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Active interaction switching controls the dynamic
heterogeneity of soft colloidal dispersions

Michael Bley,a Pablo I. Hurtado,bc Joachim Dzubiella*ad and
Arturo Moncho-Jordá *ce

We employ Reactive Dynamical Density Functional Theory (R-DDFT) and Reactive Brownian Dynamics

(R-BD) simulations to investigate the dynamics of a suspension of active soft Gaussian colloids with

binary interaction switching, i.e., a one-component colloidal system in which every particle stochastically

switches at predefined rates between two interaction states with different mobility. Using R-DDFT we

extend a theory previously developed to access the dynamics of inhomogeneous liquids [Archer et al.,

Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2007, 75, 040501] to study the influence of the

switching activity on the self and distinct part of the Van Hove function in bulk solution, and determine

the corresponding mean squared displacement of the switching particles. Our results demonstrate that,

even though the average diffusion coefficient is not affected by the switching activity, it significantly

modifies the non-equilibrium dynamics and diffusion coefficients of the individual particles, leading to a

crossover from short to long times, with a regime for intermediate times showing anomalous diffusion.

In addition, the self-part of the van Hove function has a Gaussian form at short and long times,

but becomes non-Gaussian at intermediates ones, having a crossover between short and large

displacements. The corresponding self-intermediate scattering function shows the two-step relaxation

patters typically observed in soft materials with heterogeneous dynamics such as glasses and gels. We

also introduce a phenomenological Continuous Time Random Walk (CTRW) theory to understand the

heterogeneous diffusion of this system. R-DDFT results are in excellent agreement with R-BD

simulations and the analytical predictions of CTRW theory, thus confirming that R-DDFT constitutes a

powerful method to investigate not only the structure and phase behavior, but also the dynamical

properties of non-equilibrium active switching colloidal suspensions.

1 Introduction

Responsive materials like polymers adapt to external stimuli
(i.e. temperature, pH, or food) and change their shape and
conformation accordingly.1–5 The environment-dependent size
of responsive materials can change by a factor of two or three
typically.6 Examples of this are globular proteins, in which their
conformation and phase behavior can be tuned by changes in

the local environment and protein–protein attractive inter-
action.7,8 These colloidal systems and their responsiveness
can be used for tailor-made functionality such as core–shell
nano-reactors for selective catalysis3,4 or controlled drug
release,1,2 but also lay the foundation for adaptive and intelli-
gent systems.9 Due to the switching of properties such as size or
interactions, these compounds can exhibit a complex and rich
anomalous diffusion behavior different to the classical Einstein–
Smoluchowski picture of a random walk leading to a mean
squared displacement (MSD) entirely linear in time p t.10,11 The
effective diffusion coefficient D thus changes with the observed
time scale. This anomalous diffusion appears for example in
various biological systems and during the transport of particles
through membranes,12–22 where both sub- and superdiffusive
regions are observed.

Heterogeneous diffusion is also reported in a variety of
amorphous materials, from low density gels to dense
glasses.23–28 In most cases such dynamic heterogeneity can be
explained by the presence of different particle arrest mechan-
isms at play. These mechanisms may range from the bonding

a Physikalisches Institut, Albert-Ludwigs-Universität Freiburg,

Hermann-Herder Straße 3, D-79104 Freiburg, Germany.

E-mail: joachim.dzubiella@physik.uni-freiburg.de
b Departamento de Electromagnetismo y Fı́sica de la Materia, Universidad de

Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
c Institute Carlos I for Theoretical and Computational Physics, Facultad de

Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada,

Spain. E-mail: moncho@ugr.es
d Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin

für Materialien und Energie, D-14109 Berlin, Germany
e Departamento de Fı́sica Aplicada, Universidad de Granada,

Campus Fuentenueva S/N, 18071 Granada, Spain

Received 19th October 2021,
Accepted 30th November 2021

DOI: 10.1039/d1sm01507a

rsc.li/soft-matter-journal

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ec
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
7/

20
26

 1
0:

13
:5

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-2001-2987
http://crossmark.crossref.org/dialog/?doi=10.1039/d1sm01507a&domain=pdf&date_stamp=2021-12-13
http://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sm01507a
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM018002


398 |  Soft Matter, 2022, 18, 397–411 This journal is © The Royal Society of Chemistry 2022

of particles to the giant (percolating) component of a low
density physical gel, which traps particles in a localized region
during a long time,29–32 to the steric hindrance induced by
crowding effects in glasses, which lead to strong dynamic
heterogeneities.25,26 Moreover, different arrest mechanisms can
also compete, leading to complex relaxation behaviors.33–36 In all
cases the observed heterogeneous diffusion is related to the
coexistence of fast and slow diffusing particles in the system of
interest. These observations suggest that active colloidal systems
where particles can stochastically change their internal state, and
hence their mobility, may also lead to heterogeneous diffusion
properties.

In this work, we investigate a non-equilibrium active system
formed by soft colloids in which individual particles stochasti-
cally switch between two interaction states (or sizes), denoted
as big (b) and small (s), at predefined rates kbs and ksb. Such a
system constitutes a good model for bistable bacteria that use
switching to tune structural and dynamical heterogeneities for
their function,37,38 as well as for soft active or vesicles fluctua-
ting between two states.39–42 It could also be applied to study
the structure and phase behavior of conformationally fluctuat-
ing biopolymers,43–45 in particular two-state proteins switching
between native and non-native states.7,8 In future it may be
extendable to even study soft micromachines with a program-
mable morphology.46

In our previous works, we studied the structural properties
and phase behavior of this active switching system by using a
non-equilibrium reactive density functional theory (R-DDFT)47,48

and reactive Brownian dynamics simulations (R-BD).49,50 Flavors of
R-DDFT have been recently applied to predict the propagation of
virus spreading51,52 and for describing the growth of tumors.53

High switching rates lead to mixing of systems which phase
separate in equilibrium conditions, whereas low, non-zero switch-
ing rates lead to the observation of temporal clusters representing
local and temporal phase separation. Here, we extend the R-DDFT
framework by means of the test-particle method developed by
Archer et al.54 to investigate the non-equilibrium steady-state
dynamics of actively switching particles in the bulk. Different,
but constant diffusion coefficients are assigned to the two particle
sizes. This method provides a new pathway for accessing the
dynamics of particles switching between two diffusion coefficients.
Moreover, we develop a phenomenological Continuous Time
Random Walk theory (CTRW)24,25,55 to describe the heterogeneous
dynamics of this system. Whereas for R-BD the MSD and the
diffusive behavior can be determined directly from the simulated
trajectories even at non-equilibrium, accessing the dynamics
through R-DDFT requires the calculation of the van-Hove distribu-
tion of displacements, G(r,t).56,57 This function, defined as the
probability density of finding a particle at time t at location r from
the origin given that there was a particle at the origin at time t = 0,
characterizes dynamical phenomena on a nanoscopic scale. It is
especially important in the study of dynamics involved in liquid-
crystal, glass-like and/or sol–gel transitions.24,25,58

The paper is organized as follows. First, we describe the
theoretical frameworks used for accessing the van Hove func-
tion and the MSDs (R-DDFT, CTRW, and R-BD). In the second

part, we discuss the effects that active switching has on the self
and distinct parts of the van Hove functions and on the time
evolution of the self-intermediate incoherent scattering func-
tions. Finally, the MSDs obtained with R-DDFT are compared
with R-BD and CTRW predictions, reporting good agreement
between all three approaches for all switching activities
investigated.

2 Theory
2.1 Reactive dynamical density functional theory for active
switching colloids

We consider an active system in which each individual particle
can instantaneously switch between two possible states of
different size: big (b) or a small (s). Particles in state b
spontaneously convert into state s at some pre-defined rate
kbs (units of time�1). Similarly, particles in state s switch into
particles of state b at rate ksb. At certain time, the active system
resembles a binary mixture of big and small particles. The
interaction between a pair of Gaussian particles is given by59

buij = eije
�r 2/sij

2

with i, j = s, b, (1)

where r is the interparticle distance, b = 1/kBT (kB is the
Boltzmann constant and T the absolute temperature), eij 4 0
denotes the strength of the i–j pair interactions, and sij repre-
sents the range (we will denote sbb and sss by sb and ss

respectively, to simplify notation). In this work, the size sb of
big particles is twice the size of the small particles ss, and all eij

are set to 2kBT (more details regarding the interaction para-
meters are given in Table 1). These soft pair potentials remain
finite for any interparticle distance, so particles can interpene-
trate each other. The Gaussian pair potential represents a
generic model for polymers and soft colloidal hydrogels60–62

and cells,63 and served as a useful and insightful test system in
DDFT applications.64,65

If the system is immersed inside an external field, the
density profiles become inhomogeneous. We denote uext

i (r)
(i = b, s) as the external potentials acting on the big and small
colloids at position r (we assume a general case in which the
external potential is different for each particle state). These
potentials arise from applied external forces (such as electro-
static or gravitational fields) or simply represent the effect of
confining walls or a single fixed particle. We denote rb(r,t) and
rs(r,t) as the number density of colloids in the big and small
state at position r at time t, respectively.

The time evolution of a non-equilibrium system of active
switching Brownian particles can be predicted by the so-called
Reactive Dynamical Density Functional Theory (R-DDFT).
Within this theoretical framework, the time evolution of ri(r,t)

Table 1 Main parameters describing the particle interactions and con-
centrations for two different active switching Gaussian colloidal systems

System ebb ess ebs sb/ss sbs/ss rTss
3 xs Db/Ds

S1 2.0 2.0 2.0 2.0 1.5 0.239 0.8 0.5
S2 2.0 2.0 2.0 2.0 1.5 0.239 0.2 0.01
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(i = b, s) obey the following set of differential equations47–50,53,66

@rbðr; tÞ
@t

¼ �r � Jb þ ksbrsðr; tÞ � kbsrbðr; tÞ

@rsðr; tÞ
@t

¼ �r � Js þ kbsrbðr; tÞ � ksbrsðr; tÞ

8>>><
>>>:

; (2)

The first term on the right side, �r�Ji, provides the change
of particle concentrations due to diffusion, where Ji are the time
and position-dependent diffusive fluxes caused by gradient in
particle concentrations and chemical potential. They are
given by

Ji = �Di[rri(r,t) + ri(r,t)br(uext
i (r) +mex

i (r,t))] i = b, s, (3)

where Di are the diffusion constant of component i (which is
assumed to be independent on the specific location of the

particles), and mexi ðr; tÞ ¼
dFex½friðr; tÞg�

driðr; tÞ
. Fex[{ri(r,t)}] is the equi-

librium excess free energy functional with the equilibrium
density profiles replaced by the non-equilibrium ones ri(r,t).
The equilibrium and non-equilibrium properties of soft Gaussian
particles described by eqn (1) are well represented by the mean-
field excess free energy functional for colloidal mixtures of two
states,

Fex½friðrÞg� ¼
1

2

X
i;j¼b;s

ðð
riðrÞrjðr0Þuijðjr� r0jÞdrdr0: (4)

Please note that this mean-field approximation is equivalent
to the so-called random phase approximation (RPA) for the
direct correlation functions, given by cij(|r � r0|) = �d2Fex/
dri(r)drj (r0) = �buij(|r � r0|).57 This approximation becomes
remarkably accurate at high particle densities.61

The other two terms on the right hand of eqn (2) account for
the production and disappearance of each particle state due to
active switching. This process occurs locally, so the conversion
rate of colloids in the big state into the small state at some
specific location r only depends on the local concentrations of
both species at position r. The switching between one to the
other state is assumed to occur instantaneously, or at least
within a time scale much shorter than the typical diffusion time
of the particles. In addition, we do not impose any compressi-
bility constraint because our study is restricted to very soft
particles that can fully overlap.

In the region far away from the external perturbation (bulk),
the density profiles tend to be homogeneous. We define the
composition parameters of the mixture as

xsðtÞ ¼
rbulks ðtÞ

rbulkb ðtÞ þ rbulks ðtÞ
; xbðtÞ ¼ 1� xsðtÞ: (5)

In this work, we select the composition at time t = 0 such that

kbs

ksb
¼ xsð0Þ

xbð0Þ
: (6)

This condition implies that the relative composition of the
mixture of states in the bulk solution remains constant for
all times, even though the inhomogeneous properties of the

system exposed to external potentials are still affected by the
non-equilibrium switching.

The switching activity, a, is defined as the ratio between the
typical characteristic big-to-small conversion time, tswitch = kbs

�1,
and the Brownian diffusion time for small particles, tB = ss

2/Ds.
Therefore,

a ¼ tB
tswitch

¼ kbsss2

Ds
: (7)

In the absence of switching activity (a = 0), the R-DDFT
equations reduce to the classical DDFT equations for non-active
binary mixture of Brownian colloids, i.e. qri(r,t)/qt = �r�Ji

(i = b, s).67–69 For a { 1, the b " s conversion rate is very
slow, so the time evolution of the density profiles is dominated
by the diffusion. In this case, switching events happening at
some specific location are scarce, and the corresponding
change in particle concentrations is rapidly compensated by
the diffusive fluxes that balance the effect of the activity. In the
opposite limit, a c 1, the switching rate is so large that the
diffusion is not fast enough to compensate its effects, so the
exchange activity dominates. In this limit, particles in states b
and s cannot be distinguished because they do not have enough
time to diffuse and reorganize according to the applied external
potentials. Consequently, both density profiles converge to
each other, and the nonequilibrium system behaves as an
effective one-component system that can be described by a
single effective pair potential in equilibrium.49,50

If the applied external potentials do not depend on time, the
R-DDFT equations lead in the limit t - N to steady-state
density profiles, limt!1 riðr; tÞ ¼ riðrÞ. For a = 0, this final
steady state corresponds to the equilibrium, which means that
the resulting density profiles are the ones of an equilibrium
binary mixture. However, it is important to emphasize that this
is not the case for a 4 0. For active systems, the final steady-
state density profiles are not the equilibrium ones, even though
they are time-independent. It may be shown that thermo-
dynamic properties depend on the diffusion coefficients of
the particles, reflecting the fact that the system is not in
equilibrium.49

The microstructure of the system in bulk suspension is also
affected by the switching activity. The non-equilibrium steady-
state partial radial distribution functions gij(r) of the active
system can be deduced making use of the Percus test particle
route and extending the above described 2-states R-DDFT
procedure to a 4-states R-DDFT.49,50

In the next subsections we describe how the R-DDFT method
can be generalized to access the dynamics of active suspensions
of switching Gaussian colloids. For this purpose, we start
describing the simpler non-active one-component system and
then extend the procedure to incorporate the active switching.

2.2 Dynamics of a non-active one-component system of
Gaussian colloids

Here, we consider a homogeneous one-component system
formed by N particles inside a volume V at temperature T.
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The bulk number density is rbulk = N/V. Particles interact via a
pairwise interaction potential u(r). The van Hove distribution of
displacements for a one-component uniform fluid is defined
as56,57,70

Gðr; tÞ ¼ 1

N

XN
m¼1

XN
n¼1

dðr� rnðtÞ þ rmð0ÞÞ
* +

: (8)

where indexes m and n run over the N particles of the system,
and h� � �i represents the ensemble average. The physical inter-
pretation of the van Hove function is that G(r,t)dr is the number
of particles within a volume dr around a point r at time t given
that there was a particle located at the origin at time t = 0. It
splits into self and distinct parts that correspond to the possi-
bilities that m and n are the same particle or different ones,
G(r,t) = Gself(r,t) + Gdist(r,t), where

Gselfðr; tÞ ¼ 1

N

XN
m¼1

dðr� rmðtÞ þ rmð0ÞÞ
* +

(9)

Gdistðr; tÞ ¼ 1

N

XN
m¼1

XN
nam

dðr� rnðtÞ þ rmð0ÞÞ
* +

: (10)

For t = 0, we find that the self-part is

Gselfðr; 0Þ ¼ 1

N

XN
m¼1

dðrÞ
* +

¼ 1

N
NdðrÞh1i ¼ dðrÞ; (11)

which indicates that the test particle is located at the origin
r = 0 at time t = 0. The distinct-part at t = 0 is connected to the
equilibrium 2-particle density, rN

(2)(r,r0), by57

Gdistðr; 0Þ ¼ 1

N

XN
m¼1

XN
nam

ð
dðrþ r0 � rnð0ÞÞdðr0 � rmð0ÞÞdr0

* +

¼ 1

N

ð
rð2ÞN ðrþ r0; r0Þdr0 ¼ 1

N
ðrbulkÞ2

ð
gðrÞdr0 ¼ rbulkgðrÞ

(12)

where we assumed that the system is homogeneous and
isotropic, and g(r) is the equilibrium radial distribution
function.

The standard Density Functional Theory (DFT) together with
the Percus’ test particle route can be used to access g(r):57,71 a
single test particle is fixed at the origin r = 0, acting as an
external potential for the rest of particles, so uext(r) = u(r).
Solving the DFT equations for the colloidal fluid exposed to
the influence of this external potential leads to a inhomoge-
neous one-body density distribution of colloids around the
central one, r(r). The corresponding radial distribution func-
tion is given by g(r) = r(r)/rbulk.

The van Hove function in bulk for an homogeneous system
can be obtained using the DDFT framework, as proposed by
Archer et al.54 According to their scheme, the system of N
particles is separated into two groups that will be called self
(group 1) and distinct (group 2). The self group consist of only
one single test particle located at r = 0 at time t = 0. On the other
hand, the distinct group is formed by the remaining N � 1

particles around the test particle. With this strategy, our origi-
nally one-component system becomes a binary two-component
mixture, in which the pair interactions are given by

u12(r) = u22(r) = u(r), u11(r) = 0. (13)

Please note that u11(r) = 0 because a single particle can not
interact with itself. This is equivalent to modeling a one-
component system, but treating one particle separately from
the rest. At time t = 0, the central particle is located at the
origin, which means that the number density of the self
component is r1(r,t = 0) = d(r). Conversely, the other N � 1
particles that form the distinct component are initially distri-
buted following the equilibrium distribution, so r2(r) =
rbulkg(r), where g(r) has been previously determined using
DFT within the Test Particle Route.57,71,72

The time evolution of both distributions, r1(r,t) and r2(r,t),
can be obtained solving the classical DDFT differential equations
to this mixture

@ra

@t
¼ �r � Ja a ¼ 1; 2; (14)

with

Ja ¼ �D rra þ rabr dFex

dra

� �� �
a ¼ 1; 2; (15)

where D is the diffusion coefficient of the particles. Once r1(r,t)
and r2(r,t) have been determined, we can deduce the Van Hove
distribution of displacements by splitting it into the self and
distinct parts, and identifying each part with the density corres-
ponding profile,

Gself(r,t) = r1(r,t), Gdist(r,t) = r2(r,t). (16)

As time increases, Gself(r,t) broadens into a Gaussian-shaped
curve. Conversely, Gdist(r,t) becomes flatter as time evolves.
In the limit t - N or r - N, the self part tends to zero
whereas the distinct part converges to the uniform distribution,

lim
r!1

Gselfðr; tÞ ¼ lim
t!1

Gselfðr; tÞ ¼ rbulk:

lim
r!1

Gdistðr; tÞ ¼ lim
t!1

Gdistðr; tÞ ¼ rbulk:
(17)

The MSD of the particles is obtained as an integral of
Gself(r,t),

Dr2ðtÞ
� �

¼
ð
r2Gselfðr; tÞdr ¼ 4p

ð1
0

r4Gselfðr; tÞdr: (18)

2.3 Dynamics of an active system of switching Gaussian
colloids

For active systems each individual particle is able to switch
from two states, b and s. The method shown before can be
entirely adapted to this new situation. We assume that at time
t = 0 the system has already reached the steady state. The
steady-state radial distribution functions of the active system
can be obtained using the 4-states R-DDFT with the Test Particle
Route.49,50,72 This leads to the (non-equilibrium) steady-state
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radial distribution functions, gij(r) (i = b, s), which provide the
probability density of finding a particle in state j at a distance r
from another particle in the state i. Therefore, rbulk

j gij(r) represents
the density of particles in state j at a distance r from a central
particle in state i.

Using a similar procedure than the one followed for the one-
component system, we split the system into the self and distinct
part (denoted again by superindex 1 and 2). The self-part repre-
sents a single test particle located at r = 0 at time t = 0, whereas the
distinct one corresponds to the rest of particles. Pair interactions
between self and distinct particles in states b and s are

ubb
22ðrÞ ¼ ubb

12ðrÞ ¼ ebbe�r
2=sb2 ubb

11ðrÞ ¼ 0

ubs
22ðrÞ ¼ ubs

12ðrÞ ¼ ebse�r
2=sbs2 ubs

11ðrÞ ¼ 0

uss
22ðrÞ ¼ uss

12ðrÞ ¼ esse�r
2=ss2 uss

11ðrÞ ¼ 0

(19)

If the test particle located at r = 0 at time t = 0 is in the b-
state, then

rb
1ðr; t ¼ 0Þ ¼ dðrÞ; rs

1ðr; t ¼ 0Þ ¼ 0

rb
2ðr; t ¼ 0Þ ¼ rbulkb gbbðrÞ; rs

2ðr; t ¼ 0Þ ¼ rbulks gbsðrÞ

(
(20)

Conversely, if the test central particle is in the s-state, the
initial conditions are

rb
1ðr; t ¼ 0Þ ¼ 0; rs

1ðr; t ¼ 0Þ ¼ dðrÞ

rb
2ðr; t ¼ 0Þ ¼ rbulkb gbsðrÞ; rs

2ðr; t ¼ 0Þ ¼ rbulks gssðrÞ

(
(21)

As t increases, the four density profiles evolve in time. Their
time evolution is governed by two processes: the diffusion due
to gradients of the chemical potential, and the switching events
that cause the appearance/disappearance of particle states. The
four coupled R-DDFT equations that control this time evolution
can be obtained extending eqn (2)

@rb
1ðr; tÞ
@t

¼ �r � Jb1 þ ksbrs
1ðr; tÞ � kbsrb

1ðr; tÞ

@rs
1ðr; tÞ
@t

¼ �r � Js1 þ kbsrb
1ðr; tÞ � ksbrs

1ðr; tÞ

@rb
2ðr; tÞ
@t

¼ �r � Jb2 þ ksbrs
2ðr; tÞ � kbsrb

2ðr; tÞ

@rs
2ðr; tÞ
@t

¼ �r � Js2 þ kbsrb
2ðr; tÞ � ksbrs

2ðr; tÞ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(22)

The diffusive fluxes are given by

Jai = �Di[rrai + raibrmex,a
i ] a = 1,2, i = b, s, (23)

where we have used that the external potentials are zero for a
bulk system. The excess chemical potential is the functional
derivative of the total excess free energy, mex,a

i = dFex/drai . For
the excess free energy, we make use again of the mean-field
approach, useful for Gaussian colloids

Fex ¼ 1

2

X
a;b¼1;2

X
i; j¼b;s

ðð
rai ðrÞr

b
j ðr0Þu

ab
ij ðjr� r0jÞdrdr0: (24)

Performing the functional differentiation leads to the fol-
lowing explicit expression for the excess chemical potential

mex;ai ðr; tÞ ¼
X
b¼1;2

X
j¼b;s

ð
rbj ðr0; tÞu

ab
ij ðjr� r0jÞdr0: (25)

The R-DDFT equations are solved with the initial conditions
given by eqn (20) (if the test central particle in the b-state)
or eqn (21) (if the test central particle in the s-state).
In addition, we need to impose the boundary conditions in
r = 0 and r - N,

Jb
1ðr ¼ 0; tÞ ¼ Js

1ðr ¼ 0; tÞ ¼ Jb
2ðr ¼ 0; tÞ ¼ Js

2ðr ¼ 0; tÞ ¼ 0

rb
1ðr!1; tÞ ¼ rs

1ðr!1; tÞ ¼ 0

rb
2ðr!1; tÞ ¼ rbulkb ; rs

2ðr!1; tÞ ¼ rbulks :

8>>>>>><
>>>>>>:

To study the dynamics of this active switching system (eqn (8)),
we decompose the self-part of the van Hove function as:

Gselfðr; tÞ ¼ Nb

N

1

Nb

XNb

m¼1
dðr� rmðtÞ þ rmð0ÞÞ

* +

þNs

N

1

Ns

XNs

m¼1
dðr� rmðtÞ þ rmð0ÞÞ

* +
;

(26)

where Nb and Ns are the total number of particles in b and s states
in the steady-state, respectively (N = Nb + Ns). We define the partial
self-part of the van Hove function as73

Gself
i ðr; tÞ ¼

1

Ni

XNi

m¼1
dðr� rmðtÞ þ rmð0ÞÞ

* +
; (27)

which is calculated assuming that at time t = 0 there was a particle
in the i-state located at r = 0. Using that xi = Ni/N we find

Gself(r,t) = xbGself
b (r,t) + xsGself

s (r,t). (28)

We can identify the self-part of the van Hove with the
particle densities of component 1, i.e.

Gself
b (r,t) = rb

1(r,t) + rs
1(r,t), (29)

where both density profiles are obtained considering that there
was a particle in the b-state at r = 0 and t = 0. Gself

b (r,t) represents
the probability density of finding the test particle at distance r
from the origin at time t, given that at time t = 0 it was located at
r = 0 in the b-state.

The corresponding MSD of the particles in the b-state is

Dr2ðtÞ
� �

b
¼ 4p

ð1
0

r4Gself
b bðr; tÞdr: (30)

The same procedure can be followed starting from a test
particle in the s-state located at the origin to calculate Gself

s (r,t)
and hDr2(t)is.

The average MSD of the system is

hDr2(t)iave = xbhDr2(t)ib + xshDr2(t)is (31)
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Finally, the self-intermediate scattering function, routinely
measured in light scattering experiments to characterize
dynamics of colloidal systems, is

Fself(q,t) = xsFself
s (q,t) + xbFself

b (q,t). (32)

where Fself
i (q,t) are the partial self-intermediate scattering func-

tions, defined as the Fourier transform of the corresponding
self-part of the van Hove distribution of displacements

F self
i ðq; tÞ ¼

4p
q

ð1
0

Gself
i ðr; tÞ sinðqrÞrdr i ¼ b; s (33)

3 An exactly solvable continuous time
random walk model for active
switching colloids

In this section we describe a theoretical approach based on a
Continuous Time Random Walk model (CTRW) to gain new
insights on the complex diffusion of active switching colloids.
In this approach the system is viewed as a heterogeneous
assembly of big (b) and small (s) colloids which can stochasti-
cally switch from one state to another at constant rates. We are
interested in particular in the distribution of particle displace-
ments, i.e. the self-part of the van Hove distribution function
Gself(r,t) defined in eqn (9), which measures the probability that
a given colloid has traveled a distance r in a time t. To account
for the interplay between the colloids bare diffusion and their
switching activity, we first define gi(r,t) as the probability
density function for a colloid to make a displacement r in a
time t, provided it is in state i = s, b during the whole time
interval [0,t]. In addition, let pi(t) be the probability that a
colloid in state i switches for the first time to the complementary
state j at time t, and define the cumulative distribution

PiðtÞ �
ð1
t

piðt 0Þdt 0; (34)

as the probability that the time to switch state (i - j) is larger
than t. In this way, a colloid that is initially (at time t = 0) in
state i may persist in this state during a time t with probability
Pi(t), or it may switch state i - j at some intermediate time t0A
[0,t] with probability pi(t0)dt0. The stochastic state-switching
activity i - j is assumed here to be homogeneous in time,
with constant transition rates kij, which implies an exponential
form for both pi(t) = kijexp(�kijt) and Pi(t) = exp(�kijt). Moreover,
as explained above, stationarity implies a detailed balance
condition relating the transition rates between both states,
namely xsksb = xbkbs, with xi the fraction of colloids in state i
in the steady state.

Now, if Gself
i (r,t) is the probability that a colloid initially in

state i travels a distance r in a time t, we can write the following
recurrence in the steady state

Gself
i ðr; tÞ ¼ PiðtÞgiðr; tÞ

þ
ðt
0

dt 0
ð
dr0piðt 0Þgiðr0; t 0ÞGself

j ðr� r0; t� t 0Þ (35)

for i = s, b and j = b, s, or equivalently, in a more compact form,

Gself
i (r,t) = Pi(t)gi(r,t) + [Di 1 Gself

j ](r,t), (36)

where we defined Di(r0,t0) � pi(t0)gi(r0,t0), and
1

stands for spatio-
temporal convolution. The first term describes the propagation
of colloids which persist in the same state i = s, b for the whole
time interval, while the second term captures the propagation
in the presence of state changes at intermediate times. This
includes not only the first state jump, but all subsequent state
changes via the dressed propagator Gself

j (r,t), that obeys a
recurrence equation equivalent to eqn (36). We recall here that
j stands for the complementary state to i, that is, if i = s then
j = b and vice versa. Recurrences like this one can be solved in
general in the Laplace-Fourier domain,24 where the integral
equations boil down to simple algebraic relations for the
transformed functions. In particular, defining the Laplace-Fourier
transform of a generic function h(r,t) as

hðq; sÞ �
ð1
0

dt e�st
ð
dr eiq�rhðr; tÞ; (37)

and applying this transformation to eqn (35) and (36), we obtain
the following solution after some algebra,

Gself
i ðq; sÞ ¼

Diðq; sÞ kij�1 þ kji
�1Djðq; sÞ

� 	
1� Diðq; sÞDjðq; sÞ

; i ¼ s; b: (38)

The colloids Brownian dynamics suggests to use diffusive
expressions for the bare propagators,

giðr; tÞ ¼
e�r

2=ð4DitÞ

ð4pDitÞ3=2
; (39)

with Di the colloid diffusion constant in state i. The Fourier-
Laplace transform of Di(r,t) is hence

Diðq; sÞ ¼
1

1þ kij�1ðsþDiq2Þ
; (40)

which in turn leads to

Gself
i ðq; sÞ ¼

sþ kij þ kji þDjq
2

ðsþ kij þDiq2Þðsþ kji þDjq2Þ � kijkji
; (41)

with i = s, b and j = b, s complementary to i. Note that the
Fourier-Laplace transform of the self-part of the van Hove
distribution function can be written in general as
Gself(q,s) = xsGself

s (q,s) + xbGself
b (q,s). Before proceeding, let us

analyze the long-time, large-lengthscale asymptotic behavior
predicted by eqn (41). In particular, taking the limit s - 0, q - 0
in this expression, with s/q2 - constant, we obtain a standard
diffusive propagator at leading order, i.e.

Gself
i ðq; sÞ �!

s!0

q2!0

1

sþDaveq2
; (42)

with an effective, average diffusion constant

Dave ¼
ksbDb þ kbsDs

ksb þ kbs
¼ xsDs þ xbDb; (43)

where we have used the detailed balance condition xsksb = xbkbs in
the last equality. Eqn (42) is nothing but the Fourier-Laplace
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transform of a Gaussian (diffusive) displacement distribution
(akin to eqn (39)) with effective diffusion constant Dave, and is
independent of the initial state of the colloid, as expected.

Inverting now the Laplace transform in eqn (41), we obtain
the partial self-intermediate scattering function of particles
initially in the i-state

F self
i ðq; tÞ ¼ e�tYðqÞ=2 cosh

t

2

ffiffiffiffiffiffiffiffiffiffi
LðqÞ

ph in

þ2GiðqÞ �YðqÞffiffiffiffiffiffiffiffiffiffi
LðqÞ

p sinh
t

2

ffiffiffiffiffiffiffiffiffiffi
LðqÞ

ph i)
;

(44)

where

GiðqÞ ¼ kij þ kji þDjq
2:

YðqÞ ¼ kij þ kji þ ðDi þDjÞq2;

LðqÞ ¼ ðkij þ kjiÞ2 þ 2ðkij � kjiÞðDi �DjÞq2 þ ðDi �DjÞ2q4:

The full scattering function is obtained from eqn (32). From
this expression we can further compute analytically the average
MSD, hDr2(t)iave, as

hDr2ðtÞiave ¼ �
@3 qF selfðq; tÞ
� 	

@q3

����
q¼0

¼ xshDr2ðtÞis þ xbhDr2ðtÞib (45)

where hDr2(t)ii is the MSD for a colloid in state i = s, b at time
t = 0. Differentiating now the exact expression eqn (44), we obtain

hDr2ðtÞii ¼
6

ðkij þ kjiÞ2
kijðDi �DjÞ 1� e�ðkijþkjiÞt

� 
h

þ ðkij þ kjiÞðDikji þDjkijÞt
	
:

(46)

It is important to emphasize here that the CTRW approach
neglects particle–particle interactions, so it is expected to
provide good predictions for the single particle dynamics only
for diluted or weakly interacting colloidal systems. For strongly
interacting systems, the CTRW theory could still be applied
assuming that the values of Db and Ds are given by the effective
long-time concentration-dependent diffusion coefficients.

4 Reactive brownian dynamics (R-BD)
computer simulations

In addition to the R-DDFT calculation and the CTRW theory
described above, we performed reactive Brownian Dynamics
simulations (R-BD) for all systems as in our previous work.50

R-BD allows direct access to the dynamics and diffusion coeffi-
cients for validating the results of our R-DDFT while bypassing
the extensive calculations of the self and distinct part of the van
Hove function. The equation of motion for a particle m in the
particle-resolved simulations using the overdamped Langevin
equation is written as

xm
:rm = �rU(rm) + R(t), (47)

where :rm and rm denote the velocity and the position vector of
the m-th particle, R(t) is a random force vector, and the drag
coefficient xm is related with the diffusion coefficient through
Dm = kBT/xm. Following the fluctuation–dissipation theorem, the
components of the random force vector fulfill the properties
hRa(t)i = 0 and hRa(t)Rb(t0)i = 2xm

2Dmdabd(t � t0) with a and b
representing the spatial dimensions, dab the Kronecker delta,
and d(t) denoting the Dirac delta function. In the absence of an
external field, the force vector acting on each of the N particles
Fi arises only from the pairwise, distance-dependent inter-
actions umn(rmn) following eqn (1), and thus the force writes

Fm ¼ �rUðrmÞ ¼ �
PN
nam
rumnðrmnÞ. All particle positions are

updated after each time interval Dt using the Euler–Maruyama
propagation scheme,74 that is

rmðtþ DtÞ ¼ rmðtÞ þ
Dt
xm
Fm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmDt

p
fm; (48)

where Dt = 10�4tB as the integration time-step and fm is a vector
consisting of random values following a standard normal
distribution. The two probabilities of switching pbs and psb,
which check for switching events every integration step Dt, are

pbs = 1 � e�kbsDt, psb = 1 � e�ksbDt. (49)

The properties of the m-th particle are switched if a random
variate following a uniform distribution between zero and one
is below psb if the particle is at state s, or is below pbs if the the
particle is at state b. Our R-BD simulations for up to 500
switching particles have been conducting using an own code
for production time up to 50tB and system S2 presented in
Table 1. For each activity, we collected five different trajectories
from simulations of cubic cells of edge length 12.8ss with
periodic boundary conditions. The MSD for the corresponding
species is calculated with respect to the initial positions rm(0)
and states, and is written as

hDr2ðtÞii ¼ hðrðtÞ � rð0ÞÞ2ii ¼
1

Ni

XNi

m¼0
ðrmðtÞ � rmð0ÞÞ2 i ¼ b; s

(50)

where Ni is the corresponding amount of particles in state i,
and rm(t) and rm(0) denoting the position vectors of each particle
in state i at time t and at the initial state.

5 Results and discussion

We apply our generalized R-DDFT method to deduce the
particle dynamics of two representative systems, S1 and S2,
specified in Table 1. In particular, the interaction strengths are
in all cases given by eij = 2 (in kBT units). This value represents
quite well the repulsion strength between two overlapping
linear polymers and soft colloidal hydrogels immersed in a
good solvent.61 The resulting soft interaction not only allows
partial overlap of particles, but also the full overlap of their
centres of mass, especially for large particle concentration.
Therefore, our system behaves as a weakly interacting fluid.
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The interaction parameters and total particle bulk concen-
tration of systems S1 and S2 are exactly the same, but the
composition (xs) and the diffusion coefficient of the particles in
the b-state (Db) are different. In particular, for system S1 the
particle diffusivities follow the Stokes–Einstein relation, Db =
(ss/sb)Ds = 0.5Ds, whereas for system S2 both particles have very
dissimilar diffusivities, namely Db = 0.01Ds. In addition, a
composition of xs = 0.2 has been chosen for system S2 in order
to emphasize the distinction between the different dynamic
regimes of the mean squared displacement obtained for differ-
ent switching activities. In both systems, the kinetic rate con-
stants fulfill the condition given by eqn (6), i.e. kbs/ksb = xs/xb, in
order to preserve the relative bulk composition of colloids in b
and s states.

5.1 Results for system S1

The calculation is initiated assuming that the distinct parts of
the van Hove function at time t = 0, ri

2(t,t = 0), are given by the
corresponding steady-states radial distribution functions of the
active colloidal system (eqn (20) if the test central particle is in
the b-state, or 21 if it is in the s-state). For this purpose, we first

need to solve the 4-state R-DDFT equations to calculate the
steady-state radial distribution functions of the active system,
gij(r), obtained in the limit t - N.49,50 We emphasize again
that the steady-state distributions only agree with the equili-
brium distributions geq

ij (r) for a = 0. Otherwise (for a 4 0)
the steady state corresponds to a time-independent non-
equilibrium configuration.

For the self-part, a very short initial time t = t0 = 5 � 10�5tB is
used to approximate the singular d-function of ri

1(r,t = 0) by a
very sharp Gaussian distribution

ri
1ðr; t0Þ ¼

1

ð4pDst0Þ3=2
e�r

2=ð4Dst0Þ i ¼ b; s (51)

where t0 is small enough to assure that the distinct parts have
barely changed from the initial distribution.

Fig. 1 shows the time dependent density profiles rai (r,t) for
system S1 of Table 1 obtained assuming that at time t = 0 there
was a particle in the b-state located in the origin. The twelve
plots represent the results for three different activity rates
(a = 0, 1 and 1000) and four times (t/tB = 0.01, 0.1, 0.3 and 1).
All times are normalized by the Brownian time, tB = ss

2/Ds.

Fig. 1 Particle densities rb
1(r,t) and rs

1(r,t) (blue lines) and rb
2(r,t) and rs

2(r,t) (black lines) for an active switching fluid of Gaussian colloids as a function
of the scaled distance r/ss at different times, obtained for system S1. Plots depict the results for three activity rates (a = 0, 1 and 1000) and four times,
t/tB = 0.01, 0.1, 0.3 and 1, respectively.
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We first examine the plots for a = 0, which correspond to a
non-active equilibrium mixture of non-switching big and small
Gaussian colloids (see Fig. 1(a)–(d)). Since switching is forbidden,
the central big test particle remains in the b-state all the time
during the diffusion process. The time evolution of the self and
distinct part are very similar to the ones observed in one-
component systems.54 The initial delta peak of the self part,
rb

1(r,t), broadens as time increases. Conversely, the distinct parts
providing the density profiles of surrounding particles in the b
and s states tend to be more uniform. Indeed, the initial depletion
region of ri

2(r,t) close to the origin is progressively reduced, and
becomes flatter as time evolve. In the limit t - N or r -N, the
self part tends to zero whereas the distinct part converges to the
uniform distribution.

This behavior changes if we consider active switching sys-
tems (a 4 0). In this case, particles not only diffuse, but they
are also able to switch between states b and s. For instance, if
the system starts with a test big particle at t = 0 (so rb

1(r,0) = d(r)
and rs

1(r,0) = 0), it means that for larger times some fraction of
this initial distribution broadens by diffusion, but other part
switches to create particles in the s-state, leading to time-
dependent density distributions for particles in both states,
rb

1(r,t) and rs
1(r,t). This effect, which constitutes a new exclu-

sive feature of active switching colloids, can be clearly observed
in Fig. 1. Indeed, for a 4 0, the initial d-distribution of rb

1(r,t)
not only spreads, but also generates a new distribution of
small colloids, rs

1(r,t), indicating that the central particle has
switched from the b-state to the s-state. As shown by Fig. 1(e)–(h),
this effect is small for a = 1 at times below t/tB = 1, but it becomes
more important for longer times. Conversely, For a = 1000
(Fig. 1(i)–(l)), the switching rate is so fast that it gives rise a large
peak of particles in the s-state at very short times. We have shown
in our earlier works that, in the limit of a fast switching rate, the
system behaves as an effective one-component system in which all
particles interact with the same effective pair potential.49,50 As a
consequence, both density profiles rapidly converge to a common
shape, with rs

1(r,t) = (xs/xb)rb
1(r,t). The same happens for the

distinct part of the van Hove function, rs
2(r,t) = (xs/xb)rb

2(r,t).
Increasing the particle concentration, rT, entails a gradual

reduction of the correlation hole of the radial distribution
functions and an increase of the degree of particle overlap,
typical in systems composed by soft Gaussian colloids. In other
words, the system approaches the ideal gas-like behavior in the
limit of large rT. Consequently, the results for the dynamics are
not affected either by concentration effects in the limit of dense
colloidal suspension.

5.2 Results for the dynamically more asymmetric system S2

In order to really understand the role of the diffusion coeffi-
cients on the dynamic behavior of the active system, we have
performed the same calculations, but using system S2 shown in
Table 1. System S2 has similar features than system S1, but with
a very important difference: the diffusion coefficient of colloids
in the b-state is chosen to be very small compared to the one for
particles in the s-state, Db = 0.01Ds, resembling the features of
systems with highly heterogeneous dynamics.24 We calculate

the self-part of the van Hove function Gself
b (r,t) (see eqn (29)),

starting with a test particle in the b-state located at r = 0 at time
t = 0. The same calculation is repeated choosing a test particle
initially in the s-state to determine Gself

s (r,t).
Fig. 2(a) shows Gself

b (r,t) obtained for a binary colloidal
system S2 in equilibrium (a = 0). In particular, we plot the
scaled functions (4pDbt)3/2Gself

b (r,t) against the scaled distance,
x = r/(4Dbt). As observed, all the curves for different times
collapse in a common form given by e�x2, which indicates that
the diffusion process of the test big particle follows a Gaussian
distribution with a diffusion coefficient given by Db. The same
conclusion is found if we consider a test particle in the s-state
and plot the scaled (4pDst)3/2Gself

s (r,t) against x = r/(4Dst), as
shown in Fig. 2(b). Therefore, we conclude that the time-
dependent distribution of displacement of the particles in a
non-active (a = 0) equilibrium fluid mixture of interacting
Gaussian colloids obeys the well-known Gaussian distribution

Gself
i ðr; tÞ ¼

1

ð4pDtÞ3=2e
�r2=ð4DtÞ (52)

where D is the corresponding diffusion coefficient of specie i,
namely D = Di (with i = b, s).

This scaling behavior breaks down for active switching
system. Fig. 2(c) and (d) illustrate exactly the same scaled
functions for system S2 at several times, but turning on the
non-equilibrium switching activity rate at a = 1. Fig. 2(c)
corresponds to the self-part of the van Hove function for a test
particle in the b-state at t = 0. For very short times, t { tB/a, the
big test particle still preserves its identity, so it follows the
Gaussian distribution of displacements given by eqn (52), with
a diffusion coefficient D = Db. However, for intermediate times,
t B tB/a, Gself

b (r,t) is not Gaussian any more. In fact, it follows
different distributions for short and large displacements, showing
a non-Gaussian tail with a well-defined shoulder that represents
the crossover from one behavior to the other. In particular, large
displacements have a much larger probability to occur compared
to the Gaussian prediction. This is due to the fact that the original
test particle in the b has already switched to a faster s-state.
Clearly, Gself

b (r,t) exhibits a bimodal character suggesting the
existence of slow particles and faster diffusing particles. This
dynamic behavior resembles the one observed in heterogeneous
diffusion of reversible attractive colloidal gels, in which the system
is formed by a coexistence of slow percolating cluster of connected
droplets and fast, more freely diffusing droplets, with a dynamic
exchange between the two families set by polymer moves.24 In our
case, this lack of Gaussianity is a clear signature of the non-
equilibrium activity introduced by the particle switching. Note
that similar heterogeneous dynamics has been also observed
in a wide variety of systems with Brownian yet non-Gaussian
diffusion.75–77

For very long times, (t c tB/a), the initial big test particle has
experienced many switching events between b and s, and vice
versa. In this limit, Gself

b (r,t) recovers again the Gaussian beha-
vior (cf. eqn (52)), but with an average diffusion coefficient given
by the mean of the individual diffusion coefficients weighted by
the kinetic rate constants. This is exactly the prediction derived
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within the CTRW theory described in Section 3 for the self-part
of the van Hove distribution in the long-time large-lengthscale
limit (see eqn (43)).

A similar behavior is found for Gself
b (r,t) (see Fig. 2(d)). For

short times (t { tB/a), the small test particle located at r = 0 has
not yet experienced any switching event, so Gself

s (r,t) follows a
Gaussian distribution with D = Ds. At intermediate times, the
Gaussian behavior is lost. In this case, large displacements
have smaller probability to occur compared to the Gaussian
dependence, indicating that the test particle is now diffusing
slower due to the switching from s to b-state. For large enough
elapsed times, the occurrence of multiple switching events
between both particle states finally leads to a new Gaussian
distribution with D = Dave.

The same transient behavior is found increasing the activity
rate to a = 100. The only difference is that, in this case,
switching events befall 100 times faster, so the transition from
the short-time Gaussian regime to the long-time one arises
at much shorter times. This effect can be clearly observed
in Fig. 2(e) and (f), where Gself

i (r,t) becomes non-Gaussian
for t {tB.

5.3 Intermediate scattering function

An observable of direct experimental relevance is the self-
intermediate scattering function Fself(q,t), as well as its partial
components Fself

i (q,t) (i = s, b) defined in eqn (33). These
functions characterize the system dynamical relaxation at the
single-particle level for different wave vectors q, or equivalently

at lengthscales inversely proportional to |q|. Fig. 3 shows
Fself(q,t) as well as Fself

b (q,t) and Fself
s (q,t) for qss = 6 and system

S2, as obtained within the R-DDFT approach together with the
CTRW prediction (eqn (32), (33) and (44)). Focusing first on the
small (s) colloids, note that they exhibit a fast initial relaxation,
as captured by the quick initial decay of Fself

s (q,t), see Fig. 3(b),
on a time scale related to their relatively large diffusion con-
stant Ds. However, the active state switching eventually kicks in,
triggering a slower relaxation for initially small particles which
have switched to the big (b) state, with much smaller diffusion
constant Db = 10�2Ds. This gives rise to a plateau in Fself

s (q,t) at
intermediate timescales. Interestingly, the height of the plateau
decreases with decreasing activity a. Indeed, for small activity
the time between switching events s - b is large, so most small
colloids have time to diffusively relax in the medium before a
switching event slows down their dynamics, leading to small
plateau height. Conversely, for large activities a c 1 very few
small colloids have time to relax before switching to the big
(slow) state, and hence the amplitude of the plateau is large in
this case.

On the other hand, for big (b) colloids Fself
b (q,t) exhibits a

simpler relaxation pattern, see Fig. 3(a). In this case the initial
relaxation of big colloids is already slow, as expected from their
low bare diffusivity, and this relaxation can be only accelerated
by switching events to the small (s) state. In this way Fself

b (q,t)
exhibits no secondary relaxation plateau, and the relaxation
timescale for b-colloids decreases with increasing activity. The
combined relaxation of small and big active colloids gives rise

Fig. 2 Plots (a), (c) and (e): scaled self-part of the van Hove distribution of displacements for a particle initially in the b-state, Gself
b (r,t)(4pDbt)3/2, as a

function of the scaled distance x = r/(4Dbt)1/2, for a = 0, 1 and 100. Plots (b), (d) and (f): scaled self-part of the van Hove function for a particle initially in the
s-state, Gself

s (r,t)(4pDst)
3/2 as a function of the scaled distance x = r/(4Dst)

1/2, for a = 0, 1 and 100. Calculations performed for system S2.
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to a typical two-step relaxation pattern for the global incoherent
scattering function Fself(q,t) = xbFself

b (q,t) + xsFself
s (q,t), see

Fig. 3(c), with a plateau at intermediate timescales with a height
proportional to xb = 1 � xs, the fraction of big (i.e. slow) colloids
in the stationary suspension. The relaxation timescale to the
plateau is controlled by the small colloids fast bare diffusivity,
while the global relaxation timescale decreases with increasing
activity, as expected. Interestingly, similar two-step relaxation
patterns for Fself(q,t) have been widely observed for a broad family
of soft materials with heterogeneous dynamics, as e.g. glasses,
dense granular media, and gels.23–36

The lines in Fig. 3 correspond to the CTRW prediction given
by eqn (44), and the agreement with R-DDFT results is excellent
in all cases, capturing in full detail the complex relaxation
dynamics of the active colloidal suspension. This striking
agreement (also observed below for MSDs and other dynamical
quantities) strongly suggests that the soft colloidal interactions
seem to play no significant role in the diffusive and local
relaxation properties of the active suspension, at least for the
weak particle interaction explored in this paper. We expect
interactions to become more important for larger values of eij.
These interactions can be however taken into account within
the CTRW model here introduced via renormalized diffusive
propagators.

5.4 Mean squared displacements (MSDs) and R-BD
trajectories

The relaxation dynamics and diffusive behavior at short and
long timescales can be further understood by analyzing the
MSD of the colloids. Fig. 4 shows the average MSD of system S2,
hDr2(t)iave (calculated from eqn (31)) for a = 0, 1 and 1000
obtained from the R-DDFT predictions and from R-BD simula-
tions. Interestingly, theoretical and simulation data of the
global MSD for these three activity rates collapse after a short
transient in the same common linear dependence, given by
hDr2(t)iave = 6Davet, with Dave = xbDb + xsDs being the average
diffusion coefficient of the active system. In other words, from a
global point of view, the system dynamics is Brownian and can
be apparently modeled by a single average diffusion constant
that is always the same regardless the activity rate, a. This is
however in stark contrast with the non-Gaussian character of

the diffusive dynamics captured by the self-part of the global
and partial van Hove distributions of displacements (see Fig. 2
and the associated discussion). Therefore, the active colloidal
mixture studied here exhibits the hallmarks of the Brownian
yet non-Gaussian diffusion phenomenon already described in
other heterogeneous materials.75–77

To better understand this phenomenon, we explore some
representative single-particle trajectories. Fig. 5 contains a set
of selected trajectories for a single, actively switching particle,
at different switching activities a. The lower a is, the longer the
particle stays in a given state b or s, and thus the larger the
explored regions with the corresponding diffusion coefficients
Ds or Db. Since Db { Ds, big particles diffusively explore
relatively small volumes (see Fig. 5(a)), leading to local quasi-
arrested dynamics, while small particles can travel further away
exploring larger volumes for the same time interval.

For small activities, or equivalently large switching time
intervals, the dynamics is clearly intermittent and hetero-
geneous, characterized by large diffusion intervals punctuated
with quasi-arrested periods when colloids switch to the
big state, resulting in general in a highly heterogeneous

Fig. 4 Average MSD of the active switching system as a function of time
for system S2 for a = 0, 1 and 100. Symbols are R-DDFT predictions,
whereas dashed lines denote R-BD results.

Fig. 3 Partial and full self-intermediate scattering functions as a function of time for different activity rates, from a = 0 to a = 100, calculated for q0ss = 6:
(a) Fself

b (q0,t), (b) Fself
s (q0,t) and (c) Fself(q0,t) = xbFself

b (q0,t) + xsF
self
s (q0,t). Calculations performed for system S2.
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distribution of particle displacements. When the activity
increases, see Fig. 5(b) for a = 1.0, the dynamical heterogeneity
of the trajectory is less apparent as state switching events are
more frequent and regions of fast and slow diffusion cannot be
clearly delimited, leading to a more homogeneous distribu-
tion of displacement vectors. At much larger switching activities
(a = 1000, Fig. 5(c)), the switching intervals become sufficiently
small to show a behavior close to an effective one component
(EOC) system,50 where the macroscopic characterization of our
systems revealed almost indistinguishable properties for big and
small particles. However, here we still see a non-uniform distribu-
tion of displacements showing that the states remain distinguish-
able on a microscopic level for a single particle.

In order to quantify the heterogeneous dynamics shown by
the active switching particles, we now study the MSD of colloids
in a particular internal state (b or s) for different activities from
a = 0 to a = 100. Fig. 6(a) shows hDr2(t)ib for a test particle
initially in the b-state (system S2), obtained through eqn (30).
Empty symbols correspond to R-DDFT predictions while
dashed lines are results from R-BD simulations. For a = 0, the
big test particle remains in the b-state all the time, so the MSD
corresponds to a standard diffusive motion of a Brownian
colloid with diffusion coefficient Db, i.e., hDr2(t)ib = 6Dbt.
However, the situation changes as soon as particle switching
is activated. For a 4 0, the big particle preserves its identity for
times well below the switching timescale, t { tB/a. Subse-
quently, for intermediate times t B tB/a, switching events to the
small (s) state significantly accelerate the dynamics of the

(initially big) test particle, leading to a superdiffusive transient
regime. Finally, for large enough times, t c tB/a, after many
switching events back and forth between the b and s states and
viceversa, an effective diffusive regime is reached with an
average diffusion constant Dave = xbDb + xsDs,

hDr2ðtÞib ¼
6Dbt t� tB=a

6ðxbDb þ xsDsÞt t� tB=a

(
(53)

This crossover phenomenon occurs in all active systems, where
individual particles show a different effective diffusion coeffi-
cient for short and long times. The transition time from one
dynamic regime to the other, BtB/a, is fully controlled by the
activity. Indeed, for small activity rates the transition is slow so
long times are required to attain the asymptotic regime, while
large activity rates (such as a = 1000) lead to a fast crossover.

The R-DDFT theoretical predictions show an excellent agree-
ment with R-BD simulation data (dashed lines in Fig. 6(a)), thus
confirming that our adapted R-DDFT represents a trustful
method to investigate the dynamical properties of non-
equilibrium active switching systems. Furthermore, Fig. 7(a)
shows a comparison of the MSD for an initially-big particle
obtained in R-BD simulations for different activities, and the

Fig. 5 Trajectories obtained from R-BD simulations (gray lines) of single
particles actively switching between their big (blue) and small (red) state at
activities (a) a = 0.1 with a magnified region of slow diffusion being in the
big state, (b) a = 1.0, and (c) a = 1000, where the split coloring indicates fast
switching between the two states. Transparent colors represent past states
and positions, non-transparent coloring indicates the final position and
state. All trajectories cover a total time of 25tB with a resolution of 0.025tB

for the displacement steps (system S2).

Fig. 6 Comparison of the MSD obtained from R-BD simulations (dashed
lines) and R-DDFT (empty symbols) for switching colloids initially in (a) the
b-state and (b) the s-state. Calculations performed for system S2.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
D

ec
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
7/

20
26

 1
0:

13
:5

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sm01507a


This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 397–411 |  409

exact prediction obtained from the CTRW theory developed in
Section 3 (see eqn (46)). As for the self-intermediate scattering
functions of Fig. 3, the agreement between simulations and the
phenomenological CTRW theory is also excellent. This includes
both the short- and long-time asymptotic diffusive regimes with
different diffusivities, but also the transient superdiffusive
dynamics for initially-big particles which are accelerated by
stochastic switching to the s-state.

Similar asymptotic behaviors are observed for the MSD of a test
particle that was in the s-state at t = 0, see Fig. 6(b). In this case

hDr2ðtÞis ¼
6Dst t� tB=a

6ðxbDb þ xsDsÞt t� tB=a

(
(54)

At intermediate times, however, the MSD shows now a anomalous
sub-diffusive regime caused by the slowing down of the (initially
small) test particle due to switching events to the big (b) state. Both
the asymptotic behaviors and the transient anomalous sub-
diffusion are well-predicted by our R-DDFT theory. Moreover,
Fig. 7(b) shows a comparison of the MSD for an initially-small
particle obtained in R-BD simulations for different activities,
and the phenomenological CTRW prediction, eqn (46), and the

agreement is again excellent at all timescales, including the sub-
diffusive anomalous regime at intermediate times.

In this way, the overall (effective) Brownian behavior of the
global MSD, see Fig. 4, results from the superposition of clearly
non-Brownian dynamics of both small and big particles, which
sub- and super-diffuse at intermediate times as a result of the
switching activity. This anomalous diffusion properties at
intermediate times are also reflected in the non-Gaussian
behavior of the self-part of the van Hove displacement distribu-
tion functions (full and partial), as shown in Fig. 2.

6 Conclusions

We deduced an adapted reactive mean-field dynamical density
functional theory (R-DDFT), a phenomenological continuous-
time random walk (CTRW) theory, and performed Brownian
dynamics (R-BD) computer simulations, to investigate the
dynamical properties of an active fluid of switching Gaussian
colloids in the steady-state regime. For this purpose, the R-DDFT
method has been generalized using the method proposed by
Archer et al.,54 in which the self-parts and the distinct-parts of
the van Hove dynamic correlation function of an active system are
identified with the one-body density distributions of a mixture
that evolve in time according to the R-DDFT. We show that
interaction switching activity not only has an important effect
on the structural properties and phase behavior of the active
system,49,50 but also induces a profound change of its dynamical
properties, leading to a heterogeneous diffusion.

The time-dependent distribution of displacements of parti-
cles initially in the b and s-state (i.e. the self-parts of the van
Hove correlation functions Gself

b (r,t) and Gself
s (r,t), respectively)

follow the well-known Gaussian distribution for t { tB/a, with a
diffusion coefficient given D = Db and D = Ds, respectively. For
intermediate times, t B tB/a, both distributions lose the
Gaussian dependence, exhibiting a well-defined crossover that
separates the behavior for short and large particle displacements.
This phenomenon is entirely caused by the non-equilibrium
switching activity, which induces the formation of a bimodal
distribution of displacements (slow/big and fast/small particles,
respectively). For long enough times, t c tB/a, the large number
of switching events finally leads again to a Gaussian distribution,
but with an effective diffusion coefficient given by the the average
of the individual ones, Dave = xbDb + xsDs. This heterogeneous
diffusion is also observed in the self-intermediate scattering
functions of the solution, of direct experimental relevance. In
particular, a secondary relaxation plateau emerges whose height
gives a measure of the fraction of colloids in the big (i.e. slow)
state, and whose relaxation timescale is directly linked with the
colloidal activity.

The transition involved in the dynamics of the individual
particles is also manifested in the corresponding MSDs
(hDr2(t)ib and hDr2(t)is for test particles in states b and s,
respectively). Indeed, particles originally in the b-state (s-state)
exhibit Brownian motion with a diffusion coefficient that shifts
from D = Db (Ds) for short times to D = Dave for long times.

Fig. 7 Comparison of the MSD obtained from R-BD simulations (dashed
lines) and the phenomenological continuous-time random walk theory
(solid lines) for switching colloids initially in (a) the b-state and (b) the
s-state. Calculations performed for system S2.
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For intermediate times, t B tB/a, the MSD depicts an anomalous
behavior (super-diffusive for particles in the b-state and sub-
diffuse for particle in s-state) connecting both dynamic regimes.
Theoretical predictions obtained with R-DDFT and CTRW for the
MSD of the switching interaction particles show excellent quanti-
tative agreement with those of our reactive Brownian dynamics
computer simulations (R-BD).

We believe our model applies to biological systems such as
switching bistable bacteria which use switching to control
structural and dynamic heterogeneity and with that collective func-
tion37,38 or synthetic realizations in, e.g., active hydrogels.39–42

Our study on switching colloids inspires many future works,
e.g., open questions concern the nature of the non-equilibrium
thermodynamics (heat and entropy in these system), the violation
of the fluctuation–dissipation theorem, and more first-principle
approaches of our rather phenomenological model, e.g., based on
active versions of the recently introduced responsive colloids
(RCs) model78,79 involving continuous bimodal landscape for
the particle size distribution.80 Such a treatment may lead to
position and concentration dependent switching rates with non-
trivial consequences on position-dependent structure and
dynamics of the active dispersions. It would be also interesting
to investigate the dynamic properties of switching colloids with
larger interaction strengths, eij. In this regime, previous simula-
tion studies performed in one-component fluids of Gaussian
colloids report a non-monotonic density dependence of the
long-time diffusion coefficient, which reaches a minimum value
at some intermediate particle concentration.81,82 This reduction
of the long-time diffusion coefficient induced by particle inter-
actions should also be present in our two-state mixture of active
soft colloids. Finally, quantification of collective phenomena such
as interdiffusion is also an interesting topic for future studies.83

This could in principle be obtained from examination of the time
evolution of the distinct-part of the van Hove function (see Fig. 1).
Close to equilibrium (a = 0) interdiffusion is expected to play a big
role in mixing, while for increasing activity its role diminishes
as the particles switch before diffusing, i.e. switching acce-
lerates the interdiffusion process.
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3 P. Hervés, M. Pérez-Lorenzo, L. M. Liz-Marzán, J. Dzubiella,
Y. Lu and M. Ballauff, Chem. Soc. Rev., 2012, 41, 5577–5587.

4 S. Wu, J. Dzubiella, J. Kaiser, M. Drechsler, X. Guo, M. Ballauff
and Y. Lu, Angew. Chem., Int. Ed., 2012, 51, 2229–2233.

5 P. Theato, B. S. Sumerlin, R. K. O’Reilly and T. H. Epps, III,
Chem. Soc. Rev., 2013, 42, 7055–7056.

6 R. Schroeder, A. A. Rudov, L. A. Lyon, W. Richtering, A. Pich
and I. I. Potemkin, Macromolecules, 2015, 48, 5914–5927.

7 J. Stegen and P. van der Schoot, Soft Matter, 2015, 11, 2036–2045.
8 J. Stegen and P. van der Schoot, J. Chem. Phys., 2015, 142,

244901.
9 A. Walther, Adv. Mater., 2019, n/a, 1905111.

10 A. Einstein, Ann. Phys., 1905, 322, 549–560.
11 E. Frey and K. Kroy, Ann. Phys., 2005, 14, 20–50.
12 R. Metzler and J. Klafter, Phys. Rep., 2000, 339, 1–77.
13 B. Wang, S. M. Anthony, S. C. Bae and S. Granick, Proc. Natl.

Acad. Sci. U. S. A., 2009, 106, 15160–15164.
14 B. Wang, J. Kuo, S. C. Bae and S. Granick, Nat. Mater., 2012,

11, 481–485.
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