,
the fluctuation tension deviates from the frame tension. A
possible explanation for this result is the existence of a coupling
term between the membrane height and membrane thickness.
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Appendix

A Expression of Jh-h̃

The integration measure in the Monge model is

D½h�Monge �
QNp�1

n¼1
dhn=‘ � Jh!~h

QNp�1

n¼1
d~hn=‘, where Jh-h̃ is the con-

stant Jacobian associated with the linear change of variables
eqn (7). Its value can be obtained e.g., by calculating a simple
Gaussian integral I in both direct and reciprocal spaces. Using

the identity
Ð Lp

0 h2ðxÞdx ¼ ap
PNp�1

n¼1
hn

2 ¼ ðLp=2Þ
PNp�1

n¼1
~hn
2; the inte-

gral can be written as

I ¼
ð
D½h�e

�aap
P
n

hn
2

¼ Jh!~h

ð
D½~h�e

�a
Lp

2

P
n

~hn
2

; (50)

where a is any constant with a positive real part. The first

expression gives I ¼ p=aap
� �ðNp�1Þ=2; and the second one

I ¼ Jh!~h 2p=Lp

� �ðNp�1Þ=2. Therefore, Jh-h̃ = (Np/2)(Np�1)/2.
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B Expression of Jh-~h

We evaluate the Jacobian Jy-~y associated with the linear change

of variables {yn} - {~yp}, with yn ¼
PN�1
p¼0

~yp cos ppn=Nð Þ, n A {0,. . .,

N � 1}. As in Appendix A, Jy-~y is obtained by evaluating a
simple integral expressed with both sets of variables. Note
however that here the N variables yn are not independent, but

are constrained by
PN�1
n¼0

sin yn ’
PN�1
n¼0

yn ¼ 0. This constraint is

properly taken into account by introducing a Dirac delta in

the integration. For the variables {~yp} on the other hand, this

constraint simply reads ~y0 = 0. The second constraint of fixed
projected length a

P
n

cos yn ¼ Lp does not need to be consid-

ered to evaluate Jy-~y, since its value does not depend on the
choice of the integral to evaluate. Let us then evaluate the
integral

I ¼
ð
e
�
PN�1
n¼0

y2n
D
0
N ½y�; (51)

with D
0
N ½y� � d

PN�1
n¼0

yn

� � QN�1
n¼0

dyn. Using the identities

dðxÞ ¼
Ðþ1
�1e

iqxdq=2p, and
Ðþ1
�1exp iqyn � yn2

� �
dyn ¼ e�q

2=4
ffiffiffi
p
p

,
we get:

J ¼ pN=2
ðþ1
�1

dq

2p
e�Nq2=4 (52)

¼ pðN�1Þ=2ffiffiffiffi
N
p : (53)

The integral J can be rewritten with variables ~yp as

J ¼ Jy!~y

ð
e
�N
2

PN�1
p¼1

~yp2 YN�1
p¼1

d~yp (54)

¼ Jy!~y 2p=Nð Þ
N�1
2 ; (55)

where we used the equality
PN�1
n¼0

yn2 ¼
N

2

PN�1
p¼1

~yp2. Comparing both

expressions eqn (53) and (55) finally yields

Jy!~y ¼
1ffiffiffi
2
p N

2

� �N
2
�1
: (56)

Hence, for N c 1, ln Jy!~y 

N

2
ln
N

2
.

C Expression of Jh-h

The two sets of variables are related through yn= arcsin((hn+1 �

hn)/a). Since h0 = hN = 0, and yN�1 ¼ �
PN�2
k¼0

yk; there are N � 1

independent variables for each set. The Jacobian matrix

associated with the change of variables yn - hn is

Jm;n ¼ @ym=@hnþ1 ¼

1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hn � hn�1

a

� �2
s if n ¼ m

�1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hn � hn�1

a

� �2
s if n ¼ m� 1

0 else:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(57)

and thus its determinant is

Jy!h ¼
1

aN

YN�1
n¼1

1� hn � hn�1
a

� �2
 !�1=2

(58)

¼ 1

aN
exp �1

2

XN�1
n¼1

ln 1� hn � hn�1
a

� �2
 !" #

: (59)

At first order, y (s) C dh/ds, and then:

Jy-h C 1/aN. (60)

Note that expanding the logarithm at next order yields, in the
continuous limit:

Jy!h ’
1

aN
exp

1

2a

ðL
0

dh

ds

� �2

ds

" #
: (61)

in which we recognize the Faddeev–Popov corrective term.3
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