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Reinforcement learning reveals fundamental limits
on the mixing of active particles†

Dominik Schildknecht, *a Anastasia N. Popova,b Jack Stellwagenc and
Matt Thomsond

The control of far-from-equilibrium physical systems, including active materials, requires advanced

control strategies due to the non-linear dynamics and long-range interactions between particles,

preventing explicit solutions to optimal control problems. In such situations, Reinforcement Learning

(RL) has emerged as an approach to derive suitable control strategies. However, for active matter

systems, it is an important open question how the mathematical structure and the physical properties

determine the tractability of RL. In this paper, we demonstrate that RL can only find good mixing

strategies for active matter systems that combine attractive and repulsive interactions. Using analytic

results from dynamical systems theory, we show that combining both interaction types is indeed

necessary for the existence of mixing-inducing hyperbolic dynamics and therefore the ability of RL to

find homogeneous mixing strategies. In particular, we show that for drag-dominated translational-

invariant particle systems, mixing relies on combined attractive and repulsive interactions. Therefore, our

work demonstrates which experimental developments need to be made to make protein-based active

matter applicable, and it provides some classification of microscopic interactions based on macroscopic

behavior.

1 Introduction

Mixing is crucial in applications ranging from large-scale
chemical processes in industries such as petroleum or food2

down to microscopic scales, including microfluidic applications in
medicine.3,4 However, microscopic mixing is challenging because
microscale systems are typically drag-dominated, therefore, effi-
cient mixing strategies are not obvious. While current microfluidic
solutions exist for microscopic mixing and material transport, they
rely on external pumps, prefabricated device geometries,5–8 and
(active) additives9–11 so that they are limited in their reconfigur-
ability. In contrast, natural cells use the self-organization of
interacting components to make microscopic transport and mix-
ing more compact and energy-efficient.12

To better understand nature, and to replicate it for
applications, researchers started to study so-called active matter.
Here, active matter refers to systems of proteins or other particles
that continuously consume energy to achieve non-equilibrium
dynamics, which can self-organize to achieve specific tasks.
In particular, recent work suggested using active matter to achieve
macroscopic tasks, such as generating fluid flows,13–15 flow
rectification,16 and equilibration of glassy systems.17

The unsolved scientific challenge is how to assemble the
existing (microscopic) active matter systems to achieve macro-
scopic results such as mixing and material transport. While
recently, machine learning was applied to various topics in
active matter (see ref. 18 for a review), the literature on active
matter control is limited. While in macroscopic systems, where
individual agent properties can be controlled, various goals
could be achieved, such as navigation through fluids at various
Reynolds numbers19–25 and self-organization emerging in a
multi-agent setting to solve several tasks,26–31 using micro-
scopic systems to achieving macroscopic behavior is challen-
ging. Indeed, while some limited control was achieved, such as
the ability to generate simple fluid flows,13–16,32 achieve global
particle momentum,33 and accelerated equilibration of otherwise
glassy systems,17 control strategies for more complex scenarios are
absent. The reason for this challenging behavior is that active
matter systems are interaction-dominated, so strategies have to
exert indirect control via agent–agent interactions rather than
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single–agent properties. Therefore, finding successful strategies to
achieve macroscopic goals requires advanced control methods,
including policy-based reinforcement learning.

The key question we address in this paper is finding control
strategies for the macroscopic task of mixing using protein-
based active matter systems. In particular, we focus on finding
mixing strategies of active particles by applying RL to our recent
numerical active matter model.1 If we find good mixing solu-
tions for the active particles, these strategies could then be
implemented experimentally to induce mixing in the surround-
ing medium, for example, via fluid–matter interactions. For our
model of active particles, we observe that while RL fails to learn
good strategies if only attractive or repulsive interactions are
available, RL finds good strategies if attractive and repulsive
interactions can be combined. We analyze this puzzling beha-
vior using dynamical systems theory, particularly theory to
hyperbolic dynamics and Anosov diffeomorphisms,34 to prove
that mixed interactions are indeed necessary to render the
problem solvable. Our results, therefore, provide a guideline
to make protein-based active matter applicable and answer the
question of how different interactions can lead to macroscopic
behavior asked in a recent review.18

2 Methods

The simulation loop is shown in Fig. 1a The reinforcement
learning agent and the simulation interact by exchanging
information. In particular, the reinforcement learning system
controls the simulation by providing the activations for each
bin A. The simulation performs an update and provides the
reinforcement learning algorithm with the measurement ten-
sor M, which is additionally used to compute the rewards.
In this section, we will describe this process in more detail.
In particular, we describe the simulation engine in Section 2.1,
the reward function in Section 2.2, and the reinforcement
learning framework in Section 2.3.

2.1 Simulation and reinforcement learning environment

In this work, we will start by applying RL to a specific micro-
scopic model of active matter. In particular, we want to select a
sufficiently simple model to be amenable to RL while at the
same time being suitable to describe various problems central
to microscopic material transport and active matter. Micro-
scopic models are often drag-dominated35 and can be classified
into continuum theories10,11,15,36–40 and particle-based
models.1,41–43 While continuum theories are often preferred
due to their analytic properties, we chose a particle-based
model because they tend to be quicker to simulate small- and
medium-sized systems, and therefore more amenable to RL
requiring many simulations. In addition, since we are inter-
ested in general properties, a phenomenological model is
sufficient, and we used the simulation platform proposed by us
in ref. 1. It should be noted that our results will be generalized to a
larger array of models in Section 4.

Our model1 required only attractive interactions to describe
the existing experimental platform.14,15,44 However, this restric-
tion will turn out to limit mixing. Hence, an extended model is
introduced as follows: the system consists of Np particles in two
dimensions indexed by i, which can be in three states:
attractive-activated (pa

i = 1, pr
i = 0), repulsive-activated ( pa

i = 0,
pr

i = 1), or inactivated (pa
i = 0, pr

i = 0). Particles can be activated if
they were previously inactivated by being in the corresponding
activation area (which will form our control input) and deacti-
vate back to the inactivated state with a rate l. Activated
particles interact with other similar-activated particles by a
spring potential.‡ The system’s dynamics is described by the

Fig. 1 Sketch of the setup: in (a), we describe the temporal evolution of a
single simulation. In particular, we show how the two entities, the RL agent
and the simulation, shown by blue boxes, interact with each other by
passing information. In particular, the RL agent communicates to the
simulation which activation pattern A should be used in the next time-
step, and the simulation communicates the number of particles per tag
and bin back to the RL agent using the measurement tensor M. Addition-
ally, this tensor is used in the rewards calculation, to train the RL agents.
In (b), the initial condition is depicted with orange ‘‘left’’-tagged particles
and blue ‘‘right’’-tagged particles. In (c), a good solution that we would like
to achieve is depicted using the same color-coding. In (d), we demonstrate
the binning and color-code a possible activation pattern with attractive-
activation areas depicted in green, repulsive-activation areas in pink and
non-activating areas in white.

‡ I.e., attractive-activated particles only interact with other attractive-interacted
particles, and repulsive-activated particles only interact with other repulsive-
activated particles.
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equations of motion

~xiðtþ DtÞ ¼ ~xðtÞ þ Dt2

m
~Fi; (1a)

~Fi ¼ ~Fa
i þ ~Fr

i ; (1b)

~Fa
i ¼ �ri

k

2

X
jai

rc o j~xi�~xj joRc

pai p
a
j j~xi �~xj j2

2
664

3
775; (1c)

~Fr
i ¼ �ri

k

2

X
jai

rc o j~xi�~xj joRc

pri p
r
j ðj~xi �~xj j � RcÞ2

2
664

3
775; (1d)

where -
xi(t) is the position of particle i at time t, and

-

Fi is the
total force acting on it. The total force

-

Fi is split into attractive
and repulsive contributions, and at every times step, at least
one of them vanishes because at least one of pa

i and pr
i is 0.

It should be noted that the attractive and the repulsive force
incorporate the same spring constant k, lower truncation rc,
and upper truncation Rc, and differ only by their rest length
being 0 or Rc for the attractive and repulsive force, respectively.
It should be noted that eqn (1) describes drag-dominated
particles, because while these equations were derived from an
inertial description, the limit of infinitely strong drag was taken
to ensure numerical stability for large time-steps.1

Using this model of drag-dominated particle dynamics with
controllable pairwise spring interactions, we built an RL
environment using OpenAI gym.45 In particular, Np = 96 parti-
cles are initialized randomly in a box with periodic boundary
conditions, asserting an equal number of particles on the two
halves of the system (for future reference, tagged ‘‘left’’ and
‘‘right’’). The system is then integrated according to eqn (1)
with a time-step of Dt = 0.05 for Nt = 100 time-steps. A sketch of
the initial condition can be found in Fig. 1b, and an example of
a target state is depicted in Fig. 1c. The detailed simulation
parameters can be found in the ESI.† The observation and
control spaces are introduced by using an Ng � Ng = 4 � 4
square grid, as depicted in Fig. 1d. In particular, observations
are given to the algorithm by providing a separate count for
each tag (corresponding to the orange and blue colors in Fig. 1b
and c) and each bin. The system is controlled by associating
each square of the binning to either activation area or none at
all so that the action space at every time-step is 34�4 E43 � 106

dimensional if both interactions are included.§
It should be noted that the individual simulations are

relatively small at only 96 particles and a coarse binning in a
4 � 4 grid. We chose such small system sizes because the
individual simulations are run many thousands of times, and
as such, they need to run very quickly. Nevertheless, because
the scaling of an individual simulation is only O(Np

2), future
work could easily extend to larger particle numbers. In contrast,

due to the exponential scaling of the action space with grid
resolution, increasing the spatial resolution would slow down
learning, and possibly more advanced methods such as curri-
culum learning would need to be implemented to achieve fine-
grained control. However, the main result of this paper, namely
the necessity of two types of interactions, will continue to hold
independent of the number of particles or the grid resolution,
as we will show in Section 4.

2.2 Reward functions

To apply RL, we need to measure how well mixed a given state
is, i.e., we need to define a functional giving a configuration
as depicted in Fig. 1b a low score and one as in Fig. 1c a high
score. Various approaches could be taken to define such a
function: one could use variations of the continuous mix-
norm46–49 or an adversarial neural network approach to distin-
guish a well-mixed state from a segregated state. However, as
we will demonstrate in Section 4, the main results of our paper
will be unaffected by the choice of the reward function, and
hence, the compute-intensive reward functions can be replaced
by a simpler one. In particular, we use the measurement tensor
M, which describes the particle count with a specific tag
per bin. Hence, M has the indices (tag, x-bin, y-bin), where
tag A {l, r}, and x-bin and y-bin A {1, 2,. . .,Ng}. Then, we define
the mixing reward at a specific time-step as

tm ¼ �
1

Nm

XNg

x¼1

XNg

y¼1
Ml;xy �Mr;xy

� �22 �Ng
2

2
; 0

� �
; (2)

where we suppressed the time dependence exhibited of Mand
tm for easier notation. In eqn (2), the minus sign ensures that
the reward is larger for well-mixed states, and Nm = (Np/Ng)2 is
chosen so that the reward for the initial state is �1 on average.
It should be noted that the minimal value of tm is much smaller
than �1 and is attained if all ‘‘left’’ particles are in one bin and
all ‘‘right’’ particles in another.

Since only using eqn (2) will lead to degenerate solutions
that collapse all particles to dense clusters, we use an addi-
tional (time-step) homogeneity reward, constructed analo-
gously to eqn (2):

th ¼ �
1

Nh

XNg

x¼1

XNg

y¼1

Np

Ng
2
� Ml;xy þMr;xy

� �� �2
2 ½�1; 0�; (3)

but rather than comparing the particle counts per tag in each
bin, the homogeneity reward compares the number of particles
in each bin (Ml,ij + Mr,ij) to the average number of particles
Np

Ng
2

per bin. Here, Nh ¼ Np
2 1� 1

Ng
2

� �
so that the most

inhomogeneous solution, namely all particles in a single bin,
has a reward of �1. It should be noted that Nm and Nh

are chosen so that tm and th are �1 in the typical situation
they should avoid, namely the segregated initial state, and a
completely collapsed state, respectively. As such, using these
values of Nm and Nh provides a natural normalization.

§ If only one interaction type is included, the action space at every time-step is
24�4 E 65 � 103 dimensional.
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We introduce the episode rewards as the mean over the
time-step rewards for an entire episode:

<m ¼
1

Nt

XNt

t¼1
tðtÞm ; and <h ¼

1

Nt

XNt

t¼1
tðtÞh ; (4)

where here t(t)
m and t(t)

h are the time-step rewards at time t for
mixing and homogeneity, respectively. Finally, the two reward
contributions are combined to < ¼ a<m þ ð1� aÞ<h using the
parameter a A [0, 1] to tune between weighting more homo-
geneous or more mixed solutions continuously.

2.3 Reinforcement learning framework

Because the action space is large (34�4 E 43 � 106 for combined
interactions), conventional control theory techniques are intract-
able due to Bellman’s curse of dimensionality.50 Similarly, the
action space is also too large for value-based RL methods, so that
we use a policy-based algorithm. In particular, we use the rllib
implementation51 of Proximal Policy Optimization (PPO).52

In the RL agents, we use a neural network, which gets as
input the tensor M. The neural network itself then consists of
three convolutional layers (with 32, 64, and 256 channels, and
kernel sizes 3, 3, and 4, respectively), and a dense layer with
Ng � Ng output neurons. The simulation uses the value of these
output neurons to determine if a bin should be activated by
thresholding.

The hyperparameters for PPO were tuned automatically
during training using ray tune’s Population Based Training
(PBT)53 with 16 agents. Using PBT, unstable solutions could be
overcome, and we observed converged strategies in all training
situations. Additional hyperparameters required for PBT can be
found in the ESI.†

3 Results
3.1 Attractive interactions

Experimentally, a controllable active matter system with attrac-
tive interactions is already available,14,15,44 so this case is
analyzed first. In Fig. 2a, we show the average episode reward
of each of the 16 agents as a function of training time as a solid
line, with the minimal and maximal episode reward during the
batch providing an error band. It should be noted that while
the training resulted in some average increase in reward, the
span of rewards is still large. Additionally, we can also observe
that agents failing due to some instabilities, as seen by a sharp
drop in the reward, can recover due to using PBT. Therefore,
the data allows for qualitative analysis, but visual inspection
needs to confirm the quality of a strategy¶ in a specific
instance. In Fig. 2b, an exemplary time series for a converged
strategy is shown, where the emergent strategy collapses all
particles into a dense cluster. While this strategy is not a good

mixer in the common sense, the solution optimizes eqn (2).
In particular, if all particles collapse to a cluster in a single bin,
then this bin has a balanced number of ‘‘left’’ and ‘‘right’’, so
that for this cell Ml,ij = Mr,ij = Np/2, and the difference is 0.
All other cells are empty so that for these cells Ml,ij = Mr,ij = 0
again leading to a vanishing difference, and hence t = 0�th + 1�
tm = 0 is optimal.

To overcome the trivial ‘‘collapse all’’-solution, a can be
reduced so that homogeneity is weighted in. For the extreme
case of a = 0, where the algorithm optimizes for homogeneity
only, almost no particles were activated as the initial condition
already has a high homogeneity. We called this emerging
strategy ‘‘activate little’’, which also did not lead to homoge-
neous mixing. We analyzed the behavior for intermediate
values of a by performing additional simulations at 7 additional
values of a (to a total of 9), and we hand-labeled the last
validation video for each of the 16 PBT agents. It should be
noted, that hand-labeling produced interpretable strategies,
but that a quantitative analysis of the activation dynamics
(cf. Fig. S7 and S8, ESI†) shows that the activation patterns
can be roughly classified into groups consistent with our hand-
labeling procedure. The results of the emergent strategy com-
position are plotted as a function of a in Fig. 2c. There we can
observe that for intermediate values of a, we observed two
additional strategies. Firstly, for some simulations at 0 r a
o 0.5, a ‘‘collapse some’’-strategy emerged, which focuses on
collecting dense particle clusters of opposite tags to remedy the
worst bins, but leaves most of the other parts of the system
inactivated. Secondly, for various values of a, we observed a
‘‘collapse all, careful’’-strategy similar to the ‘‘collapse all’’-
strategy in that it tries to collect all particles into a single bin.
However, it does so over longer periods of time (typically taking
more than half of the simulation time) in order to avoid

Fig. 2 Training with only attractive interactions achieves only collapsed
clusters: In (a), the mean episode reward of the 16 agents training at a = 1 is
shown in solid lines, with minimal and maximal episode rewards as an error
band. It can be observed that while training converged, reward variations
were still substantial, and several dips in reward were recovered using PBT.
In (b), an exemplary time series for only mixing-focused training (a = 1) is
shown, in which a collapse of the particle density can be observed. The
panels are enumerated from 1 to 4, corresponding to the time-steps 0, 20,
40, and 60, respectively. (A curated list of time series for all attractive-
interaction strategies can be found in Fig. S4, ESI†). In (c), the composition
of emergent strategies at various values of a is shown, where all the
intermediate emergent strategies are taking over continuously. However,
no emergent strategy displays a homogeneous mixing.

¶ It should be noted that we define a strategy to summarize all actions of an agent
throughout an entire simulation. In contrast, one could consider motifs, i.e.,
actions an agent performs during a short time period. However, most strategies
observed in this paper can be described by a single motif which is used
continuously, or at most two that alternate.
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intermediate dense clusters, particularly if these dense clusters
are of a single color. As an additional feature of this strategy,
due to giving the system longer times to react, the ‘‘collapse all,
careful’’-strategy tends to be more thorough in collapsing all
particles in a single bin compared to the ‘‘collapse all’’-strategy,
that mainly focuses on speed. While the exact details, i.e.,
which strategy emerges for which value of a, will depend on a
variety of factors such as the number of bins Ng � Ng, the initial
condition, and the subjective assessment during the hand-
labeling (cf. ESI† Section SC), we can observe two main results:
firstly, the strategies continuously transform from one to
another by tuning a. Secondly, none of the observed strategies
achieves a homogeneous mixed state.

Therefore, using only attractive interactions, no strategy
emerged that provides a solution similar to our target, as
depicted in Fig. 1c, even when varying a. Indeed, we will show
in Section 4 that no reward-shaping could overcome this
problem, as attractive interactions are insufficient to arrive at
a homogeneous and mixed state.

3.2 Repulsive interactions

While not yet implemented in the experimental platform, a
repulsive–interactions system could be engineered by introdu-
cing another motor protein type. Using repulsive interactions
only, a more homogeneous mixing strategy exists than in the
attractive-only case: a typical time series for the mixing focused
a = 1 case is shown in Fig. 3a, where we observe that the
emergent strategy is the ‘‘activate one side’’-strategy. For Ng = 4
and with periodic boundary conditions, every bin is a boundary
bin between the two sides of the initial configuration. As such,
every particle expelled from one side enters the other without
contracting to a cluster. Two features of this mixing solution
should be highlighted: first, this strategy again maximizes <m

by reducing the homogeneity of the system. Second, mixing is
only facilitated by exploiting the boundary conditions.

For a = 0, i.e., maximizing the homogeneity of the system,
the network uses repulsive interactions in more densely popu-
lated bins to achieve homogenization beyond the initial condi-
tion (‘‘repulsive spreading’’-strategy). However, as becomes
clear from Fig. 3b, this spreading strategy only emerges very
close to a = 0 and is quickly overtaken by the ‘‘activate one side’’
strategy (cf. Fig. S7 and S8, ESI†). Indeed, the homogeneity
reward strongly punishes dense clusters as emergent in the
‘‘collapse all’’-strategy but only weakly punishes a situation
where only half of the cells become empty. Hence, the ‘‘activate
one side’’-strategy is dominant over large parts of the a-parameter-
space. While the ‘‘activate one side’’-strategy achieves some mixing
with the repulsive-only interactions, the strategy is not tunable,
and it heavily relies on the periodic boundary conditions. Indeed,
we will demonstrate in Section 4 that phase-space-limiting bound-
ary conditions (such as periodic boundary conditions) are required
to facilitate mixing with repulsive interactions only.

3.3 Combined interactions

In contrast to the previous cases, using both interaction types,
we will achieve a tunable mixing strategy that can achieve both
homogeneity and mixing without exploiting the boundary con-
ditions. Starting with the a = 1 case, we observe the ‘‘collapse
all’’-strategy emerging once more. However, already for a = 1,
the network sometimes uses repulsive interactions to spread
dense particle clusters, only to attract them again. Because this
cycle typically occurs multiple times, we call these strategies
oscillatory, and they emerge in different flavors. For large a, the
emergent strategy still collapses particles to a dense cluster (see
Fig. 4a) in a strategy we term ‘‘oscillation w/collapse’’. For
smaller a, the strategies still use oscillations but avoid very
dense clusters in a strategy we call ‘‘oscillations w/o collapse’’,
depicted in Fig. 4b. Finally, for a = 0, the RL algorithm finds an
‘‘attractive-repulsive spreading’’-strategy which homogenizes
the system using both interaction types to spread dense cells
and collapse in less populated cells.

Overall, an interesting strategy evolution as a function of
a emerges using both interactions, as shown in Fig. 4c.
In particular, a smooth transition from one strategy to the next
can be observed (maybe with exception to the ‘‘attractive-
repulsive spreading’’-strategy), and various intermediate strate-
gies produce well-mixed states without relying on boundary
conditions. It should be noted that the actual emergent strate-
gies depend on various factors and are to a degree subjective
due to the hand-labeling procedure. Indeed, both oscillatory
strategies and the ‘‘collapse all’’-strategy are similar (cf. the
more quantitative analysis presented in Fig. S7 and S8, ESI†),
and their differences are can mainly be attributed to when a
spread of a dense cluster occurs. As such, this classification
relies on the hand-labeling procedure to correlate the particle
configuration with the activation pattern. However, we can
observe some general features: namely, the strategy evolution
is mostly continuous, and the existence of a homogeneous
mixing strategy seemed to depend mainly on the interaction
set. This result is surprising as attractive or repulsive inter-
actions alone are insufficient to produce efficient mixing, but

Fig. 3 Training with repulsive interactions has a dominant strategy using
the periodic boundary conditions to achieve mixing: in (a), an exemplary
time series for only mixing-focused training (a = 1) is shown, in which
activation of one side of the system can be observed, using the periodic
boundary conditions to facilitate mixing. (A curated list of time series of all
repulsive-interaction strategies can be found in Fig. S5, ESI†). In (b), the
different emergent strategies are shown, demonstrating that the ‘‘activate
one side’’-strategy is dominant over most of the a-parameter space.
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the combination of both is sufficient. We can now analyze the
success-failure pattern of RL to find efficient strategies using
dynamical systems theory to analyze the problem more closely.
Doing so will reveal that the necessity of combined interactions
is not a specific feature of the model in eqn (1) but a much
more general statement about different models.

4 Theoretical analysis

In the numerical results presented in Section 3, we observed
that only the combination of attractive and repulsive inter-
actions led to homogeneously mixed states and that tweaking
the reward function did not find a suitable solution for
restricted interaction sets. While these results are limited in
their applicability to the model described by eqn (1), here, we
will demonstrate how these results can be generalized using
dynamical system theory and ergodic theory. Indeed, mixing is
studied mathematically as a subdiscipline of ergodic theory,
where (weak) mixing is a stronger form of ergodicity, i.e.,
ergodicity is a necessary but not sufficient condition for mixing
(see textbooks54–56). In particular, we will use that if a map is
an Anosov diffeomorphism, it will induce (weak) mixing,34,57 to
show that homogeneous mixing in drag-dominated translational-
invariant particle systems can only occur in systems with attractive
and repulsive interactions.

We start by reconsidering the model in eqn (1). Without
truncating the sums, the equations of motion are

~xiðtþ DtÞ ¼ ~xiðtÞ �
kpiDt2

m

X
iaj

pi¼1¼pj

j~dijðtÞj � r0

j~dijðtÞj
~dijðtÞ; (5)

where r0 = 0 in the case of attractive interactions, and r0 = Rc for
repulsive interactions. Here, the difference vector is abbreviated as
-

dij(t) = -
xi(t) �

-
xj(t). Hence, the updates without periodic boundary

conditions can be written as a matrix-vector multiplication:
-

X(t + Dt) = M
-

X(t), where -
x A R2Np is the collection of all particle

positions. It should be noted that M depends on which particles

are activated (hence making it time-dependent), and on
-

X (making
the update non-linear). However, both dependencies are small

since M½~X ; t� ¼ 1þ Dt2 ~M½~X ; t�, where Dt { 1, and M̃ describes
the particle–particle interactions.

The long-term evolution of the system can be analyzed by
considering the eigenvalues li of M at every time-step. Namely,
ergodicity (and therefore mixing) requires the update to be
measure-preserving in phase space,56 meaning that the deter-
minant det M =

Q
ili has to be 1. Suppose the update map M is

sufficiently (namely C2) differentiable, has eigenvalues smaller
and larger than 1, but maintains a determinant of 1. Then,
the map is so-called Anosov, is guaranteed to mix the
phase space (i.e., the 2 � Np-dimensional space),34,57 and as
such it is expected to mix the projection in the 2-dimensional
real space.

Therefore, if we understand the spectrum of M (i.e., the set
of all eigenvalues), strong statements about mixing can be
achieved. The update matrix M can be expressed as

M ¼

1�
P
j

c1j c12 . . . c1Na

c21
. .

. . .
. ..

.

..

. . .
. . .

.
cNa�1;Na

cNa1 . . . cNa;Na�1 1�
P
j

cNaj ;

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (6a)

where

cij ¼
kDt2

m
pai p

a
j

~dijðtÞ
��� ���� 0

~dijðtÞ
��� ���|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼14 0

þpri prj
j~dijðtÞj � Rc

j~dijðtÞj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
o 0

2
666664

3
777775w rc o ~dij

��� ���oRc

h i
;

(6b)

for i a j, with the characteristic function w rc o j~dij joRc

h i
¼ 1

if the condition in the brackets is met and 0 otherwise,
ensuring that only particles in the interaction range interact.
While eqn (6b) is specific to the force model described by
eqn (1), it should be noted that the form of M shown in eqn (6a)
is quite general. Namely, M having a row sum 1 and small
off-diagonal elements will generally arise for particle-based
drag-dominated translational-invariant systems.35 Indeed,
only the general form of M shown in eqn (6a) is required to
derive the necessary results about the spectrum, and
hence all the following results are valid for a large class of
models.

Fig. 4 Training on a system with both interactions achieves homoge-
neous mixing by alternating attractive and repulsive interactions: in (a and
b), two exemplary time series for oscillation strategies are shown, with and
without collapse, respectively. (A curated list of time series for all
combined-interaction strategies can be found in Fig. S6, ESI†). In (c), the
fraction of runs with a particular strategy at various values of a is shown,
with various emergent strategies continuously transforming into each
other.
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Because M is symmetric, all eigenvalues are real.8 Because of
Gershgorin’s circle theorem58, the spectrum of M

lðMÞ �
[
i

1�
X
jai

cij �
X
jai

jcij j; 1�
X
jai

cij þ
X
jai

jcij j
" #

: (7)

Using eqn (7) for attractive interactions where cij Z 0:

lðMÞ � 1� 2maxi
P
jai

cij ; 1

" #
so that the largest possible eigen-

value is 1, while all other eigenvalues are less than 1. Therefore,
det M r 1 and iterating M on any initial vector will either
collapse the phase space direction (associated eigenvalue l o
1) or leave it invariant (associated eigenvalue l = 1). Hence, with
only attractive interactions, the system will only be able to
collapse, never leading to homogeneous mixing.

Analogously, for repulsive interactions, where cij r 0,

lðMÞ � 1; 1þ 2maxi
P
jai

jcij j
" #

so that all eigenvalues are larger

or equal to 1, and det M Z 1. Therefore, without phase-space-
limiting boundary conditions, the phase space is expanding,
never leading to homogeneous mixing. However, with periodic
boundary conditions, phase space is limited and can be folded
into itself. Thus, the successful mixing with only repulsive
interactions presented in Section 3.2 was only possible due to
the periodic boundary conditions.

Finally, for attractive and repulsive interactions, the off-
diagonal elements are around 0 but can have either sign** so
that the eigenvalues of M lie around 1 (more precisely

lðMÞ � 1� 2maxi
P
jai

jcij j; 1þ 2maxi
P
jai

jcij j
" #

). While it is not

guaranteed that the determinant will be 1, the updates now can
induce hyperbolic dynamics, i.e., phase space stretching in
some directions and compressing in others, bringing the
dynamics closer to an Anosov diffeomorphism, hence being
able to induce mixing in agreement with our successful mixing
simulations in Section 3.3. Furthermore, our results indicate
that in order to optimize mixing, the determinant should be
close to 1. This optimal mixing could be achieved in future
work by tuning a dynamically during training by monitoring
the average determinant.

The results on the eigenvalue spectra can be verified numeri-

cally: additional simulations at a ¼ 1

2
were performed for all

three interaction cases. We analyzed the update matrices of the
last validation runs for each of the agents at every time point of
the simulation and plotted their eigenvalue frequency as histo-
grams in Fig. 5. Indeed, we observe the bounded spectra for
limited interaction sets while the system with combined inter-
actions exhibits a more balanced eigenvalue spectrum. While
the spectrum for combined interactions in Fig. 5c is not entirely

balanced around 1, and the determinant is larger than 1, the
matrix is closer to describe an Anosov diffeomorphism and can
describe one if necessary. In particular, the oscillatory strate-
gies discussed in Section 3.3 alternate attractive and repulsive
interactions to achieve eigenvalues larger and smaller than 1
over multiple time-steps (cf. Fig. S9, ESI†). In conclusion, we
indeed observe the predicted eigenvalue spectra throughout all
simulations, clearly demonstrating why limited interaction sets
cannot provide mixing, whereas the combined interaction
set can.

5 Conclusion

This paper analyzed a challenging control problem arising for
active matter components, where control cannot be exerted
over individual agents or particles but merely over their pair-
wise interaction. In particular, we attempted to find efficient
microscopic mixing strategies for active particles using policy-
based RL, where we observed that RL only finds efficient mixing
strategies for models with combined attractive and repulsive
interactions but not for those with only one type of interaction.
This peculiar success/failure pattern was then analyzed using
dynamical systems theory, particularly theory to hyperbolic
dynamics, on the update matrix M to prove that both types of
interactions are required to induce mixing in arbitrary drag-
dominated translational-invariant particle models. Finally, the
mathematical results on M were confirmed in additional train-
ing runs, demonstrating why RL could only solve the problem
with both interaction types.

The results of this paper suggest further work in two areas:
first, our results could be transferred to the experimental
system14,15,43 to verify that mixing of active particles can induce

Fig. 5 Histogram of the eigenvalue spectra of M for the case of only
attractive, only repulsive, and combined interaction sets in (a) to (c),
respectively. It can be observed that the spectra in (a) and (b) are bounded,
whereas the spectrum for combined interactions does not exhibit such a
limitation.

8 For non-symmetric matrices, the argument would be analogous, limiting the
discussion to the absolute value of the eigenvalue.
** Per row, each off-diagonal will have the same sign, as only the same activation
states interact with each other. However, due to the possibility of changing the
interaction state, the same row can have an opposite sign at different times.
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mixing in the surrounding medium via fluid–matter interactions.
While the experimental platform is not yet ready, since it lacks an
additional repulsive light-controllable motor protein, our paper
provides a clear and feasible guideline for necessary developments
to the platform to enable active–matter-based mixing. As such, we
hope to provide the necessary motivation for the field to develop a
dual-controlled active–matter system.

Second, the strategies we found should be further refined for
actual applications. While some computational effort could be
saved by tuning a dynamically to match a unit determinant,
future simulations should use a higher grid resolution, a larger
number of particles, better boundary conditions, and more
realistic particle–particle interactions to produce realistic stra-
tegies. While such refined simulations are highly interesting,
their computational demand will undoubtedly be more exten-
sive, so that we expect more advanced machine learning
approaches such as transfer learning or curriculum learning
to be necessary. Nevertheless, we are confident that our work
paves the way for future applications of RL to this area of study,
namely control of complex interaction-dominated active matter
systems.
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