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Viscous peeling of a nanosheet†

Adyant Agrawal, a Simon Gravelle, a Catherine Kamal a and
Lorenzo Botto *b

Combining molecular dynamics (MD) and continuum simulations, we study the dynamics of propagation

of a peeling front in a system composed of multilayered graphene nanosheets completely immersed in

water. Peeling is induced by lifting one of the nanosheet edges with an assigned pulling velocity normal

to the flat substrate. Using MD, we compute the pulling force as a function of the pulling velocity, and

quantify the viscous resistance to the advancement of the peeling front. We compare the MD results to

a 1D continuum model of a sheet loaded with modelled hydrodynamic loads. Our results show that the

viscous dependence of the force on the velocity is negligible below a threshold velocity. Above this

threshold, the hydrodynamics is mainly controlled by the viscous resistance associated to the flow near

the crack opening, while lubrication forces are negligible owing to the large hydrodynamic slip at the

liquid-solid boundary. Two dissipative mechanisms are identified: a drag resistance to the upward

motion of the edge, and a resistance to the gap opening associated to the curvature of the flow

streamlines near the entrance. Surprisingly, the shape of the sheet was found to be approximately

independent of the pulling velocity even for the largest velocities considered.

1 Introduction

Two-dimensional (2D) nanomaterials, such as graphene, boron
nitride, and molybdenum disulfide, are flexible structures of
atomic thickness that can bend like a sheet of paper when
exposed to sufficiently large forces. When a thin sheet is bound
to a substrate by adhesion, external forces can induce peeling
of the sheet, a complex phenomenon involving a competition
between adhesive, bending, and dissipative forces.1–8 The peeling
of thin structures from rigid or soft substrates has received
increasing attention from the soft matter community for its
connections with soft wetting9 and its many applications in
biology and engineering.10–12 However, the specific properties
of 2D materials,13 such as low bending rigidity and unusual
surface properties, rise questions on the validity of current
models, designed for macroscopic sheets, when applied to the
description of the peeling of 2D materials.

In many applications, peeling of 2D materials occurs in the
presence of a liquid.3,14–17 For instance, in liquid-phase exfolia-
tion processes for the large-scale production of graphene,

colloidal microparticles of graphite are suspended in suitable
liquid solvents (e.g. water, NMP), and shear is applied to the
fluid–solid mixture until single- or few-layer graphene nano-
sheets detach from the ‘mother’ graphite microparticles.14,15

Fluids can also affect peeling of 2D materials in applications
that do not involve bulk liquid solution, such as the transfer of
2D materials between substrates, where water is often present
owing to condensation from the surrounding air.18,19 While the
mechanics of peeling of 2D materials in vacuum or air has been
studied extensively through theory and experiments,2,20–23 peeling
of 2D materials in liquids is a new subject.24–26 Peeling off 2D
materials from a substrate or a stack of other sheets in the
presence of a liquid requires initially lifting ‘flaps’,27 which can
have nanometric length at the initial stages of the peeling
process. The removal by peeling of 2D materials in liquids
brings about a new set of scientific challenges, particularly
considering that most available theories have been developed
to explain the results of macroscopic applications such as
adhesive tests or hydraulic fracturing.1,3–5,8

The presence of a liquid primarily has two effects on the
peeling of thin flexible sheets from a flat substrate: the liquid
can alter directly the magnitude of the adhesion force between
the bonded layers, by modifying e.g. the Hamaker constant;24

and the liquid flow induces viscous forces on the peeled layer,
which in turn affect the value of the peeling force.28 For
macroscopic sheets, the resistance to the motion of the peeling
front originates mainly from lubrication forces.4 These forces
emerge from the motion of the peeled layer in the direction
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normal to the substrate, which produces a parabolic flow in the
small gap between the sheets. The lubrication forces associated
to this flow are extremely sensitive to the boundary condition:
even small deviations from the no-slip condition can reduce
lubrication forces substantially, and this effect is most marked
when the slip length is comparable to the gap size.29–32 This
raises the question as to what mechanisms determine the
resistance to motion of the peeling front when the slip length
is comparable or larger than system size, i.e. the maximum gap
height or the typical crack length.

In this paper, we combine Molecular Dynamics (MD) and
continuum modelling to study the peeling of short (few nano-
meters) graphene layers from a rigid substrate, for the case in
which the maximum gap height and maximum crack length are
smaller than the slip length characterising the hydrodynamic
boundary condition at the solid-liquid interface.33 Fig. 1 illus-
trates the physical configuration simulated. In our problem, the
rigid substrate simulated with MD is composed of a stack of
graphene layers, a configuration motivated by applications to
liquid-phase exfoliation of graphite microparticles. The peeled
layer and the substrate are in contact with a liquid solvent (Fig. 1).
As solvent, for this study we choose water because of the quality of
published data on graphene–water interaction29,34,35 and because
water in MD displays Newtonian behaviour even at large shear
rates36,37 (in the ESI,† we also show results for NMP as solvent).
Peeling is induced by displacing the edge of the flexible graphene
layer with an assigned velocity v normal to the substrate. The force
on the edge is measured. The objectives of the paper are to
quantify the features of the force-velocity curve, and get insights

into dissipative mechanisms controlling the dynamics of the
peeling front. The slip length l characterising the surface of
pristine graphene in water and many other liquid solvents is rather
large.38 Slip lengths of O(10 nm) have been reported for water-
graphene interface both from experiments39,40 and ab initio mole-
cular dynamics methods.41 Therefore our MD simulation results,
for which the crack length and maximum gap height are smaller
than l, cannot be explained by classical models based on lubrica-
tion theory. The paper therefore analyses alternative sources of
viscous dissipation based on the comparison of MD results with
different estimates for the viscous contribution to the pulling force.

Large slip lengths have been measured with many complex,
structured fluids such as polymer melts, polymer solutions,
colloidal suspensions, and colloidal gels.42 Slip is also signifi-
cant in surfactant-covered solid surfaces when a high shear
stress is applied to the fluid,43 surfaces covered by polymer
layers,44 flow of rarefied gasses in microchannels,45 and flow in
nano-confined liquid systems.46 The results of our investiga-
tion may thus have more general implications for soft matter
research than our current focus on graphene may suggest.
Our work is also relevant to understanding the effect of hydro-
dynamic forces in adhesion measurements. For example, in the
measurement of the adhesion between surfaces in contact with
high-viscosity ionic liquids, viscous forces are an important
component of the force measured by a Surface Force Apparatus
beyond a critical velocity that depends, among other para-
meters, on the slip length.47 The prediction of this velocity is
an important practical question.

The structure of the paper is as follows. We first analyse MD
simulation results to quantify the dependence of pulling force
on velocity. We then develop a one-dimensional non-linear
solid mechanics model based on the equation for the elastica
to obtain insights into the relation between pulling force,
pulling velocity and edge height. We then compare the results
between MD and the model in the quasi-static limit, and later
consider the velocity dependent case. For the velocity depen-
dent case, we complement the results with finite-element
COMSOL simulations for a simplified geometry. In these simu-
lations, the solid–fluid momentum coupling is fully resolved,
so we can extract quantities – such as the full profile of the
pressure below the peeling sheet – that the one-dimensional
elastica model alone cannot provide.

2 Results and discussion
2.1 Molecular dynamics

The peeling simulations of a single graphene nanosheet from a
multilayer graphene surface in water are carried out using MD
(LAMMPS software48). The TIP4P/2005 model49 is used for
water and the AIREBO force field50 is used to model graphene,
same as that used in literature to describe graphene-water
systems.26,38,46,51 Additional details of the simulation are given
in the ESI.† The initial configuration consists of a stack of
4 graphene layers. The three bottom layers are periodic along
the -ex and -ey directions. The top layer is periodic along -ey, but

Fig. 1 Illustration of the physical problem. (a) At time t = 0, a semi-infinite
flexible nanosheet is completely bound to a rigid horizontal layer via van
der Waals forces. The surrounding fluid does not enter the small gap
between the sheets yet. The sheet is inextensible and cannot slide on the
horizontal surface. (b) At time t Z 0, the edge of the flexible nanosheet is
pulled upwards with a velocity v. The horizontal component of the applied
force is zero (free horizontal sliding). The magnified view of the peeling
front shows that fluid molecules penetrate only until the point where the
separation between the nanosheet and the horizontal layer is too small to
accommodate a fluid molecule.
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shorter along the -ex direction, thereby creating two edges. The
graphene layers are in contact with water, and a piston wall52 is
used to enclose the fluid in the -ez direction and impose a
pressure p0 = 1 atm (Fig. 2a). The length of simulation box is
equal to 7.2 nm in -ex, 2.5 nm in -ey and 8 nm in -ez, and the
distance between the piston and the top graphene layer is
approximately 4 nm.

The bottom three layers are maintained fixed, and the top
layer is free to move. A velocity of magnitude v is applied along
-ez to one of the edges of the top layer. Velocities in the range of
1 to 100 m s�1 are used. Lower values for v are difficult to reach
due to computational limitation. For values of v Z 100 m s�1,
cavitation is observed (discussed further in Section 2.4). The
other edge is maintained near its original position along -ex by a
harmonic potential. We make sure that restraining the motion
of the top layer along -ex has no impact on the final results by
performing the same simulation in absence of the harmonic
potential. We evaluate the sheet height along -ey, h(x), as the
vertical distance between the centers of the carbon atoms

of the deformable sheet and the sheet immediately under it.
The equilibrium sheet height, s, is measured to be E3.4 Å
when the sheets are completely adhered. Starting from the
equilibrium height (s), we measure the distance h0 between
the peeled edge and the fixed layer, and the force F (per unit
width) along -ez resisting peeling. We term F the peeling force
and h0 the edge height. In addition to dynamic simulations,
we also perform static simulations by imposing a constant
value for h0 for 80 ps followed by an acquisition period of
120 ps.

The peeling force F was extracted from MD as a function of
h0. We find that as h0 increases initially, F reaches a maximum,
Fmax (Fig. 2c). As h0 increases further, F decreases to a plateau
value Fplt. A similar trend was recently reported by Ouyang
et al.53 in MD simulations of peeling a graphene nanoribbon off
a hexagonal boron nitride monolayer. Qualitatively, the trend of
F vs. h0 in Fig. 2c can be divided into three regions. In region I, F
increases to a maximum Fmax; in region II, F slowly decreases as
h0 increases; and in region III, F reaches a plateau value Fplt. We
observe this qualitative trend for 3 values of the peeling velocity
(v = 1,10 and 50 m s�1.).

For v = 1 m s�1, F is approximately equal to the force F0

obtained from the steady-state simulation (v = 0). For v = 10 m s�1

and 50 m s�1, the dependence on peeling velocity is evident
(Fig. 2c). To ascertain that the increase of the force with the
velocity is originating from the viscous dissipation within the
fluid, we performed a simulation in absence of fluid with v =
100 m s�1. This simulation showed no evident increase of the force
with respect to the static case in vacuum (ESI,† Fig. S2). Both the
characteristic maximum (Fmax) and plateau (Fplt) values of the force
increase with v. For v o 50 m s�1, the difference F–F0 between the
total peeling force and the peeling force at steady state increases
approximately linearly with v (Fig. 2d). We observe that Fplt

depends more strongly on v than Fmax. For larger velocities, the
rate of increase of F decreases. From Fig. 2d, we can estimate
the order of magnitude of an effective friction coefficient xeff B
(F� Fv=0)/v using Fmax and Fplt as two extremes. We find 2.6 mPa s r
xeff r 7.6 mPa s. We notice that Zeff has the same order of
magnitude of the viscosity of water (Z = 0.855 mPa s for the
TIP4P/2005 water model used in this study54).

We compare snapshots of the system in the 3 regions of
Fig. 2c. In region I the fluid does not intercalate between the
adhered layers and no fluid molecules are present inside the
crack (Fig. 2b). The slope of the sheet is small in this regime.
In region II the water molecules start entering the crack. Here,
h0 is greater than E5 Å and the slope of the sheet increases
with h0, as can be seen in Fig. 2b. In region III, the sheet near
the free edge is nearly vertical.

In the simulations, the fluid is in contact with the solid at all
times for v o 50 m s�1: the fluid molecules penetrate the crack
until there is enough spacing between the carbon atoms to
accommodate a fluid molecule, i.e., until a threshold sheet
height of E5 Å. This motion is driven by pressure as the Péclet
number (Pe) is larger than 1 for v 4 10 m s�1 and the fluid is
practically incompressible (the Mach number for v = 100 m s�1

is � Oð0:1Þ). Here Pe E vc/Dw, where Dw E 2.3 � 10�9 m2 s�1 is

Fig. 2 Analysis of Molecular Dynamics (MD) simulations. (a) Side view of
the MD system with water in red and white, graphene in pink, and the
rigid wall in gray. (b) Close-up view of the MD system for 4 values of the
peeled height (v = 1 m s�1). (c) Peeling force as a function of edge height
extracted from MD for different peeling velocities; v = 1 m s�1 (green disks),
v = 10 m s�1 (red squares), and v = 50 m s�1 (blue lozenges). The colored
areas correspond to the standard deviation, and the black full line to the
static case (v = 0). s = 3.4 Å is the equilibrium sheet height. (d) Dynamic
peeling force minus the static peeling force (F � F(v = 0)) as a function of v.
Red disks are Fplt, i.e., F calculated at h0 = 2 nm, and the blue squares
are Fmax.
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the diffusion coefficient of water55 and c E 3 Å corresponds to
one molecular diameter.

To interpret the results in Fig. 2, we build a continuum
model inspired by the MD system. The model complements the
MD results by analysing the balance of the adhesive, bending,
and viscous forces for rate-dependent peeling.

2.2 A continuum model

We consider a continuum model for the peeling of an elastic
sheet from a stationary rigid surface. The sheet has length L,
thickness d, and bending stiffness B. The deformable sheet is
bound to the stationary surface by an adhesion force related to
an adhesion potential f. The left edge of the sheet is pulled
upwards with an assigned velocity v, while being allowed to
move freely in the horizontal direction. This latter condition is
enforced by setting the horizontal components of bending and
tensile stresses at the edge to be equal (Fig. 3). We assume that
the sheet is inextensible. Therefore, while moving upwards the
edge moves in the -ex direction so that the inextensibility
condition is satisfied at all times. An incompressible fluid of
viscosity m fills the gap until a minimal threshold gap height is
reached (see below). Through its motion, the fluid exerts a
tangential hydrodynamic traction f on the deformable sheet,
and determines a pressure difference DP between the bottom
and top surface of the sheet.

The shape of the sheet is described by a function h(s, t). When
mapping to the MD simulations, h is the vertical distance
between the centers of the atoms composing the deformable
and stationary graphene sheets. Here s is the curvilinear coordi-
nate line along the top sheet and t is the time. The corresponding
Cartesian coordinates are x(s, t), h(s, t). Assuming that the sheet is
inextensible, the angle of inclination of a point on the top sheet
with the x-axis, y(s, t), can be linked to h(s, t) and x(s, t) via

hs = sin y, xs = cos y, (1)

where ()s represents the derivative with respect to s.

The equations of equilibrium governing the shape of the
deformable sheet can be obtained from a force balance on an
element ds (Fig. 3),56 yielding

Bysss + Tys � fhcos y = DP, (2)

and

Byssys � Ts + fhsin y = f. (3)

Here T is the axial tension in the sheet, fh is the vertical
adhesion force per unit area, DP = P� � P+ is the difference
between the normal forces per unit area exerted by the fluid
below and above the sheet, and f is the corresponding tangen-
tial force per unit area (directed towards the crack tip). Without
loss of generality, the pressure P+ is assumed to be zero. When
the sheet is pulled upwards, the fluid exerts a downward
hydrodynamic tension on the sheet, hence DPo0. The potential
f(h) models the adhesion of the deformable graphene layer
with the stationary layer. The potential f(h) is taken as a
standard 4-10 Lennard-Jones potential between two thin plates,
consisting of an attractive term and a repulsion term:57–59

fðhÞ ¼ A=3 5 s=hð Þ4�2 s=hð Þ10
� �

. Here A is the depth of the

potential well and s is the inter-layer equilibrium separation.
Following previous work on graphene-graphene interactions,58

we set s = 3.4 Å, a value that is also consistent with our MD
simulations.

For given DP and f, eqn (1)–(3) are solved to find y, ys, yss,
T and h. Five boundary conditions are required: at the right
edge s = L, ys = yss = 0 (zero moment and zero vertical force);60 at
the left edge s = 0, ys = 0 (zero moment), ht = v (kinematic
condition) and [Bysssin y � Tsin y]s=0 = 0 (zero horizontal force).
The upwards force acting on the left edge is

F = [Bysscos y + Tsin y]s=0 (4)

The adhesive and viscous contributions to F are calculated as

Fadh ¼ �
ðL
0

fhds; (5)

Fvis ¼ �
ðL
0

DP cos y� f sin yð Þds: (6)

The finite van der Waals radius of carbon atoms makes the
effective channel height available for the fluid molecules smaller
than the channel height h defined from the center of the carbon
atoms.34,61,62 Accordingly, hydrodynamic boundary conditions
are applied at a distance d/2 from the center of each sheet. The
effective height of the nanochannel is thus h* = h � d, with
d = 2sC C 3.4 Å where sC denotes the van der Waals radius of a
carbon atom. The finite range of the carbon–water interaction
leads to a threshold for h below which no fluid molecule fits in
the nanochannel as discussed in Section 2.1. We choose this
threshold height, hi = 5 Å for water–graphene,51 a value consis-
tent with observation from MD profiles (Fig. 2b).

The threshold sheet height results into an interface position
si beyond which there is no fluid (Fig. 3). Therefore we set DP = 0
for s 4 si. Due to the fluid flow, DP a 0 left of this interface.

Fig. 3 Schematic of the mathematical model. The deformable sheet is
being pulled with a constant velocity v at the left edge. The blue shaded
region represents the fluid of viscosity m.
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Thus, there is a integrable discontinuity in the pressure across
the interface at si.

63 The physics of this moving interface
resembles that of the ‘dry cracking’ problem analysed by Lister
et al. (2019), but is different from that of the ‘fluid lag’
concept,64,65 which requires a vapour region ahead of the
interface. To account for the pressure discontinuity, we divide
the s-axis into two domains, to the left and to the right of the
interface si. The solutions for the two domains are coupled to
each other by enforcing continuity of y, k, ks, T and h across si.

60

Applying mass conservation and accounting for incompres-
sibility we obtain

htðs; tÞ ¼ �
@

@x
ð�uh�Þ; (7)

where %u is the height-averaged fluid velocity. Assuming that
the liquid front position moves with a velocity equal to the
average fluid velocity at that point, we arrive at the kinematic
condition63

dsi

dt
¼ �ujs¼s�

i
; (8)

where the velocity is evaluated at positions just to the left of si.
The eqn (1)–(3), (7), (8) are solved together with the corres-

ponding boundary conditions using the Boundary Value Pro-
blem (BVP) solver of MATLAB.66 As initial condition, we use the
stationary solution corresponding to a small assigned edge
displacement h(s = 0) = hi. The initial shape of the sheet is
obtained by running the iterative solver with v = 0 starting from
the assigned shape

hðs; t ¼ 0Þ ¼ sþ ðh0ðt ¼ 0Þ � sÞð1� tanh2ð25sÞÞ (9)

until convergence. The regions to the left and to right of si are
discretized with two uniform meshes. We assume that the
interface always moves in the positive x-direction as the sheet
is peeled. Therefore, at each step of the iteration, the interface
is moved from the previous position by a small amount equal to
the grid spacing by using an implicit time-marching method.
We repeat the above steps until F reaches a constant value. For
the range of parameters we consider, this usually happens
when the edge slope reaches p/2.

2.3 Comparison MD-continuum in the quasi-steady case

In this section, we consider quasi-steady peeling where viscous
forces are absent (DP = f = 0) and therefore the forces on the
sheet are rate independent. In the following we focus particu-
larly on the prediction of the quasi-steady plateau force F0

plt and
the maximum force F0

max obtained by solving eqn (1)–(3). The
computed values of the force are compared with MD data to
calibrate values of A and B.

In the limit h0 c s, the left edge has quasivertical orienta-
tion (y (s = 0) E p/2), the curvature of the sheet near the crack
tip is approximately independent of h0

6 and the bending energy
is constant with respect to h0. The energy balance thus involves
only the external work done by F0 and the adhesion work:6,14,67

F0
plt E A. (10)

By calculating the work of adhesion required to separate two
parallel sheets in vacuum using MD25 we obtain A C 0.29 N m�1,
a value close to the force plateau in vacuum C0.28 N m�1

(Fig. 4a).
To obtain an approximate analytical solution for F0

max, we
exploit the fact that the maximum value of the force is attained
when slope of the sheet is small. For small slopes, the shape of
the deformable sheet is governed by:4,5,68

Bhxxxx � fh = DP. (11)

The edge force F0 C Bhxxx can be obtained by multiplying
eqn (11) by hx, integrating with respect to x and then using the
boundary condition k(0) = 0. The same result can be obtained
by using the principle of virtual work.69 For DP = 0, we get

F0 ’ fðh0Þ � A

hxð0Þ
: (12)

Inserting values of hx(0) in the above equation from numerical
resolution of the continuum model, we get an excellent agree-
ment with the complete numerical solution of F0 (Fig. 4b). We
now express hx(0) as a function of h0, so that we can maximise
F0 with respect to h0 to obtain F0

max. Linearising fh in eqn (11)
about the equilibrium separation gives

Bhxxxx ¼
40A

s2
ðh� sÞ; (13)

Fig. 4 Quasi-steady peeling. (a) Dependence of F0 on h0, comparing the
1D continuum model (lines) and the MD data (solid symbols). The plot
shows continuum simulations for 3 combinations of adhesion energy (A)
and bending rigidity (B) and, MD simulations in vacuum and water as
solvent. (b) F0 vs. h0 calculated from eqn (12) and (15) compared with
numerical solution for A = 0.28 N m�1 and B = 1 eV. (c) Dependence
of hx(0) on 1/a0 for h0 = 1.26s calculated numerically and from eqn (14).
(d) F0

max vs. B1=4s�1=2A3=4 and the dotted line is the plot for y = 1.18x. The
top and bottom insets show the dependence of F0

max (N m�1) on A (N m�1)
and B (eV) in log–log scale.
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which has the solution h � s = (h0 � s) e�x/a
0cos(x/a0), where

a0 ¼ ðBs2=10AÞ1=4 is the cohesion length. Thus

hxð0Þ ¼ �
h0 � s
a0

(14)

Plugging this relation in eqn (12) yields

F0 ’ a0
A� fðh0Þ
h0 � s

: (15)

Using the expression for f(h) (in Section 3), the above equation
gives the same trend as the complete numerical solution
(Fig. 4b) and has a fair agreement for the value of h0 for which
F0 is maximum (h0 C 1.26s). For s/a0 o 2, a condition which
often holds in the context of thin film peeling experiments, the
numerical solution confirms the 1/a dependency of hx(0) in
eqn (14) at h0 = 1.26s (see Fig. 4c). Maximizing F0 with respect
to h0 gives

F0
max / B

1
4s�

1
2A

3
4; (16)

where the constant of proportionality is Oð1Þ. We confirm the
power-law relation of A and B with F0

max in eqn (16) by numeri-
cally computing F0

max for A in range [0.1,10] N m�1 (keeping
fixed B = 1 eV and s = 0.34 nm) and for B in range [0.1,10] eV
(keeping fixed A = 0.28 N m�1 and s = 0.34 nm) (Fig. 4d insets).
As a further confirmation, F0

max is computed by varying s in
range [0.1,0.5] nm and A, B in the aforementioned range.

Expressing F0
max as a function of B1=4s�1=4A3=4, the data collapses

onto a straight line (Fig. 4d). We estimate the proportionality
constant to be 1.18, close to the value of 0.88 obtained by exact
minimisation of the small-slope expression. In summary, the
maximum force is given approximately by

F0
max ’ 1:18

BA3

s2

� �1
4
: (17)

Ref. 27,70 showed that for small opening angle, m_ga3=B �
ðAa2=BÞ1=2, where _g is the critical shear rate for exfoliation. Using
F0

maxB m_g a and aB ao, we arrive at the same scaling as in eqn17.
This suggests that for ao 4 0.34s, which turns out to be the case
for the parameters B, A and s characterising our simulations, the

force F0
max is larger than F0

plateau by a factor � B
�

s2A
� �

1=4. In
peeling of macroscopic elastic films B is much higher than in
graphene.4,71–74 Our predictions for the maximum and plateau
forces are based on a continuum framework, and therefore hold
for macroscopic systems provided that a0 c s.

The values of F0
max and F0

plateau depend on A and B. We can
therefore use the quasi-static estimates of peeling force to
calibrate these two parameters. Using eqn (10) for peeling in
vacuum we obtain A C 0.28 N m�1, a value that is very close to
the graphene-graphene adhesion energy reported in previous
MD simulations and experiments.75,76 For peeling in water, we
obtain A C 0.25 N m�1, comparable to the value in vacuum.24,25

Previous experiments and MD simulations estimated the adhe-
sion energy of graphene in water to be of the same order
magnitude as found here.3,25,77,78 Knowing the adhesion

energy, eqn (17) can be used to calculate the bending stiffness.
The value we obtain is B = 2.4 eV. However for h0 4 0.8 nm
fitting the continuum peeling force with MD using BFGS
method79 yields B = 1.0 eV. This suggests that the bending
stiffness varies between 1.0–2.4 eV depending on h0. Previous
works have also reported a variation of bending rigidity in a
similar range, depending on the extent of deformation of the
sheet.80,81

We compare sheet profiles in the continuum model with
those obtained from MD. The quasi-static evolution of sheet
shape in MD shows good agreement with that obtained by
solving eqn (2) and (3) with the fitted MD values of B and A for
vacuum (Fig. 5a). The sheet profiles in Fig. 5b and c confirm
our observation on the variance of B on h0: B = 2.4 eV shows a
slightly better fit for h0 = 0.355 nm while B = 1.0 eV is a
considerably better fit for h0 = 1.75 nm. In the cohesive region,
the oscillatory pattern visible in Fig. 5b is a consequence of the
competition between the bending and adhesive forces.82 In the
following we use B = 1.0 eV and A = 0.25 N m�1 when discussing
the values of F for graphene–water system.

2.4 Analysis of the velocity-dependent case

In this section, we analyze the effect of rate-dependent peeling
on the sheet’s shape and peeling force. To get insights on the
dependence of the shape of the sheet on the peeling velocity, we
first write eqn (2) and (3) in dimensionless form. With the

horizontal length of the channel scaling with a0 ¼ Bs2=10A
� �1=4

and estimating the characteristic curvature as
ffiffiffiffiffiffiffiffiffiffiffiffi
2A=B

p
,56,83,84

the characteristic slope near the crack tip is e ¼ s=ð
ffiffiffi
5
p

a0Þ. We
rewrite eqn (2) and (3) using the following dimensionless
variables (represented with hat symbols):

ŝ � s

a0
; ŷ � y

e
; T̂ � Ta20

B
; P̂ � Pa30

eB
; f̂ � fa30

e2B
; t̂ � teB

ma30
: (18)

The dimensionless governing equations are

ŷŝŝŝ þ T̂ ŷŝ � f̂ĥ cosðeŷÞ ¼ DP̂; (19)

e2ŷŝŝŷŝ � T̂ ŝ þ ef̂ĥ sinðeŷÞ ¼ e2 f̂ ; (20)

Fig. 5 Comparison of quasi-steady sheet profiles from the continuum
model (lines) and MD simulations (disks) in vacuum. (a) Sheet profiles for 4
different values of h0, (0.355, 0.52, 1.04, 1.75) nm. The parameters A =
0.28 N m�1 and B = 1 eV for the continuum profiles. (b and c) The MD
profiles for h0 = 0.355 nm and h0 = 1.75 nm respectively, compared with
continuum profiles for two values of B. Here, A = 0.28 N m�1.
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where f̂ ¼ 1

6
5

ffiffiffi
5
p

ĥ

� �4

�2
ffiffiffi
5
p

ĥ

� �10
 !

and ĥ = h/(e a0). The dimen-

sionless sheet thickness is d̂ = d/(ea0) and the dimensionless
pulling velocity is v̂ = mv/(2A) (With the normalisation eqn (18),
P̂ and f̂ are the ratios of the pressure and friction terms to the
first terms in (19) and (20), respectively. For e { 1, the small
slope limit of the balance equations is recovered.). Character-
istic values from our MD simulations are m = 10�3 Pa s and
A B 0.1 N m�1, hence v̂ turns out to be in the range [0.005–0.5]
for v A [1–100] m s�1. In eqn (19) and (20), DP̂ is an increasing
function of v̂, so there is a lower range of value of v̂ for which
DP̂ { 1 and f̂ { 1, i.e. the quasi-static case.

Examining the effect of v on the sheet shape extracted from
MD (Fig. 6a), we noticed that the profile of the sheet is
practically independent of v for the range of velocities we
considered. To interpret this observation, we solve the coupled
eqn (19) and (20) with a simple prescription for DP̂ in which
DP̂ = �n for ĥ greater than the interface height ĥi and zero
otherwise:

DP̂ ¼ � n; ĥ4 ĥi

DP̂ ¼ 0; ĥ � ĥi

(21)

Here we fix e = 0.5, f̂ = 0 and n = 0 or 1. If the slope is not
negligible, an increase in peeling force with DP̂ must be
accompanied by an increase in tension at the left boundary
(eqn (4)). From eqn (20), in the case when ŷ and its first two
derivatives are independent of DP̂, T̂ŝ remains nearly constant,
and therefore the tension curve must uniformly shift upwards
with the increase in tension at the boundary. Considering that
for n = 1, there is a significant increase in F̂, we find that T̂
indeed shifts upward with n for ĥi = 3 (Fig. 6b). However, the
increase for ĥi = 2.3 is notably non-uniform implying a signi-
ficant change in shape. A smaller value of ĥi means that the
fluid wets further inside the sheet at the peeling front. There-
fore, the unvarying shape of the sheet with v can be explained
by the absence of fluid in the curved part of the sheet near the
front (see Fig. 2a).

The fact that the shape of the sheet is approximately
independent of the peeling velocity even in presence of water
means that we can estimate the bending and adhesive forces
from the quasi-static results, and use these estimates when the
velocity is not small. As a corollary, we can decompose unambi-
guously the peeling force F into a non-dissipative contribution,
given by eqn (10) for large angles and eqn (12) for small angles,
and a velocity-dependent viscous contribution.

As customary in elasto-hydrodynamic problems, we investi-
gate the relation between pressure-drop and axial velocity in the
lubrication limit of small slopes.5,85–87 From the continuum
model, we analyse the velocity dependent case for small deflec-
tions (i.e., h0 o 1 nm) as the 1-D approximations for pressure
are valid only for small slopes. In this limit, for stationary
channels presenting Navier-slip boundary conditions at the
walls, the depth-averaged fluid velocity is related to the pressure
gradient via88

�uðxÞ ¼ ðh
�Þ2

12m
px 1þ 6l

h�

� �
; (22)

which recovers the no-slip expression for l { h*/6. Here the
height of the channel is taken to be h* = h � d, to account for the
thickness of the sheet (see Section 2.2). Eqn (22) is in the form
used, e.g., to model the flow of thin liquid films in the weak-slip
regime.89–91 Momentum balance in the flow direction gives

f ¼ �h
�

2
px cos y; (23)

where f = m(d-
u/dy)�-n is the tangential friction and -

n is the unit
vector normal to the boundary. We solve eqn (2) and (3) with the
prescription of pressure and friction described above4,5 and
p|s=0 = 0 (Fig. 7). From the shape of the sheet, we calculate the
edge force using eqn (4).

If the slip length was zero, the crack propagation would
result into a diverging viscous stress near the crack tip,85,92 as
in the moving contact line problem.93,94 In theory of moving
contact line,93,95 introduction of slip regularises the stress
divergence. The slip lengths are comparatively large in our

Fig. 6 Rate dependence of sheet profile and tension. (a) Sheet profiles
from MD for h0 = 1.75 nm at v = 0 (squares) and v = 50 m s�1 (disks). Dotted
line shows solution of continuum model (A = 0.25 N m�1, B = 1.0 eV) with
DP = f = 0. (b) Non-dimensional tension along the sheet for the pressure
profile in terms of n defined in eqn (21) with two values of ĥi and ĥ0 = 4.

Fig. 7 Results of lubrication model described by eqn (22) and (23).
(a) Comparison of lubrication pressure profile along the sheet (h0 =
0.8 nm) from the continuum model for different combinations of l and
d. (b) Fvis (solid lines) and Fadh (dashed lines) as a function of l using
eqn (22). The peeling velocities, v = 50 m s�1 (red) and v = 10 m s�1 (green),
h0 = 0.8 nm and B, A, s, d are for graphene-water system. The inset is an
enlarged version of the same plot showing the difference in Fadh values.
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MD simulations (l C 60 nm c a0 C 0.3 nm)38 and signifi-
cantly reduce the magnitude of the viscous stress near the crack
tip (Fig. 7a). The choice of d has no noticeable effect on
lubrication pressure as l c h� d.

For large slip lengths (6l/h* c 1), the viscous component of
F due to lubrication is much smaller than the adhesive compo-
nent even at relatively large peeling velocities (Fig. 7b). As an
instance, for l = 10 nm and v = 50 m s�1 the viscous component
Fvis is about one order of magnitude smaller than Fadh. If the
shape of the sheet is invariant with respect to v, the lubrica-
tion pressure for l c h* should scale, according to (22),
approximately as

p � vma20
h�2l

: (24)

Here, we use the continuity equation for small slopes, which
yields �u � va0=h

�
0

� �
. Therefore, Fvis p 1/l for sufficiently large l,

which our continuum simulation confirms (Fig. 7b). The criter-
ion to neglect viscous stresses due to lubrication (P̂ { 1) yields
the following ‘‘large-slip’’ condition:

v	 5h�2ð2AÞ3=2l
mðBÞ1=2s2 : (25)

Using eqn (25), we find that the viscous component of F
arising from lubrication can be neglected for v { 105 m s�1 in
our MD simulation. Thus, lubrication forces cannot explain the
dependence of peeling force on velocity seen in the MD results
of Fig. 2d.

In the MD simulations of confined liquid in nano-channels,96–98

a large hydrodynamic slippage is known to generate a more
uniform flow profile (the usual parabolic flow expected for
pressured driven flow in no-slip channels reduces to a uniform
flow as the slip length increases29,99). Similarly, in the problem
considered in the current paper the effect of large slip is to
make the velocity field near the crack tip approximately uni-
form (Fig. 8). The streamlines (in the frame of reference of
the stationary layer) near the crack-tip are parallel to the lower
boundary. The velocity field does satisfy both the no-penetration
and the tangential slip boundary conditions at the liquid–solid
boundaries. A small -ez component of the fluid velocity can only
be seen close-to the edge, above the sheet and in front of the
entrance of the flap.

Calculating pressure, viscous shear and normal stresses
from MD is challenging due to thermal noise and the difficulty
of applying volume-average to smallgap regions. Therefore, we
have performed continuum simulations using a finite element
software (COMSOL) of a peeled sheet of finite thickness for 4
values of h0 moving at different peeling velocities (Fig. 9a).
In these simulations, we solve the incompressible Stokes
equations

rp = mr2u; r�u = 0 (26)

where p is the pressure field and u the velocity field, with free
slip boundary condition at all surfaces, corresponding to l = N.
The boundaries, ABCD in Fig. 9a, are prescribed based on the

solution of eqn (2) and (3) for DP = f = 0 (see Fig. 6a). The
boundaries are placed at a distance d/2 from the centre-line
positions of the moving and stationary sheets, given by y = h(x)
and y = 0 respectively. To avoid singularity, point B and C are
replaced by rounded corner of radius r = 0.5 Å. To avoid finite
size effect due to the reservoir, the height (FG) and width (GH)
of the computational domain is chosen to be much larger than
any other dimension. The interface (segment DE in Fig. 9a) of
height hi� d, located at position s = si, moves with velocity ui in

Fig. 8 Fluid velocity vector field computed from molecular dynamics
simulation. The blue lines denote velocity streamlines. The data is averaged
over 8 simulations at v = 50 m s�1.

Fig. 9 Analysis of COMSOL simulations of the dynamically peeled sheet.
(a) Schematic of the simulation for h0 = 1 nm. The region with fluid is
shaded with grey. The reservoir boundaries are shown not to scale.
(b) Representative pressure and velocity field. (c) Absolute pressure just
below the sheet (along CD) extracted from the simulation for different
peeling heights for v = 50 m s�1. (d) Simulation schematic illustrating the
configuration of sheet for h0 = 5 nm and the corresponding velocity
streamlines. The surface near the edge of the sheet (corresponding to
y 4 4 nm) is highlighted in green.
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the -ex direction, where ui = dsi/dt is the average fluid velocity at
si. The reservoir walls are modelled as zero pressure gradient
outlets. We perform simulations for h0 = 1, 2, and 5 nm.

Fig. 9b shows the fluid velocity vectors and the corres-
ponding pressure distribution for v = 50 m s�1 and h0 = 1 nm.
The pressure in between the gap is predominantly negative, with
a large negative pressure in the region surrounding the edge.
The absolute pressure along the arc CD has a sharp minimum
near the edge and then increases smoothly as the crack tip is
approached (Fig. 9c). A convective motion of fluid around the
edge of the sheet is visible in Fig. 9b and 8. The integral effect of
the viscous and pressure stresses associated to this convective
motion give rise to a drag resistance, which we term ‘‘edge drag’’
force. To characterise the magnitude of this force, we have
developed two independent estimates. One is based on the
COMSOL simulations discussed previously. We consider the case
of h0 = 5 nm shown in Fig. 9d for different values of v as the
viscous effect of the edge can be isolated in this configuration.
To estimate the viscous stress at the edge, we integrate the
y-component of stress along the surface of the sheet above y =
4 nm (highlighted in green in Fig. 9d). The estimated viscous
stress increases approximately linearly with v and is comparable
in magnitude with A for v 4 10 m s�1 (Fig. 10a). As a second
estimate, using MD simulations we have computed the vertical
force on a flat rigid vertical nanosheet of length B 1 nm
moving vertically with an assigned velocity v.‡ In both cases
we get values which are very close, in magnitude and trend, to
the value of Fmax � F0

max. Both estimates give values of the edge
force comparable in order of magnitude to the quasi-steady
adhesion forces for v 4 10 m s�1. Therefore, the sharp mini-
mum in (Fig. 9c) can be attributed to the motion of fluid
displaced as the edge moves upward.

The ‘‘edge drag’’’ force does not capture all the viscous
forces as it does not explain the increase in F � F0 occurring
when fluid starts entering the crack (region II of Fig. 2c).

The fact that the pressure does not suddenly increase to zero
and saturates to a significant value for h0 = 1 nm (Fig. 9c)
suggests that another source of pressure drop in our system can
be due to the motion of fluid entering the gap between the
sheets. To estimate this contribution, we refer to previous
results on pressure-driven flow in two-dimensional channels
which share similarities to the entrance flow below the sheet
and near the edge in our configuration. Hasimoto (1958)100

studied analytically the Stokes-flow hydrodynamic resistance of
an infinitely thin plate presenting a slot of height 2h. This
configuration is relevant to our case when h0 is small and the
channel walls are thus nearly parallel. The pressure drop
along the channel was characterised in terms of the hydro-
dynamic resistance RH, i.e. the ratio of the magnitude of the
pressure drop to the volumetric flow rate Q B %uh. Hasimoto’s
solution gives

RH ¼
DP
Q
¼ 8m

ph2
: (27)

Hasimoto’s formula is not an accurate representation of hydro-
dynamic resistance for smoothly-converging channels, so the
accuracy of eqn (27) decreases for increasing h0. Numerical
studies of pressure-driven flow in smoothly converging axis-
symmetric entrances with fixed walls show that RH depends
on the ratio of l to the minimal channel height a, the ratio of
the channel length and a, as well as the specific shape of
the channel.101–104 For completeness, a COMSOL analysis of the
entrance resistance RH for pressure-driven flow in smoothly-
converging stationary 2D channels (as opposed to axi-symmetric)
in the case of infinite slip length, for different values of the radius
of curvature of the entrance, is presented in the ESI.† The
analysis show that Hasimoto’s solution gives values of RH only
20% smaller than those provided by COMSOL when the radius of
curvature of the entrance is comparable to, or smaller than, the
minimum channel height (see Fig. S4 in ESI†). Therefore, we use
eqn (27) as an approximation for small values of h0. We notice
that a viscous resistance due to converging streamlines is,
physically, akin to the resistance due to extensional viscous
stresses described in the lubrication formulation of ref. 90, 105
and 106, except that in our case the gradients are large because
the fluid layer is not slender.

We compute DP, appearing in eqn (2), using eqn (27) with
the available channel height h�0 ¼ h� d in place of h, and
evaluating Q from the average velocity defined in eqn (7).
We calculate the component of the force associated with
entrance flow, Fent, from the total force by removing the
adhesive component (eqn (6)). We find that Fent is comparable
to, but smaller than, the value F � F0 extracted from MD at
h0 = 1 nm (Fig. 10b). This suggest that entrance flow is an
important contribution to the viscous resistance to the peeling
front motion.

As Fmax lies in region I of Fig. 2c, we infer that the viscous
contribution to Fmax must arise from the motion of the fluid
mostly close to the edge, because there is practically no fluid in
between the sheets in region I. The peeling force in region II & III
will instead receive contributions from both the edge and the

Fig. 10 (a) Viscous resisting force for a single nanosheet moving upwards
with velocity v (red disks); Fmax � F0

max from MD (blue squares); integral of
the y-component of the stress near the edge of the sheet from COMSOL
integrated along the surface highlighted in green in Fig. 9d (line). Here,
A = 0.25 N m�1 is the adhesion energy measured in water. (b) Estimate of
Fent from eqn (27) for h0 = 0.6, 0.8 and 1 nm. Red disks are F � F0, i.e., the
total increase in peeling force in MD at h0 = 1 nm.

‡ As this sheet has two identical ends, the drag force at each end of the nanosheet
(red circles in Fig. 10a) is calculated as half of the required pulling force.
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entrance resistance. Indeed, the difference between F � F0 and
the theoretical values for Fent in Fig. 10b is comparable to the
viscous force due to the edge drag in Fig. 10a. So, the sum of
these two contributions is close the total viscous resistance (not
exactly equal, expectedly, due to the use of simplified models).
Using the COMSOL estimate for the edge drag force and eqn (27)
for the entrance pressure drop in our continuum model, we
obtain an increase in F with v for v 4 1 m s�1. This increase in
F is qualitatively similar to that suggested by the MD data in
Fig. 2c. To build an accurate model, one needs to separate the
edge and entrance contributions to the viscous resistance in MD.
However, a systematic way to separate these two contributions
was unfortunately not found since both contributions are, to a
first approximation, linear in the velocity and their magnitudes
are also comparable.

The MD results in Fig. 10a and b show approximately a linear
trend with v, except at v = 100 m s�1. For this particular value the
MD data for the force is lower than expected by extrapolation of the
force-velocity curve at smaller velocity. Fig. 11 illustrates that this
velocity value corresponds to the formation of a vacuum pocket
(cavitation) near the crack tip. (At this velocity value, capillary
forces may play an important role.) Cavitation at large peeling
velocity have been reported10,107 in the case of peeling of a scotch
tape. In molecular dynamics, the threshold negative pressure for
cavitation in pure water is reported to be B0.2 GPa,108,109 which is
of the same order as the pressure near the crack measured from
our COMSOL calculation.

2.5 Threshold velocity

In the initial stage of peeling, using eqn (13) the slope at the
entrance is � h�0=a0. Balancing the terms in the fluid continuity
equation gives �uva0=h

�
0. Thus,

DP � vma0
h�20

: (28)

To obtain this expression we have here used the scaling
DP � m�u=h�0 suggested by Hasimoto’s solution (27). Using a
practical numerical threshold of 0.01 in place of { 1, the
condition DP̂ { 1 translates to a practical threshold of

vth � 0:01
h�20 ð2AÞ5=4

mðBÞ1=4ð0:2s2Þ3=4; (29)

to be compared with the lubrication estimate (25). The
entrance-flow estimate (29) gives vth B 1 m s�1 in our problem
of peeling of mono-layer graphene in water.

The parametric dependence of the threshold velocity using
the entrance pressure is different from the one obtained using
the large-slip lubrication pressure. This is because the typical
length-scale characterising the velocity gradients in large-slip
lubrication is Oðh�0l=a0Þ, while it is Oðh�0Þ in entrance flow.
Fig. 12, obtained with the 1-D continuum model, confirms
the BB�1/2 and BB�1/4 dependencies of the threshold velocity
in the large-slip lubrication case and in the entrance flow case,
respectively. In this test we define vth as the velocity for which F
increases by 1% with respect to the quasi-steady value. In the
literature on silicon wafer bonding in air, the velocity of crack
has been reported to have the same scaling in B and A as in
eqn (29).71 An inverse 3/2 dependence with sheet thickness has
also been previously reported.110

Eqn (29) predicts an increase in threshold velocity with
adhesion energy. The adhesion force increases with A and the
peeling velocity at which viscous forces start becoming compar-
able to adhesion forces also increases. The inverse dependence
on s can be explained similarly: for the same value of h�0,
adhesion forces increase with decreasing s. Eqn (29) predicts
a weak inverse dependence on bending rigidity. A more rigid
sheet leads to smaller deformations, larger crack lengths and
larger fluid velocity at the entrance. Hence the total viscous
force on the top sheet is increased. This increment in viscous
force must be larger than the increment in the quasi-steady
peeling force (with B) at small slopes. Our continuum model
indeed confirms that F, unlike vth, increases with B (Fig. 12b).

Comparing the scaling for lubrication pressure and entrance
pressure (eqn (24) and eqn (28) respectively), we get the condi-
tion l/a0 c 1 to neglect the effect of the lubrication pressure in
comparison with the entrance pressure for small peeling
angles.

2.6 Comparison with the literature

For the static peeling, we define a horizontal length scale a0

from the balance between adhesive and bending stresses near
the crack tip. Previous studies28,111 suggest that the stresses at a
length Oða0Þ near the peeling front control the shape of the
peeled flap. In our case, a0 B 0.3 nm, comparable to the size of

Fig. 11 Snapshot of MD simulation near the crack tip at different peeling
velocities for h0 = 1.6 nm.

Fig. 12 Threshold peeling velocity. (a) vth for entrance model (cross
symbol) and lubrication model with l = 60 nm (plus symbol) as a function
of B, keeping A = 0.25 N m�1, s = d = 0.34 nm, h0 = 1 nm and hi = 0.5 nm.
(b) F vs. v for different values of B for entrance model, keeping other
parameters same as (a). The value vth (cross symbol) is defined as the point
where F = 1.01F0.
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one fluid molecule, and comparable to the length of the curved
part of sheet near the peeling front. As fluid is absent in the
curved part for s 4 si, the shape of the peeling front in the
neighbourhood of this region is approximately quasi-static,

with characteristic outer curvature
ffiffiffiffiffiffiffiffiffiffiffiffi
2A=B

p
.112 Away from the

front, the shape is practically linear owing to the zero moment
condition at the edge. Correspondingly, the shape of the sheet
is approximately independent of viscous effects. Our case is
contrary to that of an elastic polymer sheet with a pre-wetting
layer of liquid underneath, where the viscous effects near the
peeling front control the sheet’s shape.1,4,63

In previous studies on viscous peeling, the fluid is either
present only inside the crack1,60,63 or confined within a blis-
ter;4,28,68 in these studies lubrication dissipation due to a
Poiseuille flow in the gap was the primary source of viscous
dissipation. In contrast, our configuration is completely
immersed in the fluid. Therefore, viscous dissipation also
comes from the motion of the edge relative to the surrounding
fluid27 and suction of fluid from the outer ‘‘reservoir’’ as the
opening angle increases.101 When the slip is large compared to
the system’s dimensions, these forms of dissipation dominate
over the usual lubrication dissipation.

3 Summary and outlook

We have carried out MD simulations of peeling of a deformable
graphene layer in the presence of liquid water. The MD data is
rationalised by a 1-D continuum model based on equilibrium
equations for large deflections of a non-linear elastica.
These solid mechanics equations have been used to model,
e.g., inextensible elastic rods113,114 and fibres,115116 also for
large deflections. Finite-element COMSOL simulations are also
carried out to investigate certain flow features and to better
characterise the hydrodynamic load terms present in MD. The
effect of identified viscous stresses are estimated, for small
deflections, using the 1-D model.

In the quasi-static regime, we have been able to capture with
the 1-D model the dependence of the peeling force on the edge
height h0, provided that two values were used for the bending
rigidity, one for small deformations, and another for large
deformations. This feature is likely due to the dependence of
the mechanical response of the crystal structure of graphene to
the tension applied to it.117 The quasi-static force profile as a
function of h0 displays a maximum for intermediate values of
h0, and then reaches a plateau. The plateau force in MD was
found to scale linearly with the adhesion energy A, independent
of the bending rigidity B of the sheet. The maximum quasi-
steady peeling force instead was found to scale proportionally
to B1/4 and A3/4. In the velocity dependent cases, the analysis,
corroborated by finite-element COMSOL simulations, suggests
that entrance flow effects (associated to the curvature of the
streamlines at the entrance of the nanochannel), and the
vertical drag force exerted by the fluid on the edge of the sheet
as it moves upwards, are dominant contributions to the viscous
resistance to the motion of the sheet.

For our range of parameters, the critical velocity below
which the deformation is quasi-static is about 1 m s�1. An esti-
mate for the critical velocity beyond which entrance flow effects
make the peeling force velocity dependent was developed
(eqn (29)). This estimate is valid provided that the slip length
is much larger than the length scale a0. The dependence of the
shape of the sheet on v was found to be practically negligible
even in the regime where the peeling force displayed a signi-
ficant dependence on v.

For very large peeling velocities, the MD simulations reveal
the formation of a cavity near the crack tip. The formation of
this cavity was shown to correlate with a decline in the trend of
peeling force vs. velocity curve. Snapshots from the MD simula-
tions (Fig. 11) show quite evidently that this decline is simply
due to the reduction in contact area between the liquid and the
solid, so it would be erroneous to associate the reduction in
viscous resistance to a variation in slip or viscosity at a critical
velocity (cavitation for instance has been used to explain the
appearance of sudden slip in atomically smooth mica surface
coated with surfactants or self-assembled monolayers43).

In the initial stages of peeling of a graphene layer, the linear
dimension of the peeled flap can be comparable to the hydro-
dynamic slip length characterising the liquid-solid interaction
(the slip length is a few tens of nanomaters for many graphene
solvent combinations38). For these small system sizes, the
peeling force and the dynamics of the sheets will be controlled
by mechanisms similar to the ones discussed in this paper,
so our results can be used, for example, to build analytical
models to predict thresholds for graphene exfoliation in shear
mixing.14,27,70,75,118

A possible future development of the current work is the
inclusion of thermal fluctuations in the elastic, continuum
model. Fluctuations for instance could play an important role
in peeling initiation (methods to include the effect of thermal
fluctuations in peeling models are available119–121). Another
relevant avenue of research would be to consider all-atom or
coarse-grained MD simulations simulations accounting for
longer nanosheets that we were able to simulate here. This
could clarify whether a transition from edge- and entrance-
dominated viscous dissipation to lubrication-dominated vis-
cous dissipation occurs at a critical value of the crack length.

The current work may have implications for other soft
matter systems. Peeling processes have been shown to play
an important role in a variety of soft matter problems, from the
adhesion of cells122 and biological membranes,123 to the
mechanics of pressure-sensitive adhesives.124 Much of the work
done on peeling and thin-film lubrication focuses on pheno-
mena occurring near the crack tip,71 or in the bulk fluid away
from the entrance.105 The current work instead highlight the
importance of entrance effects, whether associated to the
entrance flow or the downward drag on the edge. Entrance
effects will be particularly important for soft matter systems
such as polymer melts42 that can display slip length sometimes
exceeding hundreds of microns.125 Slip lengths tend to increase
as the surface roughness decreases, thus significant slip effects
are expected for molecularly smooth surfaces, graphene being a
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primary example but certainly not the only one.126 For both
no-slip and slip sheets peeled from a substrate and initially
completely bound to it, entrance effects will be more pro-
nounced during the initial stages of peeling, when the inter-
facial crack is short and the hydrodynamics of the entrance
dominates the flow everywhere below the peeled sheet.
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56 L. D. Landau and E. M. Lifšic, Theory of elasticity: volume 7,

Elsevier, 1986, vol. 7.
57 J. E. Jones, Proc. R. Soc. London, Ser. A, 1924, 106, 463–477.
58 B. T. Kelly, Physics of graphite, Applied Science, 1981, p. 477.
59 R. Okamoto, K. Yamasaki and N. Sasaki, Mater. Chem.

Front., 2018, 2, 2098–2103.
60 A. Ghatak, L. Mahadevan and M. K. Chaudhury, Langmuir,

2005, 21, 1277–1281.
61 H. Mosaddeghi, S. Alavi, M. Kowsari and B. Najafi, J. Chem.

Phys., 2012, 137, 184703.
62 S. Gravelle, C. Ybert, L. Bocquet and L. Joly, Phys. Rev. E,

2016, 93, 1–7.
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