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Colloidal membranes of chiral rod-like particles

Anja Kuhnhold, * Nils Göth and Nadja Helmer

We study colloidal (or smectic) membranes composed of chiral rod-like particles through Monte Carlo

simulations. These objects are formed due to the presence of Asakura-Oosawa spheres acting as

depletants and creating an effective attraction between the rods. The membranes’ shape and structure

can be influenced by several parameters, e.g. the number of spheres and rods, their length and their

interaction. In order to compare simulation results to an elastic theory, we follow two ansatzes,

approximating the free elastic energy in different ways. Both of them lead to reasonable results and

capture the behaviour of the colloidal membrane system. One approximation, however, is not suited for

achiral rods, where twisting occurs due to surface energy rather than elastic energy. We extract the

inverse cholesteric pitch and twist penetration depth for chiral rods with this approximation. The other

one is used to introduce a complementary method to estimate elastic constants from the shape of

colloidal membranes. Besides, we describe the transition from homogeneously twisted membranes to

membranes composed of substructures that occur when the chiral interaction exceeds a length-

dependent threshold. We believe that our detailed study and discussion of different aspects of this

model system are valuable from a fundamental research viewpoint and suitable for material design

suggestions.

1 Introduction

Anisotropic particles are the basis of phases of matter beyond
isotropic or crystalline: the orientational degrees of freedom
allow for intermediate liquid-crystalline phases with different
levels of symmetry. Such liquid crystals (LCs) have been subject
to research for more than a century,1 and sustained studies of
LC systems led to applications like liquid crystalline displays
(LCDs) or optical sensors and usage in cosmetics and fashion.2

Even simple hard rod models that can be treated theoretically
via standard approximations or computer simulations show a
rich phase behaviour. On the experimental side, pertinent
counterparts of such hard rod models are viruses.3,4 They are
monodisperse by nature, and it is possible to tune their spatial
dimensions and their interparticle interaction potential (e.g. by
inducing mutations and coating the viruses with specific
proteins). A speciality of the pair interaction between viruses is
that it is chiral, which leads to a chiral nematic (or cholesteric)
LC phase, where the orientation of the viruses (or the mesogens
in general) rotates in space. However, not only the bulk phases
are of interest; the present work was inspired by the various
objects that arise from mixtures of viruses and polymers or
colloids: tactoids (nematic droplets), 2d membranes, 1d
ribbons and hexagonal crystalline platelets, to name a few.5–7

The polymers/colloids act as depleting agents and drive the
assembly of the viruses into such finite objects. We encourage
the reader to have a look into ref. 5, where one gets an excellent
impression of these objects. The possibility to tune the
hierarchical self-assembly of this system on several levels
(individual viruses, pair interaction, collective behaviour)
makes it a perfect model for research of new functional materials.

The experimental findings are complemented by theoretical
models and simulations that combine the insights and
enhance this model’s value. With our paper, we will add a
further piece to that by performing and analysing extensive
Monte Carlo simulations and by comparing the results to
theoretical predictions. As a target object, we chose a colloidal
membrane, i.e. a one-layer thick assembly of rods with a finite
size and an almost circular shape. An example snapshot of a
colloidal membrane is shown in Fig. 1. The rods do, in general,
not point in the same direction but show some twist towards
the edge to minimise the system free energy (details are
discussed below). From a theoretical point of view, there are,
for example, studies regarding the equation of state of colloidal
membranes,9,10 the effective interaction between two of those
membranes,11 and their coalescence.12,13 Further examples are
the line tension of the membrane edge,14 the phase separation
and raft formation in membranes composed of two
species,15–21 and the twist angle profile that minimises the free
energy.14,22 The latter will be discussed here as one of the main
points. In other studies with a similar simulation model but a
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different research focus, colloidal membranes often span the
simulation box in two dimensions and rods have constraints on
the orientational degrees of freedom.23,24 Here, we explicitly
include the membrane’s boundary in our particle-based
simulations and allow for arbitrary rod orientations.

Approximations of the free energy of liquid crystalline
systems are usually based on a continuum description using
the Frank elastic energy. This includes different types of
deformations of the nematic director field, which describes
the LC mesogens’ local orientation. Typically, one considers
splay, twist and bend deformations that contribute to the
elastic energy with weights given by the respective Frank elastic
constant. However, details of the approaches vary from one-
constant approximation to microscopic derivation of elastic
constants, and there are also differences in the inclusion or
neglect of further terms. We will use two versions of an
approximation of the free energy: (1) using microscopic
expressions for elastic constants and an effective 2d description
(with fixed membrane radius), based on ref. 22. (2) A 3d descrip-
tion (with fixed membrane volume) similar to that introduced for
tactoids (nematic droplets) in ref. 25, and parametric elastic
constants. We do not judge which one is better, as this depends
on the question at hand. However, we show how they can be
applied to the colloidal membrane systems and offer a guide for
studies on similar systems, including experimental ones.

A homogeneously twisted membrane can also be regarded
as a single layer of a so-called double-twist cylinder.26 Double
twist refers to having two axes around which the local orientation
of particles (the director) rotates, in contrast to a single axis in a
perfect cholesteric (or chiral nematic) phase. In a bulk system,
double-twist cylinders (DTCs) cannot fill space so that defects
arise naturally. The corresponding bulk phase is called blue
phase, and there are several distinctions that depend on the
arrangement of the DTCs. Recently, two-dimensional blue
phases were found in experiment27 and simulation.28 In this
phase, the DTCs are arranged in a hexagonal lattice, and the
director in each DTC twists by p/2 from the centre to the edge
(half-skyrmion structure). Continuum simulation also showed

that the 2d blue phase could be preserved in confinement.28

We utilise particle-based simulations of a model chiral liquid
crystal that lead to similar structures and complement the
previous insights.

The paper is structured as follows. First, we explain the
model and the simulations that we employ in Section 2. Then
in Section 3, we discuss two versions of an approximate theory
of the system’s free energy. Afterwards, we describe and examine
the simulation results, Section 4.1. We compare the simulation
results to the first version of the theory in Section 4.2. The
different terms that contribute to the free energy approximated
by the second version are discussed in Section 4.3. In Section 4.4,
we demonstrate how to estimate elastic constants from a
comparison between simulation and theoretical results. In the
last part, Section 4.5, we present the transition from homo-
geneous to substructured membranes. Finally, the conclusion is
provided in Section 5.

2 Model and simulations

We employ particle-based Monte Carlo simulations to study the
properties of colloidal membranes. The rod-like particles are
modelled as spherocylinders with diameter D and length L.
These rods are not allowed to overlap (hard-core repulsion) and
have a distance- and orientation-dependent pair interaction
based on Goossens’ potential:29

UGð~rij ; m̂i; m̂jÞ ¼ �e
m̂i � m̂j

� �
rij=D
� �7 m̂i � m̂j

� �
� r̂ij

� �
; (1)

where e is the chiral strength (or chirality) of the interaction, m̂i

is the unit vector along the long axis of particle i and -
rij = rijr̂ij is

the distance vector between the particles’ centres of mass.
With this, the preferred angle between two rods is p/4. This
model has already been studied concerning its bulk properties.
It forms a cholesteric phase, with the inverse pitch being
proportional to the chiral strength.30

Additionally, we add spherical particles that act as
depletants to the rods and keep them assembled. They are
modelled as Asakura-Oosawa spheres, i.e. they do not interact
with each other, but they have a hard core repulsion with the
rods (no overlap allowed). The sphere diameter was chosen to
be twice that of the rods so that the number of spheres
necessary to confine the rods is small enough to limit the
computational cost but large enough to allow treating them as a
pressure bath.

We apply Metropolis Monte Carlo (MC) simulations using
an implicit depletants scheme for placing the spheres,31 that
results in an NmDVT ensemble, with the number of rods N, the
simulation box volume V, the temperature T, and the chemical
potential of the depletants mD. In short, this means the spheres
are no actual objects that are saved during the run, but they are
put randomly around the rods for each rod move. If there is an
overlap between the put sphere and the rod that was moved,
and at the same time, there is no overlap between the sphere
and the rod in its old position or any neighbouring rod, the

Fig. 1 Top (left) and side (right) view of a simulated colloidal membrane.
The snapshot was rendered using POV-Ray8 and the colour codes
the orientation of the rod-like particles. System parameters are N =
4900, c = 20, e = 15 kBT.
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move of the rod is rejected. If none of the spheres overlaps only
with the rod that was moved, the Metropolis acceptance criterion
is used to decide about accepting or rejecting the move finally: if
the potential energy difference of the system in the new and old
state DU = Unew� Uold o 0 the move is accepted, otherwise it will
be rejected with a probability of 1 � exp(�DU/kBT). Here, kB is
the Boltzmann constant, T is the absolute temperature, and kBT
is used as the unit of energy. If the rods are achiral (e = 0 kBT),
only rod-rod and rod-sphere overlaps are checked. In practice,
instead of their chemical potential mD, the depletants are char-
acterised by their average number density rD. The simulation
box does have a fixed volume and periodic boundary conditions;
however, due to the implicit depletants, the actual volume does
not play a role as long as it is large enough to have the
membrane not interacting with itself through any boundary.

In the initial setup, all rods point in the same direction, say z,
their centres are fixed to a plane, which here corresponds to
z = 0, and they are arranged in circular layers or on a hexagonal
lattice. Then they are relaxed to adopt their equilibrium state.
To achieve this, we randomly apply single-particle moves:
translations within the chosen plane and rotations around arbi-
trary axes. During the equilibration, the maximum displacement
and angle of rotation are adjusted to have an acceptance rate of
0.5. The equilibration takes at least several 105 MC sweeps
(in one sweep, each rod has been tried to be moved once on
average), but this strongly depends on the parameters and
number of rods. A system is equilibrated when averaged
quantities like nematic order parameter, system energy,
membrane radius, and twist angle profile do not change
anymore, apart from small fluctuations. Configurations of
relaxed systems are also used as a starting point for simulations
with other sets of parameters.

3 Theory

To study the behaviour of liquid crystalline systems from a
theoretical point of view, one commonly tries to compute the
systems’ free energy. For these systems, the main contributions
to the free energy originate from deformations of the director
field. These contributions can be described by the Frank elastic
energy, which for a bulk chiral nematic phase is:32

Fel ¼
1

2

ð
V

K11
~r �~nð~rÞ
� �2�

þ K22 ~nð~rÞ � ~r�~nð~rÞ þ q0

� �2

þK33 ~nð~rÞ � ~r�~nð~rÞ
� �2	

d~r;

(2)

where K11, K22 and K33 denote the Frank elastic constants for splay,
twist and bend deformations, respectively, -n(-r) is the nematic
director field, and q0 is the inverse cholesteric pitch, which is the
length that corresponds to a full rotation of the nematic director.

In the following, we describe two ways of using the Frank
elastic energy to approximate the free energy of the (finite)
colloidal membranes studied in this paper.

3.1 Version I

One of the general theoretical attempts to describe colloidal
(smectic) membranes is based on the microscopic expression of
the free energy of a non-uniform director field introduced by
Onsager and Straley.33 For details, we refer the reader to the
original publication, ref. 22, and only mention the main
ingredients here. The director field is parameterised in cylind-
rical coordinates, and only small gradients in any direction are
considered (linearisation). The elastic constants then arise as
orientational averages, including second-virial integrals. These
are finally evaluated using a Gaussian approximation.

The microscopic expressions are then used in the continuum
expression for the free energy of a colloidal membrane. By
assuming circular symmetry and negligible splay (zero radial
component of the long axes of the rods), the director field may
be represented by the twist angle profile j(r) that only depends
on the distance from the membrane centre:

-
n(-r) = cos(j(r))êz + sin(j(r))êf(-r)

The final approximation of the free energy reads:

F1 ¼ 2p
ðR
0

r ~K22 j0ðrÞ þ sin 2jðrÞ
2r

þ q0


 �2
"

þ ~K33
ðsinjðrÞÞ4

r2
þ

~K22

lt2
ðsinjðrÞÞ2

	
dr;

(3)

with

~K22 ¼
r0‘

2

12
D2kBT ; (4)

~K33 ¼
~K22

4
; (5)

lt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
~K22=a

q
; (6)

with a being a quantity related to the osmotic pressure of the
depletants, c = L/D the rod aspect ratio and r0 the 2d number
density of rods within the membrane.

The approximated free energy F1 is then minimised with
respect to the twist angle profile, j(r), keeping the radius fixed.
Results for different membrane radii R, penetration depths lt,
and inverse cholesteric pitches q0, can be found in ref. 22,
where the minimisation was done with a simulated annealing
method and a discretised twist angle profile.

3.2 Version II

The second attempt takes the membrane as a 3d object with an
explicit surface, similar to the treatment of tactoids in ref. 25 or
membranes in the one-constant approximation in ref. 14. I.e. the
free energy terms include the local height of the membrane,
Lcosj(r), the surface area (cover surface Sc and lateral surface Sc),
and an anchoring strength w accounting for effects due to the
anisotropy of the particles. The action of the depletants is trans-
lated to a surface tension t, and the associated surface energy is
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given by:

FS ¼ t
ð
S

1þ w ~qð~rÞ �~nð~rÞð Þ2
� �

dS;

where -
q(-r) denotes the surface normal at position -

r. In addition,
also the saddle-splay contribution F24 is included, which is related
to director field deformations at the surface that are usually
neglected in bulk systems,

F24 ¼ �
1

2

ð
V

ðK22 þ K24Þ~r � ~nð~rÞ � ~r�~nð~rÞ
� �

d~r;

with K22 + K24 the corresponding (constant) proportionality factor.
Since the membrane is a single layer of rods with centres

fixed to a plane, the surface is given by the local height, which is
defined by the twist angle profile, h(-r) = Lcosj(-r). The local
height is also used to calculate the surface normal -

q(-r).
Assuming circular symmetry again, the resulting approxi-
mation of the free energy reads:

F2 ¼
ðR
0

prL cosjðrÞ K22 j0ðrÞ þ sin 2jðrÞ
2r

þ q0


 �2
"

þK33
ðsinjðrÞÞ4

r2
þ ðK22 þ K24Þ2

j0ðrÞ
r

sinjðrÞ cosjðrÞ
	
dr

þ
ðR
0

4ptr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Lj0ðrÞ sinjðrÞ=2ð Þ2

q�

þw ðcosjðrÞÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Lj0ðrÞ sinjðrÞ=2ð Þ2

p
#
drþ 4ptLR cosjðRÞ

(7)

= :K22F22 + K33F33 + (K22 + K24)F24 + tSc + twSw + tSc. (8)

The elastic constants K22 and K33 are different from those in
the first attempt, where the system is treated as an effective two-
dimensional one. The approximated free energy F2 will be
minimised for a given set of the constants (Kij, t, w) by varying
parameters of an explicit form of the twist angle profile j(r). We
minimise F2 under the assumption of a constant membrane
volume. Strictly speaking, the pressure is constant and given by
the density of the depletant gas so that the volume fluctuates
about its average value. However, the constant volume assumption
is sufficient for our purposes because we will compare with
averaged simulation results, and the average volume is constant.
F2 is computed using numerical integration routines of
Mathematica.

In this paper, we use version II to extract the Frank elastic
constants by comparing theoretical and simulated twist angle
profiles. And we use version I to determine the inverse cholesteric
pitch and the twist penetration depth, likewise by comparing
theoretical and simulation results.

4 Results
4.1 Simulation results

The parameters that were varied in this Monte Carlo simulation
study are the rod aspect ratio c = L/D, the number of rods N, the

number density of Asakura-Oosawa (AO) spheres rD, and the
chiral strength e.

An important quantity to measure is the twist angle profile
j(r). It describes the angle between the membrane normal and
the average nematic director at a distance r from the membrane’s
centre. Most of the twist angle profiles can be described by three
parameters: the radius of the membrane, R, the twist angle at the
rim of the membrane, j0, and an exponent a that determines the
slope of the profile at the rim. So we take the functional form to be:

jðrÞ ¼ j0

r

R

� �a
; (9)

and fit this to the measured profiles to get j0 and a.
To calculate the twist angle profile from the simulated

configurations, we need the local nematic director -n(-r). The
nematic director of a collection of uniaxial particles is the
eigenvector that belongs to the largest eigenvalue of the ordering
tensor Qij:

Qij ¼
1

Nc

XNc

k¼1

1

2
3m̂i

km̂
j
k � dij

� �
;

where i,j A {1,2,3}, m̂k is the unit vector along the axis of particle
k, and Nc is the number of particles. The largest eigenvalue itself
is the nematic order parameter S2. In bulk, S2 is close to 1 for a
nematic phase and 0 for an isotropic phase. For the finite-sized
membranes, it will be close to 1 if the membrane is untwisted
and smaller than one if there is a double-twist. If the twist
happens only close to the rim (curved twist angle profile), S2 will
be larger compared to the case of a homogeneously twisted
membrane (linear profile). Exemplary twist angle profiles are
shown in Fig. 6 in Section 4.2, where the comparison to
theoretical predictions is discussed.

To finally be able to fit eqn (9) to the simulation results and
to calculate the two-dimensional number density of rods in the
membrane, r0 = N/(pR2), we need to define the radius R.
Because the membranes are not perfectly circular and the
rod-depletant interface is not sharp, we employ the following
procedure. We measure the radial number density profile
rr(d) = Np(d)/Vr(d), where d is the binned radial in-plane
coordinate with respect to the membrane’s centre of mass.
Vr(d) is the volume of a thin cylindrical ring with radii d � Dd/2
and d + Dd/2; both bin width and height of the cylindrical ring
are set to Dd = 0.1D. The quantity Np(d) represents the reduced
number of segments with distance in [d � Dd/2, d + Dd/2) from
the membrane’s centre. We introduce this quantity to account
for the occupied space of the whole rods and not only of their
centres of mass (keep in mind that an upright and a lying rod
look the same when only the centre of mass is considered).
Therefore the rods are divided into L/D + 1 segments of equal
width. The reduced number of segments in a bin is the actual
number of segments divided by L/D + 1 to assure the correct
scaling of the number density. We fit the rod-depletant inter-
face to a hyperbolic tangent t(d) = a(tanh(c(b � d)) + 1), with fit
parameters a, b and c, and use this to find the equal-mass
point by numerical integration in cylindrical coordinates.
Equal-mass means that the amount of material missing on
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the material-rich side equals the surplus material on the
material-poor side compared to a sharp interface. I.e. we solveðR

0

dd dð2a� tðdÞÞ¼!
ð1
R

dd d tðdÞ

for R, which is used as the membrane radius. The numerical
integration is done using Mathematica.

We focus on liquid-like membranes that show a homogeneous
double twist, as, for example, seen in Fig. 1. To achieve this, one
has to set the depletant concentration in a suitable range. Stable
membranes exist when a demixing of the binary system (hard
rods and AO spheres) minimises the system’s free energy. If the
number density of depletants is very low, the system starts to mix,
and the membrane falls apart (unstable region). On the other end,
when the depletant density is very high, the system undergoes an
ordering transition, finally resulting in a hexagonal platelet of
parallel rods. This transition is also found in experimental
systems composed of fd viruses and Dextran as nonabsorbing
depleting agent.9 A discussion about the intermediate states
found in our simulations is given in the Appendix A.1. For the
main text, we take depletant concentrations that result in liquid-
like membranes. We choose two example sets of simulations to
examine further details; one with a fixed number of rods and
varying depletant densities and one with a fixed depletant density
and a varying number of rods.

4.1.1 Example I: c = 20, N = 2209. We begin by considering
the achiral case, e = 0 kBT. The two-dimensional number density of
rods (short: rod density) in the membrane, r0 = N/(pR2), can be
tuned over a wide range (E0.3–0.7D�2) by adapting the depletant
density, as can be seen in Fig. 2(a). As the rod density increases, the
edge twist angle decreases, i.e., the membranes appear less twisted,
cf. Fig. 3(a), which comes from the incommensurability of dense
packing and tilting of rods. The simulation with the lowest deple-
tant density deviates from this trend. At this point, we are close to
the limit of stability before the membranes fall apart. Also, the
curvature parameter a is smaller than 1 in that case (Fig. 3(b)),
resulting from a negative curvature of the twist angle profile. It is not
within the scope of this paper to study the dissolution of mem-
branes, so we did not investigate the low rD limit in more detail.
Due to the decreasing twist, the nematic order parameter
increases with increasing depletant density (curve with e = 0 kBT
in Fig. 2(b)). Thus, it is easy to change the density of colloidal
membranes for practical purposes and, with that, also their
stiffness and internal structure by adding more or less depleting
agents. Similar effects can be expected by changing the strength of
the depletant interaction due to variable depletant sizes, which
can, for example, be achieved by using thermoresponsive deple-
tants that adjust their size upon varying the temperature.34

A non-zero chiral strength has two effects: (i) the interaction
between rods becomes attractive or repulsive depending on the

Fig. 2 (a) Rod number density and (b) nematic order parameter vs.
depletant density for different e and c = 20, N = 2209. Error bars depict
the standard error of the mean from at least three independent
simulation runs.

Fig. 3 (a) Edge twist angle and (b) curvature parameter from fitting
simulated twist angle profiles to eqn (9) vs. depletant density for different
e and c = 20, N = 2209. Error bars depict the standard error of the mean
from at least three independent simulation runs.
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angle that is embedded between their axes (see eqn (1), (ii) the
nematic phase in bulk systems is replaced by a chiral nematic (or
cholesteric) phase with a finite pitch; i.e. the nematic director
rotates along an axis, and the pitch tells on which length it does
a full rotation. This, qualitatively speaking, results in (i) a shift of
ordering transitions, (ii) a more strongly twisted membrane, and
(iii) an even greater variety of structures (see below).

When increasing the chiral strength, we find a change in the
behaviour of the nematic order parameter versus the depletant
density, cf. Fig. 2(b). For small e, it increases with increasing
density, but for e = 20 kBT, S2 has much higher values for low
rD. For higher depletant densities, it coincides again with the
values for lower e. This originates from the different behaviour of a
for e = 20 kBT, cf. Fig. 3(b): a large value of a means that the twist
happens mainly close to the membrane rim so that a large fraction
of rods in the membrane centre is less twisted, resulting in a
high value of S2 found for low densities. As expected, the edge
twist angle and the curvature parameter increase with the chiral
strength, cf. Fig. 3. Furthermore, due to the attractive nature of
the interaction potential, the rod number density also slightly
increases with increasing chiral strength. For high rD, the curves
for different e in Fig. 2 merge because there the dominant
interaction is the depletion interaction that suppresses the

effects of the chiral interaction. Thus, to see an effect of a chiral
interaction on the shape and structure of colloidal membranes,
the depletant concentration must be chosen in a suitable range.

4.1.2 Example II: c = 20, qD = 0.25D�3. For the rod density
as a function of the number of rods, we observe two regimes: r0

decreases up to a size of about N = 3000 and increases again for
larger membranes (Fig. 4(a)). The nematic order parameter
behaves similar, but with a shift of the minimum to slightly
smaller membranes (N = 2000, Fig. 4(b)). Besides, we find that
for small membranes, the twist angle profile is almost linear,
i.e., a E 1, while for large membranes, it gets more and more
curved so that the central part is virtually untwisted and the
twist happens only close to the rim (this is illustrated for a
chiral case in Fig. 6(a)). At the same time, the twist angle at the
rim, j0, increases with increasing size up to N E 3000 and
slightly decreases for larger membranes, cf. Fig. 5 which is
discussed later on. If one could separate the effects from edge
twist angle, profile curvature, and membrane size (in terms of
the number of rods), one would expect the following: for fixed
j0 and profile shape, the order parameter increases with
membrane size because more and more rods are only weakly
twisted. For fixed membrane size and profile shape, the order
parameter decreases with j0. Furthermore, for fixed membrane

Fig. 4 (a) Rod number density and (b) nematic order parameter vs.
number of rods within the membrane for different e and c = 20, rD =
0.25D�3. Error bars depict the standard error of the mean from at least
three independent simulation runs, except for N 4 5000, where only 1–2
simulations were carried out.

Fig. 5 (a) Edge twist angle and (b) curvature parameter from fitting
simulated twist angle profiles to eqn (9) vs. number of rods within the
membrane for different e and c = 20, rD = 0.25D�3. Error bars depict the
standard error of the mean from at least three independent simulation
runs, except for N 4 5000, where only 1–2 simulations were carried out.
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size and j0, the order parameter increases for stronger curved
profiles. From these three effects, we can explain the two
observed regimes for S2. We conclude that for N o 2000, the
order parameter decreases due to the strong increase of the
edge twist angle j0, while the increase of S2 for larger N
complies with the increasing size and curvature. Note: the
somewhat larger error bar for N = 1600 and e = 20 kBT is a
result of one of the simulations having a membrane separated
in two compartments. For a further discussion on this, see
Section 4.5. Remark (not shown): for shorter rods, we find that
the respective minimum of the order parameter is shifted to a
smaller membrane size.

For chiral strengths e r 20 kBT, we find a reversal of the
order parameter’s behaviour with increasing chiral strength:
for N r 625 S2 decreases with e and for N Z 900 S2 increases
with e, while the density increases with e for all N. This again
results from the combination of membrane size (given by N),
edge twist angle (j0), and curvature of the twist angle profile
(given by a): for small N, the edge angle varies strongly with the
chiral strength, while the curvature stays relatively unaffected,
resulting in a decreasing nematic order parameter, cf. Fig. 5.
However, for N around 1000–3000, the edge angle changes only
weakly with e, while the curvature increases, resulting in an
increasing order parameter. Finally, for larger membranes, the
twist angle again strongly depends on the chiral strength but
not strong enough to compensate for the effect of the increase
of a, so that S2 still increases with e.

In conclusion, we have two valuable findings: we can tune
density and nematic order parameter in a non-monotonic way by
varying the numbers of rods in a membrane, and we can find a
size where the response to a change in the interaction (changing e
or temperature T) is reversed. A brief evaluation of the potential
energy in these systems is given in the Appendix A.2.

We now turn to the discussion of the theoretical predictions
and their applications.

4.2 Comparison to theory version I

The twist angle profile that is predicted by version I of the
approximation to the free energy is the one that minimises the
elastic energy in eqn (3) for a given set of parameters. Some of
the parameters can directly be inferred from simulations: the
membrane radius R, the two-dimensional number density r0,
and the aspect ratio of the rods c. Only two parameters are left for
which the mapping is not known precisely: the inverse choles-
teric pitch q0 and the twist penetration depth lt. How they are
extracted from the simulations, under the assumption that the
theory applies to the simulated system, is described below.

But first, we show that similar trends as found in ref. 22
appear in our simulations (cf. Fig. 2 in ref. 22). The parameters
tuned in the simulations are the number of rods in the
membrane N, the number density of depletants rD, and the
interaction strength between rods e. The radius is found from
the simulations using the density profile as described in Sub-
section 4.1. The trends found in our simulations are as follows:

(i) The twisted region moves to the membrane edge with
increasing membrane size, Fig. 6(a). This is in accord with ref. 22.

(ii) The twist angle profile’s curvature decreases with
increasing depletant concentration, Fig. 6(b). This hints at a
proportionality between rD and the twist penetration depth lt,
for which the same trend is found in ref. 22. The relation is not
obvious but connected to the fact that we cannot increase the
depletant density without increasing the rod density as well
(up to maximum packing, of course).

(iii) The chiral strength affects the twist angle profile:
the curvature increases the larger the chiral strength,
Fig. 6(c). This is not seen in Fig. 2 of ref. 22, but this might
be related to the choice of parameters in a regime that is less
affected by the chiral interaction strength. We provide the
graphs of Fig. 6 with different axes scaling in the Appendix A.3.

Returning to the comparison to the predictions obtained
by version I, the inverse pitch and penetration depth are found

Fig. 6 Twist angle profiles. The angle is scaled to the angle at the edge,
j0, and the distance from the centre is scaled to the membrane radius R.
(a) different N and c = 20, e = 20 kBT, rD = 0.25D�3, (b) different rD and c =
20, e = 20 kBT, N = 2209, (c) different N and e and c = 20, rD = 0.25D�3. The
same graphs with different axes scaling are shown in the Appendix A.3.
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by minimising squared residuals between simulated and
predicted twist angle profiles. In detail, this means.
� Run a simulation with parameters (l, N, rD, e).
� Compute the twist angle profile jsim(r) and determine the

membrane radius R and density r0.
� Choose the remaining parameters lt and q0; e.g. on a

lattice in a predefined region.
� Find the twist angle profile jth1(r) that minimises eqn (3)

for each pair of (q0, lt); e.g. by simulated annealing.
� Compute the sum of squared residuals Sðq0; ltÞ ¼P

k

jsimðrkÞ � jth1ðrkÞð Þ2; where rk are discretised distances.†

� Find the pair of (q0, lt) that minimises the squared
residuals S(q0, lt).

The expected behaviour is that q0 is proportional to e;
especially the case e = 0 should correspond to q0 = 0. lt is
expected to relate to the densities of both, rods and depletants.

Fig. 7 shows the dependence of q0 on e for different
membrane sizes and fixed depletant concentration. The
expected trend is affirmed: |q0| increases with increasing e.
However, for e = 0 kBT we do not find q0 = 0/D. The reason is
that for q0 = 0/D eqn (3) is minimised for j(r) = 0, i.e. no twist at
all. In contrast, for e = 0, the simulated membrane still twists to
reduce its surface. This discrepancy enhances the smaller the
membrane is, and so we can define a limitation of the theory:
achiral and small systems cannot be captured by eqn (3). A size
dependence of q0 is also found for ea 0 kBT. In general, this size
dependence is not only related to the surface-to-volume ratio of a
membrane but also to the size dependence of the rod number
density. The latter influences the cholesteric pitch and can be
non-monotonic, as, e.g. in the examples shown in Fig. 4(a).

Fig. 8 shows the dependence of lt on rD for different chiral
strengths and a fixed membrane size. With increasing chirality,
the penetration depth decreases, which is related to lowering
the cholesteric pitch (which is a characteristic length scale of
chiral nematic systems). The behaviour of lt vs. the depletant
concentration depends on the chiral strength: the penetration
depth decreases slightly with rD for small e and increases with
rD for large e. Similar differences were obtained for the nematic
order parameter (Fig. 2(b)) and the twist angle profile (Fig. 3).
Thus, we conclude that the behaviour of lt is also related to the
behaviour of the membrane curvature, Fig. 3(b).

In summary, version I comes with explicit expressions for elastic
constants and leads to reasonable results when compared to
simulations unless the membranes get too small or are composed
of achiral rods. To get a deeper insight into the different contribu-
tions to a membrane’s free energy, we base our further discussions
on the more general version II of the theoretical approximation.

4.3 Discussion of terms in theory version II

To examine the different free energy contributions in version II
of the approximation to the free energy, eqn (8), we chose a
specific form for the twist angle profile that matches the

findings from the simulations: j(r) = j0(r/R)a, cf. eqn (9).
We assume that the membrane volume is fixed by the number
of rods within the membrane and the depletant density. Hence,
when we want to find the twist angle profile that minimises the
free energy in eqn (8) for a specific set of parameters, we need to
fix the volume V. This, in turn, means that the radius depends
on the currently chosen twist angle profile and is found from

V ¼ 2pL
ðR
0

r cosjðrÞdr: (10)

The volume is proportional to R2 when j(r) is used as defined in
eqn (9), and thus the volume-radius relation is easily inverted.

In the following, we describe how the different terms in
eqn (8) change with the twist angle profile for a constant
volume of V = 10 000D3 (if not stated differently).

Fig. 9 shows the twist contribution F22 for different
parameters. It is the only term that changes its behaviour when
a chiral interaction is turned on. It is clear that in the achiral

Fig. 7 Inverse cholesteric pitch from mapping results of theory I to results
of simulations with different N and e and c = 20, rD = 0.25D�3. q0 is found
from minimising squared residues of theoretical and simulated twist angle
profiles. Error bars denote the range of values found from different runs.

Fig. 8 Twist penetration depth from mapping results of theory I to results
of simulations with different rD and e and c = 20, N = 2209. lt is found from
minimising squared residues of theoretical and simulated twist angle
profiles. Error bars denote the range of values found from different runs.

† Usually, the bin width in the theory will be smaller than in the simulation; so
one needs an intermediate step to match the bins.
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case (q0 = 0, Fig. 9(a)) any deviation from the uniform, untwisted
state, j(r) = j0 = 0, is penalised by an increase in the energy.
However, if the system needs to twist, a linear twist angle profile
(a = 1) is favoured over a curved one (a 4 1). In the chiral case
(q0 a 0, Fig. 9(b) and (c)) the twist contribution shows a minimum
at j0 4 0, as expected. The minimum shifts to larger angles with
an increasing absolute value of the inverse pitch q0 (Fig. 9(b)). This
is the same as in bulk: the smaller the cholesteric pitch, the
stronger the system needs to twist. The volume of the membrane
also affects the position of the minimum (Fig. 9(c)): it roughly

scales with
ffiffiffiffi
V
p

; which is proportional to the membrane radius.
Fig. 10 shows the bend contribution for different a, which

reduces to

F33 ¼
pL
a

ðj0

0

1

u
cos u sin4 u du

after substituting j(r) = u in eqn (8). As for the twist contribution
in an achiral state, any twist is penalised. However, the penalty is
relatively small compared to the twist term, especially for small
j0, and it is most pronounced for a linear twist angle profile
(it scales with 1/a). Thus, the bend term allows for having large twist
angles provided that the slope at the rim is also large. The bend term
is independent of the membrane volume (for given a and j0).

Fig. 11 shows the saddle-splay contribution

F24 ¼ 2pL
ðj0

0

cos2 u sin u du

for different a. It neither depends on a nor on the volume and
penalises any twist j0 4 0, with a monotonically increasing
penalty. This term is often neglected because of a vanishing
surface (or a vanishing surface-to-volume ratio), but it does
have a significant contribution for our system.

Fig. 12 shows the cover surface area Sc for different combi-
nations of a, c and V. Any twist increases the cover surface area,
which is one part of the interface between the membrane rods and
the depletants. The rise is strongest for small a (linear profile), long

Fig. 9 Twist contribution to the free energy in eqn (8). (a) q0 = 0/D, c = 10,
V = 10 000D3 and different a, (b) a = 4, c = 10, V = 10 000D3 and different
q0, (c) a = 4, q0 = �0.04/D, c = 10 and different V.

Fig. 10 Bend contribution to the free energy in eqn (8) for different a and
c = 10.

Fig. 11 Saddle-splay contribution to the free energy in eqn (8) for differ-
ent a and c = 10.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
D

ec
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 6

/1
9/

20
25

 2
:5

5:
13

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sm01303c


914 |  Soft Matter, 2022, 18, 905–921 This journal is © The Royal Society of Chemistry 2022

rods and small membrane volumes (note: the graphs show Sc/V
because Sc(j0 = 0) p V). So this contribution also drives
the membrane to an untwisted state. In contrast, the lateral
surface area Sc decreases (to zero) with increasing twist angle at
the rim, Fig. 13. It slightly depends on a because the radius

depends on a, and it increases proportionally to
ffiffiffiffi
V
p

and c.
Finally, the surface anchoring contribution Sw has its

minimum at j0 = p/2, Fig. 14. It is smallest for small a (linear
profile), long rods and small membrane volumes. This behaviour is
obvious when considering that the angle between the local nematic
director and the local surface normal must everywhere be as large as
possible to reduce the surface anchoring contribution. (Note: for
Sw(j0 = 0), the same scaling applies as for Sc).

Table (1) summarises the impact of all contributions on j0

and a. With this at hand, there appear (at least) two applica-
tions: (i) if the elastic constants Kij, the inverse pitch q0, the
anchoring strength w and the interfacial tension t and their
dependencies on rod and depletant densities are known, one
can tune the shape of colloidal membranes target-oriented. (ii)
If the twist angle profile is measured (in experiments or simula-
tions), one can deduce a set of prefactors (Kij, t, w) for which
the measured profile minimises the membrane free energy.
Thus, this defines a complementary way for determining elastic

constants, interfacial tension and anchoring strength‡ (and
even the cholesteric pitch) of (chiral) liquid crystalline systems.

4.4 Elastic constants from comparison of simulation and theory

A common way to determine elastic constants from simulations
is to sample director field fluctuations at different length scales. This
usually involves transformations to and calculations in Fourier space
and a polynomial fit to finally get the values of the constants.35

Another route to finding elastic constants uses direct correlation
functions and the Poniewierski-Stecki theory.36,37 To get the Frank
elastic constants from experiments common methods are light
scattering32,38,39 and using the Fréedericksz transition.40,41

Here, we test a different approach to map theory and simula-
tion results. As described in the previous subsection, it is possible
to find a set of elastic constants and interface parameters for the
colloidal membrane by comparing the twist angle profile found
in simulations to the one predicted by theory. We assume that
the simulation profiles fit the quite simple form eqn (9). If this
would not be the case, another functional form could be chosen,

Fig. 13 Lateral surface for different a and c = 10. (The scaling S‘ / ‘
ffiffiffiffi
V
p

is
not extra shown).

Fig. 14 Surface anchoring contribution to the free energy eqn (8) for
different combinations of a, c and V.

Fig. 12 Cover surface area for different combinations of a, c and V.

Table 1 Summary of the dependencies discussed in Section 4.3

F22 F33 F24 Sc Sc Sw

pf K22 K33 K22 + K24 t t tw

V —; { — — V0.5� � �1.0 V0.5 V1.5� � �1.0

c c1.0; { c1.0 c1.0 c�1.0� � �0.5 c0.5 c�1.0� � ��2.5

j0 + ; j�0 + + + * *
a + ; + * — * * +

pf: prefactors for the different contributions to the free energy in
eqn (8). V and c: scaling ranges of the contributions with volume and
rod aspect ratio. The two values for F22 refer to q0 = 0 and q0 a 0. ‘‘—’’
means that no specific scaling is found, but depends on q0. ‘‘—’’ means
no dependence. j0 and a: impact of the contributions on the twist angle
profile defined by eqn (9); the radius is given by a fixed volume. The two
values for F22 refer to q0 = 0 and q0 a 0.+ (* ) means that the
contribution pulls the value of j0 or a down (up) to minimise the
energy penalty. j�0 is a minimum that depends on the chirality given by
q0 and j0 is pulled towards j�0. ‘‘—’’ means no effect.

‡ These, of course, also depend on the depleting agent.
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and the analysis in the previous subsection would be repeated.
However, we suppose that the trends do not depend on the
specific form used to describe the twist angle profile as long as
the characteristics are similar.

To get elastic constants from the comparison of simulation
and theory, we propose the following procedure:
� Run a simulation with parameters (l, N, rD, e).
� Compute the twist angle profile jsim(r), determine the

membrane radius R, and fit the profile to eqn (9) to get a and j0.
� Compute the volume that will be kept fixed using the

profile and membrane radius from the simulation in eqn (10).
� Choose an initial guess for the set of parameters (Kij, t, w)

and find the twist angle profile jth2(r) that minimises the free
energy approximated by eqn (8).
� Minimise the difference between jsim(r) and jth2(r) by

adapting the parameters (Kij, t, w). We compare the twist angle
profiles pertaining to the values of j0 and a, but one could also
define other similarity measures.

The set of parameters (Kij, t, w) that lead to a specific twist angle
profile is, in general, not unique. Therefore it is inevitable to (i) have
some other input (e.g. parameters that are already known or
parameter regions that can safely be excluded or results from related
systems) and (ii) do validity checks. For example, in earlier studies of
achiral hard spherocylinders of aspect ratio c = 10 that form nematic
tactoids in a bath of Asakura-Oosawa spheres, surface tension and
anchoring strength were estimated to be: t = 0.07kBT/D2 and
w = 0.8.42 Because the minimum of eqn (8) is independent of an
overall factor, we can only find ratios of energy parameters; there-
fore, we set K22 to be the unit of all other elastic constants and the
surface tension (multiplied by D). With the assumptions made in
ref. 42 this translates the value 0.07kBT/D2 to t = 0.23K22/D. For a
membrane composed of N = 3600 hard (achiral) rods of aspect ratio
c = 10 and depletant density rD = 0.46D�3, we find parameter sets
with reasonably close values of t and w: 0.98 o w o 1.23 for 0.16 o
tD/K22 o 0.42. We provide ranges and not single values because
several sets of parameters result in the same twist angle profile.
Within these ranges we find possible values of K33 to be: 5 o K33/K22

o 107, and of K24 to be: 1.4 o K24/K22 o 14.4. These ranges are
somewhat reasonable but not very narrow. So we go on by assuming
that e does not affect w.§ We also know that for positive e, the
inverse pitch q0 must be negative, and its magnitude increases with
e. Therefore we compare parameter sets for e = 0, 5, 9, 10 kBT and
otherwise same simulation parameters, and find the following
behaviours in the narrow range 1.068 o w o 1.078:

q0 decreases from 0/D to �0.22/D at e = 10 kBT (with
approximately p � e4); tD/K22 increases from 0.217 to 0.267
(with approximately pe6); K33/K22 increases from 20 to 61 (with
approximately pe2–e3); and K24/K22 increases from 5 to 24 (with
approximately pe4). Note that the given values and power laws
are rough estimates from the mapping results; for each of the
four e values, a few parameter values were collected, and the
corresponding fits to power laws were assessed. This part
should merely demonstrate the procedure. The correctness of

functional forms for the quantities of interest can always be
improved by analysing more twist angle profiles. For experi-
mental studies, the first two points of the procedure need to be
adapted. However, the general procedure should work similarly
well, and it should also be suitable for determining elastic
constants and interfacial properties of experimental systems.

4.5 Transition to two-dimensional blue phase

What happens when the chiral strength is increased to very
high values? The equilibrium bulk cholesteric pitch is inversely
proportional to the chiral strength, i.e. with increasing chirality,
the rods tend to increase the angle between successive layers.
In a colloidal membrane, the rods cannot tilt arbitrarily. The twist
angle is largest at the rim and decreases monotonically to zero in
the centre. However, if the chiral potential is strong enough, the
membrane starts to form substructures to lower its overall free
energy. Using the straightforward Metropolis-Monte-Carlo techni-
que, we find various structures, but we do not verify whether they
are stable or meta-stable in this paper. To do this, one needs other
simulation approaches, but this is not the scope of the current
study. Also, fixing the rods to a plane influences the substructures; if
moving away from the plane would be allowed, the rods would
escape to the third dimension and form complex 3D structures.
This scenario would be better comparable to existing experiments,
where an increasing chiral interaction leads to the formation of a
rippled membrane edge and the transition to twisted ribbons.5 We
are aware that the fixed-particle setup chosen for the current study
cannot account for such a transition and that the findings pre-
sented in this section are specific to our (artificial) simulation setup.
For a realisation, one could think about fixing chiral molecules to a
fluid–fluid interface; but we are not aware of experiments on the
formation of disk-shaped membranes in such a setup.

We find several types of structures that depend on the initial
condition and the rod aspect ratio and begin the discussion by
describing our findings. The options used for initial conditions are:
(i) untwisted membrane, (ii) twisted membrane without substruc-
ture, (iii) twisted membrane with substructure. The resulting
structure does also depend on the magnitude of the chiral strength.

There is a critical chiral strength e*, above which substructures
appear. If the chiral strength is close to that (and the initial
condition is (i) or (ii)), it is likely to find a membrane that twists
towards the rim, as for lower chiral strength, but starts to divide in
the centre (Fig. 15(a) and (c)).

For slightly larger chirality, the membrane entirely separates
into a few large and twisted compartments (not shown).

Starting from (ii) and increasing e much beyond the critical
value, the membrane separates into a twisted outer ring and an
inner part that contains so-called sub-twists. Taking such a
configuration as an initial condition for a simulation with a
smaller chirality (but still larger than e*), we find that the ring
plus sub-twist structure is maintained (Fig. 15(b)). The rods in
the ring’s innermost and in the adjacent layer strongly decrease
the potential energy by enclosing a large angle.

Starting from (i), on the other hand, leads to an arrangement
of sub-twists that fills the total membrane area (Fig. 16), and can
be regarded as a two-dimensional blue phase, but not necessarily

§ We can also assume that e does not affect t, but from the mapping procedure,
we only get t/K22, which might depend on the chiral strength through K22.
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with hexagonal structure as it was found in ref. 28. A hexagonal
order would not be easy to achieve because the sub-twists are
also not perfectly monodisperse in size. The size and number of
sub-twists depend on e, as can be seen by the three examples in
Fig. 16. Increasing the chiral strength decreases the sub-twist
size and hence increases their number.

In general, the ring plus central part structure frequently
appears for longer rods (c = 20), whereas the membrane usually

fully decomposes to sub-twists for shorter ones. Also, the
critical chiral strength for forming substructures increases with
increasing rod aspect ratio.

To determine the critical chiral strength, one can, for
example, find the point where the slope of the reduced
potential energy as a function of chiral strength changes, as
can be seen in Fig. 17 for c = 20 and rD = 0.25D�3, where the
critical chiral strength is about e* = 22 kBT. The change of the

Fig. 15 Different substructures for the same set of parameters (N = 3136, c = 20, e = 25 kBT, rD = 0.25D�3). (a) and (d) Sub-twists start to form in the central
part but are not fully developed. (b) and (e) An outer twisted ring is separated from inner sub-twists by a few layers of weakly twisted rods. (c) and (f)
Developed sub-twists merge at the rim. The lowest potential energy is found for structure (b), the highest one for structure (c). For the membrane nematic
order parameter, the inverse order applies. The upper panel shows rendered snapshots of the rods in the membranes, where the colour-coding indicates
the rods’ orientation. The lower panel shows cuts through the fixed plane so that tilted rods are shown by ellipses, and the colour-coding indicates the polar
angle g of the projection of the rods onto the plane. Double(sub)twists are therefore seen as objects including the whole colour spectrum.

Fig. 16 Sub-twist arrangement for different chiral strengths (N = 3600, c = 10, rD = 0.46D�3). (a) and (d) e = 15 kBT, (b) and (e) e = 25 kBT, (c) and (f) e =
35 kBT. For too strong chiral interactions (c) sub-twists can hardly be defined anymore. Upper and lower panel as for Fig. 15.
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slope can be explained through the following considerations.
From a theoretical point of view and regarding the different free
energy terms, creating substructures has several effects:

(i) The overall surface is increased. There are many inter-
faces, and interfaces usually cost free energy.

(ii) But in this system, the potential energy decreases,
especially at the interfaces, where adjacent rods from different
sub-twists can have a larger mutual angle than the adjacent
rods within the sub-twist.

(iii) By reducing the length scale over which deformations
occur, the elastic energy is increased.

Above the critical chiral strength e*, the enhanced elastic
deformation and surface free energy is outweighed by the overall
decrease of the chiral potential energy due to substructure
formation. The membrane size does not affect the critical chiral
strength. It does, however, influence the standard error of the
mean of the energy from independent simulation runs. This
originates from the lower number of possible substructures
in small membranes, where a slight change in composition, e.g.
from two to three substructures, leads to a large change in energy.

For possible applications of the substructure formation, it
will be necessary to improve the control of the sub-twists’ size
and distribution.

5 Conclusion

We studied the behaviour of colloidal membranes composed of
chiral rod-like particles by Monte Carlo simulation and
compared our observations to two versions of an elastic theory.
The typical form of such membranes is a one-layer thick double-
twist cylinder showing circular symmetry. It is described by a twist
angle profile, which is used to test the validity of different
theoretical approaches. The profile depends on various para-
meters: the number and aspect ratio of rods, the strength of the
chiral interaction, and the number density of the depleting agents.
Qualitatively, the behaviour (trends with a change of parameters) is
well described by both versions of the theory. The difference
between the models (besides additional terms) is that the first

uses the microscopic parameters from the simulation (only two
parameters needed to be matched). In contrast, in the second
version, all elastic and surface constants were used to map the
theoretical profiles to those from simulations. One of the main
take-home messages is that with the latter, we provide a method to
determine Frank elastic constants, surface tension and anchoring
strength from observing configurations of quasi-two-dimensional
colloidal membranes. Knowledge of these quantities is, on the one
hand, interesting from a theoretical (basic research) point of view
and, on the other hand, essential for material design and engi-
neering. The method is not restricted to simulated systems but
may be used for experiments similarly; one just needs to measure
the twist angle profile for several configurations, as was done, for
example, in ref. 43. Thus, we think that the proposed procedure is
applicable to experiments as a complementary method for deter-
mining elastic constants. We hope that our approach will stimu-
late more investigations in this direction.

There is a transition to more complex structures for
high chiral strengths, including rings and sub-twists (array of
double-twists), where the latter is reminiscent of a two-
dimensional blue phase. A rod aspect ratio dependent critical
chiral strength for substructure formation was found from a
change in the reduced potential energy behaviour.

We also found a distorted hexagonal lattice structure that, to
our knowledge, has not been described before, and it would be
interesting to study in more detail which kinds of transitions
this system undergoes.

Conflicts of interest

There are no conflicts to declare.

A Appendix
A.1 High density states

In the main text, we focus on twisted membranes in the liquid
state; an example is shown in the first column of Fig. 19.

Fig. 17 Reduced energy per particle vs. chiral strength for different N and
c = 20, rD = 0.25D�3. Error bars depict the standard error of the mean from
at least three independent simulation runs.

Fig. 18 Reduced energy per particle vs. number of rods within the membrane
for different e and c = 20, rD = 0.25D�3. Error bars depict the standard error of
the mean from at least three independent simulation runs, except for N 4
5000, where only 1–2 simulations were carried out.
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The system shows short-range translational order and a double-
twist director field in this state. By increasing the depletant
density, we find a special intermediate state, before the system
forms a perfect crystalline state. This intermediate state has a
distorted hexagonal lattice (DHL) and a double-twist director
field. DHL means the rods arrange on a lattice, but depending
on their twist angle, the distances between centres of mass
need to vary. This is best seen by cutting the system at the plane
to which the centres of mass are fixed, cf. Fig. 19(d)–(f). Upright
(untwisted) rods look like disks in this view, while tilted rods
appear as ellipses. I.e. in the centre, where rods are untwisted,
we find hexagonally packed disks. On the other hand, towards

the membrane edge, where rods get more tilted than in the
centre, we find ellipses that are also packed densely but do not
sit exactly on a hexagonal lattice. The different possible struc-
tures are depicted in Fig. 19 for a small membrane of weakly
chiral rods. (Note: we noticed no significant difference between
e = 0 kBT and 1 kBT for other sets of parameters and assume this
holds for the shown set as well.) In the main text, we focus on
homogeneously twisted membranes as the one in the first
column (liquid); the second column shows the newly described
distorted hexagonal lattice (DHL), and the third column pre-
sents an example of a nearly hexagonal lattice (crystal). The
panels visualise different aspects of the membranes. In the top

Fig. 19 Different main structures found in simulations of weakly chiral rods (N = 729, c = 10, e = 1 kBT). (a), (d), (g) and (j) Short-range translational order
and double-twist director field for rD = 0.91D�3. (b), (e), (h) and (k) Distorted hexagonal lattice (DHL) and double-twist director field for rD = 1.82D�3. (c),
(f), (i) and (l) Nearly hexagonal lattice for rD = 1.82D�3. Note that the system parameters for the latter two are the same.
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row, rendered snapshots of the membranes are shown. Here
the double-twist is visualised by orientation-dependent colour-
ing. The second row presents cuts through the fixed plane as
described above, and the colour code indicates the polar angles
of the ellipses. From this panel it is evident that even the nearly
hexagonally shaped membrane has a double-twisted director
field. The colour code in the third row shows the average
distance to the six nearest neighbours. This distance distin-
guishes the DHL and crystal states: for the former, the distance
increases towards the membrane edge due to the tilting of rods,
while for the latter, this distance is constant. The shown nearly
hexagonal example does not have a constant value for the
average neighbour distance, confirming the declaration as
‘nearly’ hexagonal because it is not in a perfect crystalline state.
In the fourth row, the colour code indicates the standard
deviation of the average distance (from row three). It highlights

defects in the lattice structure and illustrates that DHL has
defects preferably close to the centre, while in the nearly crystal
state, they are found away from the centre. (A perfect crystal
would not have any defect.) The different structures can be
found in simulations with the same set of parameters, as can be
seen from the examples in columns 2 and 3 of Fig. 19. However,
it is not the scope of this paper to discuss the origin of the
different cases and the transitions between them in more detail
(e.g. regarding the type – first-order vs. Kosterlitz-Thouless-
Halperin-Nelson-Young scenario). Because of the elliptical
cross-section of tilted rods, known results for two-
dimensional colloidal disk systems that show liquid, hexatic,
and crystal phases44,45 cannot simply be transferred to the
current system. However, they could be used in future studies
to compare the findings.

The upper panel shows rendered snapshots of the rods in
the membranes. The colour-coding indicates the rods’

Fig. 21 Twist angle profiles (no rescaling). (a) different N and c = 20, e =
20 kBT, rD = 0.25D�3, (b) different rD and c = 20, e = 20 kBT, N = 2209, (c)
different N and e and c = 20, rD = 0.25D�3.

Fig. 20 Twist angle profiles. The distance from the centre is scaled to the
membrane radius R. (a) different N and c = 20, e = 20 kBT, rD = 0.25D�3, (b)
different rD and c = 20, e = 20 kBT, N = 2209, (c) different N and e and c =
20, rD = 0.25D�3.
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orientation (blue: only z-component, red: only x-component,
green: only y-component; mixed colours according to the ratio
of components). Depleting agents (Asakura-Oosawa spheres)
are not shown, but they form a dense cloud around the
membranes. The second panel shows cuts through the fixed
plane so that tilted rods are shown by ellipses, and the colour-
coding indicates the polar angle g of the projection of the rods
onto the plane (the colour is not related to the length of the
projection). Double-twists are therefore seen as objects that
include the whole colour spectrum. In the third panel, the
colour-coding shows the average distance to the six nearest
neighbours dNN of each rod; the outermost layer of rods (having
fewer nearest neighbours) is removed. For the DHL structure,
this distance increases towards the membrane edge. For a
perfect undistorted lattice, the distance would be constant.
The lower panel shows the nearest neighbour distance’s
standard deviation, s(dNN). With this, defects in the lattice
structures are highlighted.

A.2 Potential energy of twisted membranes

A non-zero chiral strength allows measuring the potential
energy of the system, which gives further hints for understanding
the system’s behaviour. Fig. 18 shows the reduced energy per
particle, U/(Ne), for example II, where U is the sum of all pair
interactions given by eqn (1). With increasing membrane size, a
large fraction of the system is untwisted, which is unfavored by
the interaction potential and therefore increases its value.
However, with increasing chiral strength e, the reduced energy
(note: already divided by e) decreases. This can only mean that the
gain of negative potential energy is large enough to compensate
the loss of entropy due to the enhanced twisting and closer
packing (the rod number density increases with increasing chiral
strength, cf. Fig. 2(a) and 4(a)). The slight decrease of the energy
for large membranes and high e is due to the onset of emerging
substructures discussed in Section 4.5.

A.3 Alternative scaling of twist angle profiles

We present two versions of different scalings of Fig. 6 in Fig. 20
and 21.
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