Sustainable Energy & Fuels

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Sustainable Energy Fuels, 2022, 6, 5199

Correction: Solid oxide fuel cells for ammonia synthesis and energy conversion

Valentina Goldstein,^a Manasa Kumar Rath,*a Alexey Kossenko,^{ab} Natali Litvak,^a Alexander Kalashnikov^c and Michael Zinigrad^{ab}

DOI: 10.1039/d2se90070j

rsc.li/sustainable-energy

Correction for 'Solid oxide fuel cells for ammonia synthesis and energy conversion' by Valentina Goldstein et al., Sustainable Energy Fuels, 2022, 6, 4706–4715, https://doi.org/10.1039/D2SE00954D.

Table 2 in the original article shows the incorrect unit for the rate of NH_3 in two locations. The correct unit of the rate of NH_3 is 10^{-9} mol cm⁻² s⁻¹. Below is the correct version of Table 2.

Table 2 The parameters of the tested cells, including the current and voltage used for the NH₃ synthesis, the NH₃ synthesis rate (mol cm⁻² s⁻¹), energy consumption, the fraction of energy expended for NH₃ synthesis, the faradaic efficiency ($\Lambda_{\rm F}$), and the energy efficiency ($\Lambda_{\rm E}$)

#	Parameter/cell	CH₄ cell ⊕ air	CH₄ cell ⊕ air	CH₄ cell ② air	H₂ cell ⑥ air
1	Wet, %	20	14	5	20
2	Current (mA)	16	16	1.3	3.36
3	Voltage (V)	0.039	0.05	0.9	0.9
4	Mass of NH ₃ (mg)	2.166	0.437	0.640	3
5	Time (min)	107	12	46	60
6	Energy consumption (kJ mol _{NH3} ⁻¹)	22.7	22.4	85.78	61.7
7	Fraction of energy applied for NH ₃ synthesis (%)	3.6	7	24.6	7
8	Rate of NH ₃ $(10^{-9} \text{ mol cm}^{-2} \text{ s}^{-1})$	1.2	1.4	0.85	3
9	$\Lambda_{\rm F}$, Faraday efficiency	_	_	3.0	4
10	$\Lambda_{\rm E}$, energy efficiency	2	2.8	0.72	1
	Rate of NH ₃ at OCV (10^{-9} mol cm ⁻² s ⁻¹)	1.4	1.4	0.97	2.6

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

[&]quot;Materials Research Center, Ariel University, Ariel 40700, Israel. E-mail: manas.physics@gmail.com

^bDepartment of Chemical Engineering, Biotechnology and Materials, Faculty of Engineering, Ariel University, Ariel 40700, Israel

^c3Rock Capital Partners, Moscow, Russia