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Interactions between conducting surfaces in salt
solutions†

Samuel Stenberg, a Clifford E. Woodward b and Jan Forsman *a

In this work, we simulate interactions between two perfectly conducting surfaces, immersed in a salt

solution. We demonstrate that these forces are quantitatively different from those between (equally

charged) non-conducting surfaces. There is, for instance, a significant repulsion between net neutral

surfaces. On the other hand, there are also qualitative similarities, with behaviours found with non-

conducting surfaces. For instance, there is a non-monotonic dependence of the free energy barrier

height, on the salt concentration, and the minimum essentially coincides with a flat profile of the

apparent surface charge density (i.e. the effective net surface charge density, some distance away from

the surface, when accounting for ion neutralization), outside the so-called Stern layer. These conditions

can be described as ‘‘perfect surface charge neutralization’’. Despite observed quantitative differences,

we demonstrate that it might be possible to mimic a dispersion containing charged colloidal metal

particles by a simpler model system with charged non-conducting particles, using modified particle–ion

interactions.

1 Introduction

Interactions between particles and charged surfaces in aqueous
salt solutions are important and ubiquitous in many areas of
soft matter. They have been thoroughly investigated over dec-
ades and their theory is also well-established.1–16 If the particle
surfaces are weakly charged, or if the salt is monovalent, these
interactions can usually be approximated by the celebrated
DLVO theory.17,18 At high electrostatic coupling strengths,
e.g., in the presence of multivalent ions, numerous theoretical
and experimental studies have illustrated that a simple Pois-
son–Boltzmann (PB) treatment, even at the non-linear level,
may lead to predicted behaviours that are qualitatively wrong.
The origin of this failure is the mean-field approximation upon
which the PB theory is based. This amounts to a neglect of ion
correlations, which are significant in the presence of strong
electrostatic interactions. Of particular importance is the cor-
relation between similarly charged ions, whereby ‘‘Coulomb
holes’’ are effectively created, i.e., a volume around ions, from
which other like-charged species are excluded.

Ion correlations manifest themselves in various ways, and
important phenomena that find their source in these mechanisms

(and will not be captured by a PB treatment) include: overcharging
(charge reversal) whereby multivalent counterions overcompensate
the bare surface charge;19 attraction between like-charged
particles,3,4,9 and repulsion between particles of opposite surface
charge.11,20 These phenomena are related. It is well-established that
ion correlations, when sufficiently strong, will generate a short-
ranged attraction between like-charged surfaces. At larger separa-
tions, however, the same correlations will lead to a long-ranged
double-layer repulsion, between effectively overcharged surfaces, for
a high enough concentration of the multivalent salt. Below some
threshold concentration, overcharging is absent and a double-layer
repulsion at long range still results, but is due to the incomplete
screening of the bare surface charges. Thus, at some intermediate
critical concentration value, there is a ‘‘perfect surface neutraliza-
tion’’ point, whereby the long-range repulsive barrier is
negligible.12–16,21–24 Experimentally, this manifests itself as a specific
salt concentration where the charged particle dispersion has mini-
mal stability. The neutralization point can also be experimentally
identified through a vanishing electrophoretic mobility. These
observations, and their underlying causes, have been theoretically
confirmed both via simulations as well as more approximate
treatments.

The situation is less obvious when the particles are metallic,
or otherwise conducting.1,25 In this case, the strong surface
polarization will induce secondary effective interactions
between particles, which is a scenario considerably more
difficult to treat theoretically. Despite some progress that has
been made on these systems,26–29 questions regarding the
phenomena described above (for non-conducting particles),
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remain to be validated for the conducting case. For example, it
is still unclear whether a threshold salt concentration exists,
above which charge reversal takes place and, if it does, how
strongly does the surface conduction affect its value. Further-
more, it would also be of interest to devise simplified
approaches, wherein the computationally costly effects of sur-
face polarization can be approximately taken into account. This
would be especially useful when dealing with dispersions
containing colloidal conducting particles, wherein multiple
image interactions are exceptionally difficult to handle.

In this work, we will simulate the interaction between two
perfectly conducting planar surfaces and investigate the role
played by multivalent ions in determining a point of surface
neutralization (or charge reversal). We also introduce a simple
effective model that mimics the conducting case by mapping it
onto a model of a charged non-conducting particle with an
additional (suitably chosen) particle–ion interaction.

2 Model and methods

The salt solution is described by a soft-sphere version of the so-
called primitive model, wherein the aqueous solvent only exerts
its influence via the dielectric constant, er = 78.3. The tempera-
ture is set to 298 K, whereby the Bjerrum length becomes about
7.16 Å. For the major part of this work, we will focus on 3 : 1
salts. However, for completeness, we will also include a study of
a 4 : 1 salt. The ions are modelled as softly repulsive spheres,
carrying a central charge. This soft repulsion, ur, between two
ions separated by r has the form,

bur ¼
d

r

� �12

(1)

where d = 4 Å, and b is the inverse thermal energy. This
essentially amounts to an implicit assumption of the ions being
well solvated, i.e. there are no net (excess) van der Waals
attractions between the ions.‡ The simulated system is
composed of the salt solution confined between two flat,
perfectly conducting surfaces with infinite extension in the
(x, y) plane. These surfaces are located at z= 0, and z = h. A
hard wall repulsion ensures that the z-coordinate of the centre
of every ion is confined so that, d/2 r z r h � d/2. Each surface
also defines a plane of dielectric discontinuity. The simulated
ions are confined to a unit cell C0, which, further constrains the
ions so that their x- and y-co-ordinates satisfy, |x| r L/2 and
|y| r L/2. Periodic boundary conditions are applied along the
(x, y) directions, which is modelled via an infinite number of
replicas of C0 parallel to the confining electrodes. The salt
solution in C0 is generally not electroneutral. However, total
electroneutrality is guaranteed via the image charges generated
by the two conducting surfaces, which are reflected ad infini-
tum in the two surfaces. More specifically, the image charges
are an infinite number of reflected replicas of C0 in the two

subspaces z 4 h and z o 0, whereby each reflection at a surface
plane leads to the ions taking on an opposite charge.30 These
infinite images and the periodic replicas along the (x, y)
direction, defines the complete simulated ensemble.

As described in previous work,31 and also illustrated in
Fig. 1, a symmetric electroneutral ‘‘super-cell’’, C ¼ C0 þ C00,
can be defined, consisting of the central cell C0, together with
the nearest halves, C00, of the adjacent reflected (image) cells.
An infinite 3-dimensional array of replicas of C reproduces the
ensemble described above. An advantage of our current unit
cell C definition, is that its dipole moment is zero. Placing C00
fully to the left, or to the right, of C0 will lead to a spurious
electric field of the unit cell (even at zero applied voltage),
which needs to be accounted for.32–34 Thus the ensemble can
be straightforwardly treated using 3-D Ewald methods. One of
the consequences of our construction in that the total Ewald
energy, UC, of the ions in C is equal to twice the energy of the
ions in C0. That is,

UC0
ðrnÞ ¼ 1

2
UCðrnÞ (2)

which follows from simple symmetry arguments. Here, (rn),
represents the configuration of ions in C0. We also note that,
even though C contains twice as many particles as C0, only n are
independent, which means the total energy of the particles in C
is a function of (rn). This method was dubbed the ‘‘Image
Ewald’’ method (IE).31

In order to establish proper surface interactions, across a
range of different separations (h), we need to ensure that the
confined fluid is in equilibrium with an appropriate bulk
solution. This is achieved via Grand Canonical (Metropolis)
Monte Carlo (GCMC) simulations. As we have also demon-
strated recently,31 it is possible to use individual ion chemical
potentials mind, and perform separate GCMC steps for each
species. We can define the mean chemical potential as,

Fig. 1 An illustration of the unit cell. For reasons of notational simplicity,
only monovalent ions, and image ions, are depicted. However, in our
simulations, the cations were multivalent, with multivalent image charges.
Note that the surface charge density is a fluctuating quantity, and bulk
exchange is handled by single ion insertion, and deletion, steps.

‡ Similar arguments have led to the standard coarse-grained treatment of
repulsive (often hard-sphere) interactions between monomers in a ‘‘good solvent’’
polymer solution model.
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msalt ¼
PNsp

i¼1
nimindðZiÞ, where Nsp is the number of species with

different valencies Zi. The coefficients, ni satisfy,
PNsp

i¼1
niZi ¼ 0

and
PNsp

i¼1
ni ¼ 1. The individual ion chemical potentials in the

bulk salt solution, can then be formally written as,

mind(Zi) = msalt � ZieCref (3)

where Cref measures the asymmetry of the electrolyte model.
For a symmetric (Z : Z) electrolyte Cref = 0, but it is non-zero for
the asymmetric salts (3 : 1 and 4 : 1) investigated in this work.

In our simulations the value of C is not known a priori.
Instead we introduce a so-called bias potential, Cbias, that
discriminates between anions and cations so that the indivi-
dual ion chemical potentials become,

meff(Zi) = msalt � ZieCbias (4)

These effective chemical potentials are used in the Grand
Canonical Boltzmann weights for insertion/deletion moves of
the individual ions. The difference Cbias � Cref is the Donnan
potential, which is due to the charge distribution at the inter-
face between the bulk and the confined electrolyte. In our
system the Donnan potential is equal to the surface potential.
Thus, our simulations are carried out at constant surface
potential. In an experimental setup, using an atomic force
microscope, or a surface force apparatus, with potentiometric
regulation, the Donnan potential would correspond to the
applied voltage.

For a non-zero Donnan potential the simulation box C0 will not
be electroneutral. However, the repeated supercell, C, is ensured to
be electroneutral by the completely correlated image charges. While
the surface potential is fixed, the instantaneous surface charge
density, ss, (determined by the image charges) will fluctuate around
some average value hssi. It should be noted that this average value
will vary with the surface separation. We will denote its limiting
value, at large separations by ssingle

s .
To complete our analysis we introduce some other defini-

tions and calculation protocols. The ‘‘apparent’’ surface charge
density, sapp(z), is defined as,

sappðzÞ ¼ ss þ e

ðz
0

ðZcrcðz0Þ � Zaraðz0ÞÞdz0 (5)

where rc(z) and ra(z) denote the average cation and anion
densities (with valencies Zc and Za respectively). The integrand
is thus the average charge density at z0 and electroneutrality
and symmetry causes sapp(z) to vanish at the mid-plane. The
normal force acting between the electrodes can be calculated
from the free energy change associated with a small shift of the
surface separation, from h to h � dh. The procedure is detailed
in the ESI.† In all our calculations, we used dh = 0.001 Å.

In our simple approach, the electrode polarization is treated
via image charges, which represents the response of the sur-
faces to thermal fluctuations of the ions. At long-range these
ion-induced thermal fluctuations of the surfaces lead to an

algebraically decaying repulsive contribution to the normal
pressure. There is another contribution to the pressure, that
is neglected in our model, due to correlated thermal fluctua-
tions of the bare surfaces (and underlying solvent). This gives
rise to an attractive zero frequency van der Waals pressure,
PvdW(0), that should be added to the measured normal pres-
sure, and exactly cancels the repulsive ion-induced contribu-
tion at long-range. This pressure contribution is analytic26,27

and has the following form,

bPvdWð0Þ ¼ �
zð3Þ
8ph3

(6)

where z(n) is the Riemann zeta function. Upon addition of this
term, the resulting total normal pressure, denoted by, PN,
displays a non-algebraic, salt-screened long-ranged behaviour.
The exact match between �PvdW(0) and the simulated (uncor-
rected) normal pressure at long range, has been demonstrated
and scrutinized in an earlier work on 1 : 1 salt solutions.29 By
adding PvdW(0) to our simulated pressures, we ensure that our
results provide ‘‘pure Coulomb’’ contributions, to which suita-
bly estimated vdW interactions (for instance via a metal–water–
metal Hamaker constant) may be subsequently added, in the
spirit of DLVO theory. As mentioned above, the procedure to
evaluate PN is described in the ESI.† The net pressure, Pnet can
be estimated by subtracting the value at the largest simulated
separation, hmax, i.e. Pnet(h) = PN(h) � PN(hmax). That is, we
assume hmax is suitably large so that the fluid is essentially
bulk-like near the mid-plane. Finally, the net interaction free
energy per unit area, Dgs(h), is found by integrating (we used a

cubic spline) the net pressure, DgsðhÞ ¼ �
Ð h
1Pnetðh0Þdh0

3 Results

We will start by investigating the response of surface forces to a
change of Cbias, which in turn leads to different surface charge
densities. Given that our intent in this work is to establish
possible relations between apparent surface charge density
profiles and free energy barriers, we will focus on long-range
behaviours. Correlations between the trivalent cations will
always cause a strong attraction at short range, which are
indeed observed in our simulations. However, this behaviour
is not the focus of this work, so in most cases we will
concentrate on that part of the interaction at and beyond the
free energy barriers.

A 4 mM salt solution at various surface charges rsingle
s

With the salt chemical potential adjusted such that the bulk
concentration is about 4 mM, we obtain the surface interac-
tions, at various bias potentials (and therefore different ssingle

s ),
as shown in Fig. 2(a). There are a few remarkable observations.
First, we note that even for net neutral surfaces, there is a
significant double-layer repulsion, in stark contrast to standard
DLVO theory. Moreover, the repulsion varies in a non-
monotonic manner with the applied potential, i.e., with
ssingle

s . If we start with a surface that is net neutral at large
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separations, the barrier becomes larger for a slight positive surface
charge density (ssingle

s = 0.00019 e), but is initially weaker if the
surfaces are made negative (ssingle

s = �0.0022 e Å�2, and ssingle
s =

�0.0051 e Å�2)). Even ssingle
s = �0.0075 e Å�2 is insufficient to

generate a repulsion as strong as for neutral surfaces, although the
difference is diminished nevertheless. The apparent surface charge
density profiles, evaluated at a large separation, displays exactly the
same qualitative behaviour as the surface interactions. This is
illustrated in Fig. 2(b). A comparison between the graphs in
Fig. 2(a) and (b) also reveals that the systems wherein the maximum
of the apparent surface charge density is located near the surface,
correspond to surface force barriers which also occur at short
separations. Already at this stage, our results imply a close relation-
ship between sapp

s (z) and the position and magnitude of the
repulsive barrier in Pnet. We report further evidence for this below.

As already mentioned, this work focuses on the long-ranged
part of the interactions, but it should be noted that we do
indeed establish ion-correlation attractions at short range, for
all investigated cases, as expected in the presence of highly

valent counterions. With a 1 : 1 salt, this regime would vanish,
and we would obtain monotonically repulsive interactions.
Such systems have been explored in an earlier work,29 using
simulations as well as an image charge adjusted version of
Poisson–Boltzmann theory. While successful for 1 : 1 salt solu-
tions, such a mean-field ansatz would fail for our systems,
containing multivalent counterions, since an account for ion
correlations is required to even qualitatively capture the
presence of an attractive regime.

A given bias potential will generate some average surface
charge density at large separations, as indicated in the legends
of Fig. 2. However, these averages will vary as the surfaces are
brought closer together, which in turn might influence the
interaction free energy. Our simulation data suggest that this
effect indeed exists, but also that its relevance sometimes is
small. In Fig. 3, we plot how the average surface charge density
changes with separation, i.e. hss(h)i � hssingle

s i. We note that in
the cases where hssingle

s i is negative, the average surface charge
density becomes less negative at short separations, but the
relative change is quite modest. When the isolated surfaces are
neutral, or weakly positive, on the other hand, the net change is
negative, and in these cases the effect appears strong enough to
be significant.

A 22 mM salt solution at various surface charges rsingle
s

Let us now examine the responses at a higher bulk salt
concentration of 22 mM. We summarize our results in Fig. 4.
The behaviours are qualitatively similar to those we found at
4 mM, although the effects of a decreased electrostatic screen-
ing length are apparent. Again, we note how the free energy
barrier responds in a non-monotonic manner to an incremen-
tal increase of the applied bias potential, starting from a low
value. This behaviour is analogous for the maximum degree of
overcharging at an isolated surface. At an intermediate bias
potential, for which ssingle

s = �0.005 e Å�2, we find the weakest
barrier, and also the smallest degree of overcharging. The range
of the barriers are also qualitatively reflected by the surface
distance at which the maximum overcharging occurs.

Fig. 2 Interaction free energies per unit area, and apparent surface
charge density profiles, at a salt concentration of 4 mM. Results are
provided for a range of applied bias potentials, Cbias, and thus a range of
(large separation) average surface charge densities, ssingle

s . (a) Interaction
free energies per unit area, gs(h). (b) Apparent surface charge densities,
sapp

s (z), at a ‘‘large’’ separation, h = 200 Å.

Fig. 3 Separation dependence of the net average surface charge density,
hssi(h) � hssingle

s i, for various applied bias potentials, Cbias.
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rsingle
s E �0.005 e Å�2: salt concentration dependence

In this section, we will investigate surface forces, at a constant
limiting surface charge density ssingle

s E �0.005 e Å�2, but for
different bulk salt concentrations. In order to facilitate such a
comparison, we must first adjust Cbias, for each chosen concen-
tration (chemical potential), at a large surface separation. In
Fig. 5(b), we note that overcharging vanishes at a sufficiently low
concentration, and that there is a threshold concentration, of about
1.4 mM, at which sapp(z) is essentially flat, outside the primary
adsorption layer (or ‘‘Stern layer’’). Below this threshold concen-
tration, sapp(z) has a positive slope beyond the Stern layer, and above
the threshold, the slope is negative. If we compare with Fig. 5(a), we
see that close to the threshold concentration, the free energy barrier
has almost vanished. The barriers are stronger at higher as well as
lower salt concentrations, and, as expected, they are more long-
ranged in the latter case. Thus, there is a non-monotonic depen-
dence of the barrier height on the salt concentration with the
minimum coinciding with a flat sapp(z) profile (outside the Stern
layer). These observations indicate a condition that can be described

as ‘‘perfect surface charge neutralization’’. As stated in the Introduc-
tion, similar behaviour has been observed also for non-conducting
surfaces, experimentally,13,35,36 as well as theoretically.21–24 At long
range, there will be a double-layer repulsion between surfaces that
are effectively negative, or positive, depending on whether the
surfaces are overcharged, or ‘‘undercharged’’. However, at the
threshold concentration (about 1.4 mM in our case), the effective
surface charge is close to zero, which essentially eliminates the
double-layer repulsion. As mentioned, these observations have
already been established for non-conducting surfaces, but this is,
to the best of our knowledge, the first report of similar findings for
conducting surfaces. Given the extra adsorption of multivalent ions
that such surfaces generate, the threshold concentration will be
lower than for non-conducting surfaces.24

A simple adsorption model with non-conducting charged
surfaces

Let us summarize our findings thus far. The slope and range of
sapp(z), outside the Stern layer at a single surface, carries

Fig. 4 Analogous results as those reported in Fig. 2, but at a salt concen-
tration of 22 mM, and a ‘‘large’’ separation h = 100 Å. (a) Interaction free
energies per unit area, gs(h). (b) Apparent surface charge densities, sapp

s (z),
at a ‘‘large’’ separation, h = 100 Å.

Fig. 5 Interaction free energies per unit area, and apparent surface
charge density profiles, for surfaces with hssi E �0.005 e Å�2 (for large
separations), at various salt concentrations. (a) Interaction free energies per
unit area, gs(h). (b) Apparent surface charge densities, sapp

s (z). Notice that
the x coordinate is reduced by some ‘‘large’’ separation, h, which is
different at different salt concentrations, as indicated in the legend.
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information about the range and strength of the free energy
barrier, when two such surfaces interact. This observation
might help us to more simply identify the predominate
mechanisms in at least two ways. Firstly, we note that a single
simple canonical simulation of an isolated surface can provide
useful information about how two such surfaces will interact –
without having to conduct expensive grand canonical surface
force calculations across a range of different surface separa-
tions. Secondly, the apparent relevance of the sapp(z) profile at
long range, suggests the possibility of a simplified approach,
where the expensive treatment of image charges can be
avoided. Here we will explore such a model, by replacing the
image charge treatment by using an attractive, short-ranged
adsorption potential, w(z), between ions and the surfaces. We
will furthermore report interactions between conducting, and
non-conducting surfaces in a 1.1 mM 4 : 1 salt solution, where
the surface charge density at large separations is hssingle

s i E
�0.01 e Å�2. This will allow further scrutiny of our suggested
simplified approach, with an added adsorption potential to
mimic effects from image charges.

We expect an attraction between an ion and a conducting
surface, with a strength proportional to Zi

2, from the self-image
charge of an ion of valency Zi. However, this attraction will be
screened as the ion moves away from the interface, so assuming
it to be short-ranged, we shall model it as a linear function.
With these considerations in mind, we propose the following
adsorption potential, as an alternative to the image charge
approach used above,

bwiðzÞ ¼ �AwZi
2 1� z� d=2

d

� �
; d=2 � z � 3d=2 (7)

where wi is zero above the upper limit (3d/2), and Aw is a
positive fitted parameter. We assume this interaction acts at
both surfaces. The result of fitting Aw is summarized by the
apparent surface charge densities shown in Fig. 6. We note that
for the 3 : 1 salt, Aw = 0.285 leads to an apparent surface charge
density profile that resembles the corresponding one estab-
lished with conducting (but otherwise inset) surfaces. A similar
observation holds for a 4 : 1 salt, with Aw = 0.18.

In Fig. 7 we show the resulting normal pressures, PN,
compared with those for both conducting and non-
conducting surfaces. We see that interactions between con-
ducting surfaces can be successfully captured by the surface
adsorption model, without using explicit dielectric boundaries.
We should also point out that, for non-conducting surfaces,
one cannot apply the IE simulation method.

Instead, we utilized an external mean electrostatic potential,
which was calculated from previously simulated ion density
profiles, to account for long-ranged interactions external to the
simulated volume.37,38 Furthermore, in the addition and dele-
tion moves of the GCMC simulations an overall electroneutral
group of ions were either added, or removed, from the simula-
tion cell. The pressure component normal to the surfaces, PN,
was, for non-conducting surfaces, obtained by calculating the
average z-projection of all forces per unit area, acting across the
mid plane of the slit. Despite these differences in simulation

methodology, the limiting normal pressure at large separations
(the bulk pressure) is identical, within some small amount of
noise. This is an important check that confirms that long-
ranged interactions are satisfactorily predicted, and that the
simulated pressures are correctly evaluated.

Finally, in Fig. 8, we report the corresponding net inter-
action free energies, per unit area. The agreement between
interactions obtained with adsorption-adjusted models, and
those from a full image charge treatment, is not perfect, but
nevertheless encouraging. The apparently successful applica-
tion of the fitted (single-particle) potential suggests that image
effects are dominated by the short-ranged adsorption of the
counterions. While the simulations presented here are against
flat surfaces, they may be of some relevance to conducting
spherical colloidal particles where the radius is large. Disper-
sions of such particles will be dominated by pair interactions
between the colloids, and it is possible that the Derjaguin
approximation can also be brought to bear to take account of
curvature. This gives some hope that simulations of a colloidal

Fig. 6 Apparent surface charge densities, sapp
s (z), at conducting and non-

conducting walls. (a) A 4 mM 3 : 1 salt, and hssingle
s i E �0.005 e Å�2.

(b) A 1 mM 4 : 1 salt, and hssingle
s i E �0.01 e Å�2. The red dashed curves

display results for non-conducting surfaces, as obtained without any non-
electrostatic adsorption potential. By adjusting AW (see eqn (7)) with the
data for conducting surfaces as target (black curves), we arrived at the
green dashed curves. This was achieved for Aw = 0.285 (3 : 1 salt, graph (a)),
and Aw = 0.18 (4 : 1 salt, graph (b)), respectively.
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dispersion might be approximated by a model where multiple
image charges are replaced by a similar ion adsorption
potential. Of course, one would need to fit the adsorption
potential using a separate single particle pre-simulation, by
matching integrated charge density profiles (sapp

s (r)), but this
would still amount to very large computational savings for a
many-particle simulation.

4 Conclusions

This simulation study has focused on the accurate determina-
tion of electrolyte properties confined by conducting surfaces
and in electro-chemical equilibrium with a fixed bulk solution.
We have shown that a surface neutralization threshold concen-
tration is observed in these systems, similar to that seen in non-
conducting surfaces. This has significance in many experi-
mental systems, where the charged particles are either metallic
or semi-metallic, or else have mobile charges on their surfaces.

In addition to this, we have uncovered very strong repulsive
barriers to particle association even for ostensibly uncharged
particles. This effect is primarily due to the adsorption of
multivalent charged species at the electrode surfaces due to
strong self-image interactions. This adsorption can also pro-
mote surface overcharging. The forced desorption of these ions
as the surfaces approach can lead to surface–surface repulsion,
though the full story can be complex, as we have also seen that
the close approach of apparently neutral surfaces can increase
multivalent ion adsorption (and the magnitude of the surface
charge) at least at intermediate separations. Finally, we have
explored the possibility of mapping these conducting systems
to one of non-conducting charged surfaces with an additional
adsorption potential. Fitting this short-ranged potential to the
effective surface charge gives rise to very similar surface inter-
actions. Though the success of such a potential for spherical
colloid particles is purely conjecture at this stage, evidence
would suggest that this approach holds some promise for
facilitating calculations on conducting particles, by way of a
much simpler model.
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Fig. 7 Slit normal pressures, PN, for the systems described in Fig. 5.
Results are shown for conducting and non-conducting surfaces that carry
a similar average surface charge density, but are otherwise inset, as well as
for a non-conducting surface that has a non-electrostatic ion affinity. The
latter affinity was adjusted so as to generate an apparent surface charge
density profile that, at large separations, resemble the corresponding
profile at a non-conducting (inset) surface, as shown in Fig. 5. This
procedure emanated in the Aw values that are reported in the legends of
the graphs.

Fig. 8 Interaction free energies, gs, for the systems described in Fig. 5.
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