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Elastocapillary deformation of thin elastic ribbons
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The ability of liquid interfaces to shape slender elastic structures provides powerful strategies to control

the architecture of mechanical self assemblies. However, elastocapillarity-driven intelligent design

remains unexplored in more complex architected liquids – such as foams. Here we propose a model

system which combines an assembly of bubbles and a slender elastic structure. Arrangements of soap

bubbles in confined environments form well-defined periodic structures, dictated by Plateau’s laws. We

consider a 2D foam column formed in a container with square cross-section in which we introduce an

elastomer ribbon, leading to architected structures whose geometry is guided by a competition between

elasticity and capillarity. In this system, we quantify both experimentally and theoretically the equilibrium

shapes, using X-ray micro-tomography and energy minimisation techniques. Beyond the understanding

of the amplitude of the wavy elastic ribbon deformation, we provide a detailed analysis of the profile of

the ribbon, and show that such a setup can be used to grant a shape to a UV-curable composite

slender structure, as a foam-forming technique suitable to miniaturisation. In more general terms, this

work provides a stepping stone towards an improved understanding of the interactions between liquid

foams and slender structures.

1 Introduction

Combination of soft materials and fluids offers a rich physics
in which both elasticity and capillarity come into play,1

opening an area of opportunity for novel materials and
fabrication strategies in the case of slender elastic
structures2 and of bulk systems.3 Geometry and size effects
play a key role in the control of the shape of slender solids by
capillary effects, for which bending dominates over
stretching.4 Nature provides numerous examples such as
the aggregation of wet hair5 or the spooling of spider web
in liquid droplets,6 serving progressively as a source of
inspiration for the design of innovative materials.7 Turning
catastrophic events such as capillarity-induced collapse8 into
robust microfabrication techniques9,10 has promising
impacts in electronics and energy harvesting, soft robotics,
or even drug encapsulation and delivery.11,12 We consider
here the case of a slender structure introduced in an archi-
tected liquid, formed by a quasi-2D column of bubbles
(Fig. 1). Mechanical self-assembly of soap bubbles provides
foam structures that – in the limit of low liquid content - obey

specific geometrical and topological rules dictated by Pla-
teau’s laws.13 Further confinement of bubbles in columns
of square-cross section results in well-defined ordered

Fig. 1 Experimental setup. Bubbles generated by blowing air through a
needle at constant pressure into a detergent solution form a bamboo foam
in a circular column (a), transitioning to a staircase structure in a square
cross-section column (b). Note the invariance by translation along the axis
perpendicular to the column, providing a quasi-2D structure. (c) Overview
of the study: the initial foam structure with no intruder (left) – dictated by
Plateau’s rules – is modified upon introduction of an elastic ribbon (right),
with an equilibrium shape dependent on the bending rigidity of the ribbon.
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structures, provided that the enclosure dimensions are com-
parable to the bubble diameters.14

Such systems form periodically ordered liquid film archi-
tectures into which an elastic ribbon can be introduced.
Although the question of complex deformation of an intruder
in an architected medium has been widely studied in the case
of granular media15,16 with applications in the context of root
growth,17 a limited number of studies on model systems exist
in the case of liquid foams, such as the analysis of simple
arrangements of soap films interacting with rigid solids,18 and
simulations of flexible fibres in foam under shear.19

We consider a model system composed of an ordered
assembly of monodisperse soap bubbles and an elastomer
ribbon (Fig. 1). Among the different possible arrangements
governed by the confinement ratio of the bubbles inside the
column, we select the so-called staircase structure14,20 (Fig. 1b)
that offers an invariance by translation along the axis perpendi-
cular to the column, providing a quasi-2D model system. The
staircase structure presents a central soap film composed of
straight sections connected at 1201 angles (Fig. 1c left) into
which we insert an elastic intruder (Fig. 1c right). Depending on
the bending rigidity of the elastomer ribbon, the resulting shape
of the structure evolves from a case close to the geometry with no
intruder to a system where two bamboo foam columns (equally
spaced parallel soap films14) are separated by a flat plane, as
illustrated with the orange arrow in Fig. 1c. In the following, we
provide an experimental and theoretical framework to quantify
such equilibrium shapes, both showing excellent agreement.

2 Experimental methods
2.1 Materials

All experiments are carried out with an aqueous solution of
4.5 vol% commercial detergent (Fairy Liquid), 1.5 vol% Glycerol
(Sigma – Aldrich) and 10 g L�1 industrial PEO lubricant Jlube
(Jorgensen Labs),21 resulting in bubble structures which are
stable over tens of minutes under the experimental conditions
of this study (Fig. S1 in the ESI†). Water, PEO lubricant and
glycerol are mixed with a magnetic stirrer for several hours, and
the detergent is added after 24 h. Solutions are used only after
an additional 24 h period of rest. The surface tension of this
solution, measured using a Kibron tensiometer, is found to be
g = 26.5 � 0.5 mN m�1. The elastic ribbons are made of
polydimethylsiloxane (PDMS, Dow Corning Sylgard 184 Elasto-
mer base mixed with its cross-linker in proportion 10 : 1). They
are cut to a width w = 14.5 � 0.1 mm from 100 � 100 mm films
of variable thickness t produced with a Laurell WS-650MZ spin
coater at speeds ranging from 200 to 2000 rpm, subsequently
cured in an oven at 60 1C for two hours and stored for at least
48 h at room temperature before performing the experiments.
The thicknesses t of the ribbons are measured with a Bruker
optical profilometer. The Youngs modulus of PDMS is E = 1.7 �
0.2 MPa (ref. 22, confirmed by our own DMA testing on a
1500 rpm sample) and the Poisson’s ratio n is taken as equal to
0.45. Both sides of the ribbon are hydrophilised via plasma

cleaner treatment (Harrick Plasma) at high intensity for 1 min
(Fig. S2 in the ESI†).

2.2 Experimental setup

Bubble columns are generated in a circular perspex tube (ID
16 mm) sealed on one side with a cork that includes a nozzle
(ID 0.61 mm) near the tube wall (Fig. 1a).23 Using a silicone
adapter, we connect to the first tube a PMMA column with a
15 mm-square cross-section into which we place a stretched
wire at the end of which an elastic ribbon is suspended. We fill
the circular tube with the aqueous detergent solution and tilt it
by approximately 10 degrees so that the nozzle opening is just
below the air/liquid interface.23 Air is blown into the solution at
a constant pressure (10 mbar) via an Elveflow pressure con-
troller (OB1 MkII), resulting in the formation of a bamboo
structure. These equally spaced soap films slowly slide upwards
through the silicone adapter and into the square section
column where the soap films rearrange into a staircase struc-
ture. We then disconnect the square section column from the
bubbling setup and introduce the ribbon into the central soap
films by carefully pulling on the wire (Fig. S3 in the ESI†). We
close the column on the top side with a silicone plug, leaving
the other side open to facilitate drainage of liquid out of the
foam structure for 30 min. The resulting system is stable for
another 15 minutes (Fig. S1 in the ESI†) during which shape
and position of the ribbon remain fixed, which permits 3D
scanning of the system with a X-ray microtomograph EasyTom
150/160 without motion artefacts. The tomographic images are
made with resolutions ranging from 12 to 58.8 mm.

Tomography provides slices across the x axis corresponding
to the width of the ribbon (Fig. 2a). On each slice, we measure
the amplitude of the ribbon Df and the height of the second
half-period ‘ (Fig. 2b) using a purpose-designed MATLAB code.

Fig. 2 X-Ray tomography measurements. (a) 3D-view of the elastomer
ribbon in the soap bubble column after 30 minutes of drainage. Note that
only the elastic ribbon is visible in the scan, as the soap film thicknesses are
smaller than the voxel size. (b) Slice perpendicular to the x axis (green color
code in (a)), with definition of the measured amplitude Df and half-period ‘,
highlighting the region of interest (second half-period from the end of the
ribbon). Note that the thickness t, mentioned on the figure, is actually
measured via an optical profilometer.
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To account for small deviations from a perfect 2D system, we
calculated the average for Df and ‘ over 100 equally spaced
slices along the x axis. We made all our measurements on the
second half-period first to avoid edge effects, but also because
higher half periods are prone to a flattening due to the weight
of lower parts of the ribbon,24 an effect disregarded in the
theoretical treatment for sake of simplicity.

3 Results and discussion
3.1 Experimental results

We focus on the dependence of the equilibrium shapes of
ribbon-foam couples as a function of the competition between
elasticity and capillarity in such systems, by introducing into
the foam PDMS ribbons of 10 different thicknesses, ranging
from 35 mm to 359 mm. This represents a variation of the
bending rigidity of the ribbons over three orders of magnitude.
Among the other parameters in the system, the width and
Young’s modulus of the ribbon, the dimensions of the square
section column and the surface tension are kept constant,
while the half-period ‘ is measured on each bubble column
and comprised between 4.2 � 0.1 and 6.2 � 0.2 mm. Qualita-
tively, the stiffer the ribbon the smaller the amplitude Df
(Fig. 1c). We present in Fig. 3 the dimensionless deformation
of PDMS ribbons of thicknesses t = 35, 41, 46, 60, 69, 86, 105,
128, 187 and 359 mm as a function of the dimensionless
bending rigidity Z, together with profiles of the corresponding
ribbons captured via X-ray tomography. For the deformation of

the ribbon, we consider the parameter
ffiffiffi
3
p

Df =‘, which is equal
to 1 in the limit case of soft ribbons where the geometry is
dictated by Plateau’s laws. On the abscissa, the dimensionless
bending rigidity Z is defined as

Z ¼ a
g‘2
; (1)

where a is the bending rigidity per unit width of the ribbon and
g the surface tension. The parameter Z compares the elastoca-

pillary length
ffiffiffiffiffiffiffi
a=g

p
to the geometrical length ‘ of the problem.

For length scales �
ffiffiffiffiffiffiffi
a=g

p
(resp. c), the physics is mainly

dictated by the rigidity (resp. the capillarity).
For large values of Z, the deformation of the ribbon is small,

and increases when decreasing Z. At the limit Z { 1, the shape
is close to the initial pattern of bubbles, with angles prescribed
by Plateau’s laws. To go beyond the description of the deforma-
tion in terms of amplitudes, we also extract the full profiles,
presented in a dimensionless manner in Fig. 4, for PDMS
ribbons of various thicknesses spanning the range shown in
Fig. 3. In order to rationalise these results, the following section
presents the theoretical modeling of both amplitudes and
shapes of the profiles, to which our experimental results will
be compared.

3.2 Theoretical interpretation

The equilibrium state of the ribbon in the staircase bubble
assembly can be obtained by minimising the free energy of the
system. The excess free energy (per unit length in the direction

Fig. 3 Deflexion measurements. Dimensionless deflexion
ffiffiffi
3
p

Df =‘ as a function of the parameter Z = a/(g‘2) comparing bending rigidity of the ribbon and
capillarity. The left side of the graph corresponds to flexible ribbons, the right side to rigid ribbons. Theoretical prediction for rigidity-dominated case
(quadratic order around the straight ribbon configuration) and for capillarity-dominated case (quadratic order around the bubble-only configuration) are
shown with straight lines, respectively in red and blue. Experiments correspond to the second half-period of PDMS ribbons with 10 different thicknesses,
resulting in different bending rigidities. Error bars correspond to both systematic uncertainties on a and g and statistical variation of the parameters Df and
‘ over 100 slices taken along the x axis, covering the full ribbon width. Insets show X-ray tomographies of corresponding systems (scale bars are 2 mm).
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transverse to the Fig. 1c) of the system with respect to the
situation where only the staircase bubbles are present is
given by

F ¼ Eribbon þ DEg þ DFgas; (2)

where Eribbon is the elastic energy per unit width of the ribbon, and
DEg is the excess interfacial energy per unit width of the liquid films,
with respect to the situation without ribbon. Notice that we assume
that the ribbon is everywhere in the interior of the liquid films so
that the area of the ribbon itself contributes to the liquid interfacial
energy. The final term DFgas accounts for the free energy cost of the
possible contraction/dilation of the gas within the bubbles due to
the presence of the ribbon, and is neglected in the following, as
justified in Appendix 1.

The actual expression for the elastic term is

Eribbon ¼
a
2

ð
C2ds; (3)

where a = Et3/12(1 � n2), and s is the curvilinear abscissa along
the ribbon, related to the ribbon profile f (z) by

ds ¼ dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðzÞ2

p
. The curvature C is given in terms of f (z) by

C ¼ f 00ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð f 0ðzÞÞ3=2:

q (4)

For a long and uniform ribbon, which zigzags periodically
along N c 1 identical bubbles (we count the bubbles of length

2‘ only on one side of the ribbon (Fig. 2b)), we can write, up to

negligible boundary corrections, Eribbon ’
Na
2

Ð
1pC

2ds, whereÐ
1pð. . .Þ assumes an integration over one period of the

ribbon only.
Making similar assumptions, the second term of the energy

in eqn (2) is written

DEg ’ 2gN
ð
1p

ds� Df �
ffiffiffi
3
p

‘

� �
; (5)

where Df = max f (z)�min f (z) is the transverse amplitude of the
ribbon (Fig. 2). Note that (i) the factor 2 corresponds to the two
liquid-air interfaces of the liquid films, (ii) the last term of
eqn (5) comes from the fact that the zero energy reference state
is chosen to be the column of bubbles without ribbon for which
the interfacial energy per unit width over one period is

2g
ffiffiffi
3
p

‘þ w
� �

(assuming the square column width and the
ribbon width to be equal), and (iii) w does not appear in
eqn (5) due to the translational invariance of the bubble pattern
along the y-direction. Moreover, as explained in Appendix 1, the
half length of the bubble ‘ can be considered constant during
the minimization process, because the compression/dilation of
the gas due to the ribbon is negligible.

We consider now the minimisation process of the free
energy: The equilibrium profile f (z) is the one which minimises
F (eqn (2)). This minimisation is complex for two reasons.
Firstly, since the functional F is not quadratic in f (z), we will
consider two different quadratic approximations according to
the physical properties of the ribbon (flexible and rigid limit
cases), to obtain a tractable theory. Secondly, for a long homo-
geneous ribbon, we anticipate that the equilibrium shape is
periodic with N identical oscillations embedded in a deformed
network of bubbles. But, in contrast to the total length L of the
ribbon, the number N is not a constant of the minimisation
procedure, since the deformation of the ribbon reduces the
number N of oscillations the ribbon can develop. To tackle this
specific difficulty, two equivalent routes can be followed.
Lagrange multipliers could be used to account for the total
length of the ribbon, the number N being temporarily treated as
a constant. Alternatively – and it is the route we follow here –,
the explicit relation L ’ N

Ð
1pds allows to both account for the

constancy of the total length of the ribbon and the variation of
N. As a result, the unconstrained functional to minimize
becomes

F1 �
F

gL
� 2 ¼

a
2g

Ð
1pC

2ds� 2½Df þ
ffiffiffi
3
p

‘�Ð
1p
ds

: (6)

Taking into account the internal mirror symmetry of the
expected optimal profile (Fig. 1), eqn (6) can be rewritten

F1 ¼
a
2g

Ð ‘
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð f 0Þ2

p
C2dzÐ ‘

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð f 0Þ2

p
dz
� Df þ

ffiffiffi
3
p

‘Ð ‘
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð f 0Þ2

p
dz
; (7)

with Df = f (‘) � f (0) if z = 0 is taken at the position of a
transverse liquid film, such that f (0) = min f (this value being

Fig. 4 Equilibrium shapes. Dimensionless profile of ribbons of different
thicknesses t (and thus different bending rigidities), from flexible (yellow
squares) to rigid (green triangles) structures. Theoretical shapes are calcu-
lated from the values of Df, ‘ measured on the foam-ribbon system, and of
Z measured on the ribbon, with no further fitting parameter, using the
appropriate model (small deformation around straight line for rigid rib-
bons, small deformations around the bubble-only case for flexible rib-
bons). Inset: Region of interest considered for those curves, and definition
of y and z axis.
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arbitrary, we choose f (0) = 0 in the following). For pure bubbles,
i.e. in the limit a - 0, the optimal f (z) given by eqn (7) is

f ðzÞ ¼ z=
ffiffiffi
3
p

, in accordance with Plateau’s laws,13 which pre-
scribe 1201 angles between connecting films.

The physics of the problem is governed solely by the
dimensionless parameter

Z � a
g‘2
: (8)

For high values of Z, i.e. for stiff ribbons, one expects that
f (z)/‘{ 1 and a second order expansion in f for F1 is physically
relevant. Disregarding irrelevant constants, the quadratic
approximation for F1 for large Z reads

F1 ’
Z�1

Z‘
2

ð‘
0

ð f 00Þ2dz þ
ffiffiffi
3
p

2‘

ð‘
0

ð f 0Þ2dz � Df
‘
: (9)

We write f ðzÞ ¼ ðDf Þgðz=‘Þ so that g(0) = 0 and g(1) = 1 and
consider first the optimisation of the shape g before consider-
ing the optimisation of the amplitude Df. The optimal g is
found using standard techniques of Lagrangian mechanics,25,26

summarized in Appendix 2:

goptðz=‘Þ ¼
tanhðkÞ sinh2ðkz=‘Þ � 1

2
sinhð2kz=‘Þ � kz=‘

� �

k� tanhðkÞ ;

(10)

with k � 31=4

2
ffiffiffi
Z
p ’ 0:658ffiffiffi

Z
p : (11)

Once gopt is known, Df is computed as the value minimizing
eqn (9), which is simply a second order polynomial in Df/‘.
One finds

ffiffiffi
3
p

Df
‘
’
Z�1

1� tanh k
k

: (12)

In the Z c 1 regime, for which this formula is in principle
only relevant, one can write one step furtherffiffiffi
3
p

Df =‘ ’ k2=3 ¼ Z�1= 4
ffiffiffi
3
p� �

, showing that Df goes to zero as
p a�1 for large a. It is interesting to note that in the opposite
range Z - 0, eqn (12), though not supposed to work here, gives
however the correct limit = 1.

Actually the limit of small a (or small Z) is incorrectly
described by the previous theory, because one expects here
the central zigzag of the bubble pattern to be hardly perturbed
by the ribbon, therefore assuming Df/‘{ 1 is simply incorrect.

The correct method is to write f ðzÞ ¼ z=
ffiffiffi
3
p
þ xðzÞ and assume

that x/‘ { 1. As z=
ffiffiffi
3
p

is the equation associated to half of a
period of the central line of the bubble network (in absence of
the ribbon), one expects that weak values of a will induce only
minor departures from this pattern. The quadratic approxi-
mation of eqn (7) in the field x(z) can be re-expressed in the

field f (z) and reads (up to a constant)

F1 ’
Z�1

Z‘
2ð1þ 3�3=4Þ

ð‘
0

ð f 00Þ2dz þ 9

16‘

ð‘
0

ð f 0Þ2dz � 3
ffiffiffi
3
p

8

Df
‘
: (13)

In this case, the optimal solution is given by formulas very
similar to the preceding case. As before, one writes a priori
f ðzÞ ¼ ðDf Þgðz=‘Þ and finds respectively for g and Df/‘ the
results given in eqn (10) and (12) with k replaced by

ko �
3ð1þ 3�3=4Þ1=2

4
ffiffiffiffiffi
2Z
p ’ 0:636ffiffiffi

Z
p : (14)

The two regimes are described by the same formulas,
differing only by a modest change in the constant appearing
in k, a similarity which is somewhat surprising. It comes from
the fact that eqn (13), valid in the capillarity-dominated
domain, has exactly the same functional structure as
eqn (11), the corresponding potential for the rigidity-
dominated one, the only change being a limited renormaliza-
tion of the prefactors of the different terms. This similar
structure leads to the same functional form of the optimal
profile, up to a minor change in the constant terms. Notice
however that the profile shape given in eqn (10) has a con-
siderably different limiting expression for small values of Z. For
Z c 1, one can show that goptðz=‘Þ ’ 3ðz=‘Þ2 � 2ðz=‘Þ3. For
Z { 1 however, one has gopt(z/‘) B z/‘, a result expected
because the bubble profile must be recovered at Z = 0. Notice
that the latter limiting form is not compatible with the bound-
ary conditions g0 = 0, a discrepancy due the fact that a
regularisation of the ribbon profile occurs near z = 0 and z = ‘

over a length 	 ‘=ko 	
ffiffiffiffiffiffiffi
a=g

p
, i.e. the elastocapillary length. As

mentioned above, the elasticity dominates on length scales

shorter than
ffiffiffiffiffiffiffi
a=g

p
, as exemplified here.

We plot in Fig. 3 the dimensionless amplitude of the ribbon
as a function of Z, corresponding to eqn (12), with values of k
given by eqn (11) in the Z c 1 limit (rigidity dominated) and
eqn (14) in the Z { 1 limit (capillarity dominated). We observe
an excellent agreement between experiments and theory over
the whole range of deformations, showing that the key ingre-
dients chosen and the approximations made in the modeling in
the two limit cases are relevant.

The full profile of the ribbons is described by eqn (10): Fig. 4
compares this theoretical prediction to experiments, using the
values of Df and ‘ measured on the profile to establish Fig. 3,
and the value of Z measured from profilometry and Young’s
modulus, with no further fitting parameters. Again, our model-
ing captures well the experimental results, over the whole range
of ribbon thicknesses.

3.3 Application to bubble-based forming

Beyond those results, we demonstrate that such setup can be
used as a method to imprint shapes to materials by solidifying
a UV-curable thin elastic ribbon in the bubble assembly. To do
this, we prepare two crosslinked PDMS ribbons of 70 � 5 mm
thickness and 14.5 � 0.1 mm width, treated with plasma
cleaner for 2 minutes at high intensity in order to activate their
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surfaces. A mask protects a rectangular part (8 � 100 mm) from the
plasma, located at the middle of the ribbons. We put the two
activated surfaces in contact, apply a light pressure by hand for 2
minutes and place it in the oven for 15 minutes at 60 1C. Plasma
activation of the surfaces results in strong bonding of the two PDMS
surfaces.27 Only the edges of the ribbon (not protected by the mask)
are glued together, so we obtain a PDMS shell which we fill with
NOA 85 (Norland Optical Adhesive), a liquid photopolymer that
cures when exposed to UV light. Following the same protocol as for
PDMS ribbons, described in the experimental setup section and in
Fig. S3 in the ESI,† we slide the NOA-filled PDMS shell inside the
staircase structure and place it in a Creality UW-01 curing machine
during 10 minutes at low rotation speed. The result is a cured ribbon
made of two PDMS layers with a NOA 85 layer in the middle, and
shaped according to the characteristic geometries of the bubble-
ribbon structure (Fig. 5). In the UV-cured state, as NOA 85 Young’s
modulus is almost two orders of magnitude higher than PDMS, the
thin layer of NOA is sufficiently stiff to maintain the wavy shape
when the composite ribbon is extracted from the foam. With this
simple proof-of-concept experiment, we demonstrate that a liquid
foam can be used to shape slender objects, with a resulting
corrugation imprinted by the foam and the competition between
elasticity and capillarity in such systems.

4 Conclusions

In summary, we have highlighted that the equilibrium geome-
try of bubble columns can be tuned upon introduction of
elastic ribbons, resulting in shapes that differ from classical
foam structures dictated by Plateau’s laws. We have shown that
the resulting geometry of the ribbon-foam system is controlled
by the competition between the bending energy of the ribbon
and the interfacial energies of the bubble surfaces, as illu-
strated by the excellent agreement between our experiments
and theory for both the amplitude and the full profile of the

structures. Liquid foams are excellent model systems for
complex cellular structures, and foams including elastic mem-
branes as the one we describe here could have potential
relevance for tissue growth.28 Interactions between foams and
flexible slender structures also occur in widely used fabrication
techniques such as foam-forming of cellulose for the paper
industry.29,30 Finally, using a UV-curable system, we have
proposed a way to mold materials with characteristic shapes
and curves resulting from the elasto-capillary competition.
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Appendix 1: effect of the gas
compressibility

In this Appendix, we turn our attention to the last term of eqn (2),
which corresponds to a possible density change of the gas phase
caused by the presence of the ribbon. Notice that this density change
could occur only via a change of the parameter ‘ corresponding to
half of a bubble longitudinal size (Fig. 2): Along the lateral dimen-
sion y any imbalance of density along two oppositely placed bubbles
would cause a pressure imbalance and thus a translation (at zero
elasto-capillary energetic cost) of the bubble pattern to restore the
pressure equality on each side of the ribbon. Neglecting again the
boundary effects near the ends of the ribbon, one can write

DFgas ’ NFðbubbleþ ribbonÞ þ ðNtot �NÞ
Fðbubble outside ribbonÞ �NtotFðpure bubbleÞ:

If one assumes that the ribbon induces a modification of the half
period ‘ + d‘ with d‘ { ‘, a lowest order expansion yields

DFgas ’
Nðd‘Þ2w
‘wT

. Despite DFgas is the free energy of the gas per

width in the transverse x direction, w is however present in the
formula due to the extension of the gas in the y direction. If the
column width was infinitely large, this relation shows that changes
in ‘ would be simply forbidden because prohibitively costly. For
finite w (we have w = 15 mm in our experiment), we have to quantify
the typical d‘ induced by the ribbon. The typical value of the elastic
energy per unit width is dimensionally given by const � Na/‘
because the only lengthscale of the problem is ‘, therefore a shift
d‘ of the value of ‘ induces an elastic energy contribution B�ad‘/‘2,
and the value of d‘ is found when the thermodynamic forces
induced by DFgas and this elastic term are equivalent. We get

d‘
‘
	 awT

w‘2
	 E

10Pgas

t

‘

	 
3
; (15)

where in the last relation we have considered that w B ‘. With the
typical values used in our experiments, we have E/Pgas C 10 and
t/‘C 10�2 so that d‘/‘C 10�6, i.e. the compression of the gas can be
safely neglected and ‘ be considered as a constant. Pay attention
however to the fact that ‘ varies from one experiment to another due
to unavoidable variations during the bubble generation process.

Fig. 5 Application of foam-driven ribbon bending to UV-curable compo-
site systems. Bonding of two cured PDMS layers provides an outer shell in
which a liquid UV-curable adhesive (NOA) is poured. This composite
structure undergoes shaping through insertion inside the bubble column
and subsequent UV curing. The resulting solid self-standing structure
presents corrugations dictated by the competition between elasticity
and capillarity in the uncured system.
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Appendix 2: Lagrange equations

In this section, we recall briefly how one obtains the optimal profile
(10) from the functional F1 of (9). The first step consists in writing
f ðzÞ ¼ ðDf Þgðs ¼ z=‘Þ, so that the boundary values of g are g(0) = 0,
g(1) = 1 and g0(0) = g0(1) = 0. The functional is rewritten as

F1 ¼ ðDf =‘Þ2
ð1
0

dsLðg0ðsÞ; g00ðsÞÞds� Df =‘; (16)

with L ¼ Z
2
ðg00Þ2 þ

ffiffiffi
3
p

2
ðg0Þ2. The optimization of F1 is performed

in two steps. First, the optimal shape g is found by extremizing the

‘‘action’’
Ð 1
0L. This step is independent of the value of Df/‘. The

Euler–Lagrange equations giving the optimal g (generalized to
Lagrangians with second order derivatives) are25

d2

ds2
@L

@g00
� d

ds
@L

@g0
¼ Zgð4Þ �

ffiffiffi
3
p

g00 ¼ 0; (17)

whose solution fulfilling the boundary conditions mentioned above
is eqn (10). The second step of the optimization consists in finding
the optimal value of Df/‘, which is readily found by finding the
minimum of the second polynomial in Df/‘ in eqn (16), where the
action is computed with the optimal g. The functional (13) is
optimized along similar lines.

Note added after first publication

This article replaces the version published on 17th February
2022. Since the first publication of the article in Soft Matter, the
Editorial Office has been made aware of formatting errors in
eqn (4) and (10). These errors lead to eqn (10) being incorrect.
Considering this, the Editorial Office corrected the formatting of
these equations in the most recent version of this manuscript.
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