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ictive chemistry enable a multi-
scale rational design approach for biofuels with
advantaged properties†
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Thomas D. Foust *bc and Nicole J. Labbe*ad

Recent advances in computational resources and algorithm development have spurred progress toward

rational chemical design. However, progress towards automated rational chemical design in fuel

development and gas phase chemical systems in general have fallen behind other fields such as

pharmaceuticals and material discovery. In this manuscript, recent advancements in automated fuel

ignition/gas phase reaction kinetics tool development are leveraged to create a systematic process to

develop reaction mechanisms for biofuel ignition properties and apply these mechanisms to practical

applications to understand the link between chemical structure and observable chemical phenomena.

The proof-of-concept application of this work uses our modeling methodology to extract the chemical

rational for disparate ignition behavior between two linear alcohols: n-butanol and n-pentanol. Our

methodology can accurately predict the ignition behavior of both fuels across wide temperature ranges

without any influence of experimental data or adjustment, and for the first time, can successfully

pinpoint the differences in ignition behavior to the d-pentanol carbon site. This work is demonstrated in

the context of low carbon biofuels and accurate prediction of ignition delay times to show the versatility

and utility of this method that can also be applied to many other sustainable gas phase reaction

applications, including CO2 reduction and utilization approaches.
Introduction

With advances in both computational resources and more
sophisticated algorithm development in recent years,
approaches toward chemical modeling have also changed1 to
include an increasing emphasis on rational chemical design
and predictive chemical modeling. While notable examples of
this have been applied to materials design,2 pharmaceutical
discovery,3 organic synthesis,4,5 and catalytic selectivity,6

predictive model development for biofuel development and
other sustainable gas phase chemical processes has had
comparatively less success with predictive computational
chemistry. Circular economy approaches that utilize gas phase
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f Chemistry 2022
reaction systems such as CO2 reduction and utilization
processes is a sustainable gas phase chemical eld that could
benet from advances in predictive gas phase reaction
modeling techniques developed here.

One of the largest impediments for progress in predictive
modeling is the automation of gas phase reaction mechanisms
given the vastness of the reaction schemes. The gas-phase
nature of these systems provides more opportunity for unique
combinatorial reactions, in addition to being in an environ-
ment where particularly reactive free-radicals can exist in large
numbers. Combustion and fuel design provides an ideal
example of the complications associated with gas phase react-
ing systems. Practical transportation fuels such as gasoline or
diesel are mixtures of hundreds of unique chemical species,
and while in a ame, undergo hundreds of thousands of unique
chemical reactions whilst creating tens of thousands of addi-
tional intermediate species. The challenge of creating models
for combustion is compounded when considering novel biofuel
development where vast experimental data sets are not readily
available for model validation testing.

Despite the reaction complexity, fuel design is a eld that is
ideally suited for predictive gas phase reaction modeling.
Traditional approaches to new chemical and fuel development
such as high throughput screening for parameters of interest
followed by extensive testing and certication can be very time
Sustainable Energy Fuels, 2022, 6, 5371–5383 | 5371
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and resource intensive, which serves as an impediment to new
chemical and fuel development. This is especially true for fuels
and chemicals produced from biomass. The introduction of
oxygen functionality greatly increases the variety and number of
potential chemicals and fuels that require screening, making
new chemical or fuel introduction from biomass a daunting
endeavor using traditional screening-based approaches.
However, rapid accurate kinetic model development could
allow fuel scientists to explore and explain gas phase reaction
phenomena over a wide variety of conditions, and thus identify
key fuel candidates without the time or expense of traditional
testing and certication.

Given the benets of chemical modeling for rational fuel
design, in addition to the complexity of gas-phase chemistry for
combustion, this manuscript will focus on combustion chem-
istry as the demonstration application. Efforts to predict the
chemistry of combustion have a rich history. While experiments
have been devised to directly measure reaction rate constants in
the gas phase7–10 the majority of mechanism development has
been based in modeling and theory.11,12 These efforts generally
fall into two different categories of work: estimation methods
and electronic structure theory methods.

The quickest method of reaction mechanism development is
through estimationmethods, where either the reaction class13–15

or molecular functional groups16 are used to estimate reaction
rate constants. These estimation methods have performed well
for certain reaction classes,13–16 allowing for the rapid genera-
tion of kinetic mechanisms capable of accurately predicting
properties such as ame speeds, ignition timing, and speciation
data for a wide variety of molecules. One downside of rate
coefficient estimation methods is they are not broadly appli-
cable for reaction classes that are highly pressure-sensitive
including pyrolysis and low-temperature ignition chemistry.
In other cases, estimation methods may produce reaction rates
with large errors if the basis for estimation is not ideally suited
for the reaction at hand.17,18 As a result, these estimation-based
mechanisms are oen a good starting point but require rate
tuning to reproduce experimental data targets for accuracy. This
limits the suitability of estimation-based approaches for
rational biofuel design.

Alternatively, electronic structure theory combined with
reaction rate theory may be used to directly calculate rate
constants. High-delity methods have reported uncertainties in
reaction barriers and molecular energetics as low as �0.3 kcal
mol−119 increasing reliability of theoretically calculated rates
over estimations. However, higher accuracy electronic structure
theory methods, such as coupled-cluster methods scale as N7

(where N is a measure of the system size) which highlights the
tradeoff between accuracy and computational cost.20 Thus,
utilizing computational chemistry methods can become
computationally prohibitive for large mechanisms and hence
not directly well suited for rational biofuel design either.

Recent advances in automation of combustion chemistry
have produced several tools for rapid mechanism generation.
Automatic mechanism generators, such as Reaction Mecha-
nism Generator (RMG) 21–23 and EXGAS,24 use group additivity
methods in conjunction with rate-based algorithms to identify
5372 | Sustainable Energy Fuels, 2022, 6, 5371–5383
all reactions of importance for a given fuel and set of reaction
conditions, and export estimates reaction rates for all the newly
identied reactions. This automates the otherwise tedious
human-based efforts for estimation-based mechanism devel-
opment. Other works have focused on speeding up electronic
structure theory methods, including automatic identication of
reactive potential energy surfaces (PESs)25 and reaction rate
calculations.26 Perhaps the closest effort to theory-based
mechanism full automation is AutoMech,27 which calculates
rate constants for the unimolecular reactions of a given mole-
cule using a high-level theoretical approach. These tools have
made rate generation signicantly more accessible, but
currently lack a direct link for use in practical design applica-
tions, where molecules with large numbers of heavy atoms
prevail as is the case for many practical biofuels. Hence the
novel approaches outlined in this manuscript allow us to extend
quantum methods to advantaged biofuels developent.

Machine learning methods have tried to bridge the gap
between chemical structure and direct application. One of
several examples of this is the YSI Estimator28–30 and ALFA-
BET31,32 tools out of the National Renewable Energy Laboratory.
Both tools use machine learning techniques and curated yield
sooting index (YSI) and bond dissociation energies (BDE)
respectively to predict these properties based on molecular
structure. While oen successful, these tools are empirically
derived and do not give fundamental understanding of why
structure inuences these properties. Additionally, these
methods do have points of failure, as highlighted in a study by
Kim et al.33 on methyl cyclohexenes. The YSI Estimator was
found to fail at accurately predicting YSI trends for methyl
cyclohexenes, and it was determined that this was due to the
ability of methyl cyclohexenes to undergo retro Diels Alder
reactions. Errors such as these would be avoided by direct
connection to fundamental kinetics rather than empirical data
tting.

In this manuscript, we leverage recent advances in predictive
gas phase chemistry tool development to provide a systematic
methodology which calculates reaction mechanisms for gas
phase reactive systems and apply these mechanisms to under-
stand the link between chemical structure and application. This
methodology is:

1. Universal: this technique should work for any gas phase
reaction system regardless of chemical formula. However the
selection of reaction systems to study will be limited by the
availability of kinetic knowledge of the system of interest.
Hopefully as the kinetic knowledge eld progresses, kinetic
descriptions of important reaction systems will increase and
this will extend the applicability of this methodology.

2. Comprehensive: through semi-automated tools, we hit
99% of all possible reactions in the scope of our search within
reasonable energy thresholds, making it less prone to human
error. We explain in the Results and Discussion Approach
section to what degree the steps are automated.

3. Multi-scale: by having our end “product” be detailed
elementary kinetic models, we can explore atomistic trends for
global property behavior.
This journal is © The Royal Society of Chemistry 2022
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4. Flexible: our sub-mechanisms can be used with the user's
preferred base mechanism if it has the nal products of our
sub-mechanism included.

5. Accurate for less time: our method hits the middle ground
of using detailed approaches that let us approximate full
computational accuracy while reducing overall time for devel-
opment, making our method faster than many detailed
computational chemistry methods while also more accurate
than many estimation methods.

6. Detailed: the completeness of the mechanism generation
allows the user to link observable chemical behaviors to
chemical structural features through reaction networks.

For this manuscript, we present the development of sub-
mechanisms for the low-temperature ignition of two alcohols
that may be derived from bio-renewable resources: n-butanol
and n-pentanol, which are a natural choice for our proof-of-
concept application for several reasons. First, despite the lack
of comprehensive understanding in the low-temperature igni-
tion mechanism for these fuels, many experimental ignition
studies exist to which we can benchmark our models. Second,
the data available for ignition over a wide range of temperatures
and pressures allows us to highlight the benets of having
calculated pressure dependencies in our models which esti-
mation methods cannot incorporate accurately at this time.
Third, the resultant models would be the rst published theory
based sub-mechanisms for low-temperature ignition chemistry
of these two fuels. Finally, this unique set of alcohol fuels
highlights that through the addition of a single CH2 group to
extend the alkane chain, the chemistry can change dramatically,
causing negative temperature coefficient (NTC) behavior to
arise at low and intermediate pressures for the longer-chain
alcohol, n-pentanol, which can be probed directly through our
modeling efforts. Through this study, we show how our meth-
odology can be applied to this complex chemical problem, to
not only accurately predict the ignition behavior of these two
alcohol fuels, but to also correlate ignition behavior to chemical
structure, directly providing insight for rational fuel design that
other techniques would not have the ability to provide.
Background–low-temperature ignition reaction mechanism

Ignition chemistry can be a particularly challenging chemical
problem for combustion scientists. While it is relatively simple
to measure the length of time for ignition to occur,34 experi-
mentally detecting the chemical steps from initial fuel and
oxidizer mixture to full ame is far more challenging.35–38 The
distinct reaction steps assumed to occur for ignition39 may be
categorized into initiation and propagation.

Initiation. For ignition to proceed, the fuel must rst
decompose in such a way that free radicals are produced.
Primarily this happens in two ways: (1) via pyrolysis where the
fuel may thermally decompose into two different radical frag-
ments or molecular products and (2) via abstraction reaction,
where radicals (X), such as those formed from homolytic scis-
sions of the fuel (F), react with the fuel and abstract an H-atom,
resulting in a fuel radical (R) and the abstracted product (HX).
This journal is © The Royal Society of Chemistry 2022
F + X 0 R + HX (R1)

Propagation.Once fuel radicals (R) are generated, O2 can add
directly to the radical and form a new oxygenated radical (ROO).

R + O2 0 ROO (R2)

The resultant ROO radical is highly reactive and can quickly
undergo various isomerization or HO2 elimination reactions.
More specically, a hydroperoxyl radical and an unsaturated
molecule can be formed via a concerted reaction of the ROO.
The predominate isomerizations involve an internal hydrogen
abstraction to form a new radical species denoted QOOH, as the
parent R radical has now donated an H-atom to the peroxyl site.

ROO 0 HO2 + unsaturated molecule (R3)

ROO 0 QOOH (R4)

Should QOOH form, that too can undergo further reactions.
Like the ROO, the QOOH can eliminate a hydroperoxyl radical
to form an unsaturated molecule, or it can undergo a concerted
reaction to eliminate a hydroxyl radical and form a cyclic
molecule. The QOOH can also undergo a 2nd O2 addition to
form OOQOOH which can further decompose to a keto-
hydroperoxide molecule (KHP) and hydroxyl radical.

QOOH 0 HO2 + unsaturated molecule (R5)

QOOH 0 OH + cyclic molecule (R6)

QOOH + O2 0 OOQOOH (R7)

OOQOOH 0 KHP + OH (R8)

The competition between reactions forming HO2, a some-
what reactive ame radical, and those forming OH, a highly
reactive ame radical, can directly drive the ignition behavior of
a fuel. Fuels that favor R3 and R5 over R4 and subsequent
reactions R6–R8, tend to react slower than those that favor the
OH-forming pathways. The correlation between ignition speed
and predominant radical formation may be seen in fuels
exhibiting negative temperature coefficient (NTC) behavior, in
which a fuel's ignition tendency deviates from a linear behavior
with temperature. Typically, a fuel's IDT decreases (ignition
becomes faster) as temperature rises, as reactions generally
become faster with elevated temperature. However, for some
fuels as temperature increases, the competition between R3 and
R4 can swing more in the favor of R3, resulting in non-linear
ignition delay time versus temperature behavior.40. Normal
alcohols can display this type of behavior. N-butanol does not
exhibit NTC-behavior,41,42 whereas n-pentanol is the smallest
linear chain alcohol that shows NTC-behavior at low and
intermediate pressures.43–45

Given the high interest in renewable low carbon alcohols
produced from biomass, many alcohol combustion models
have been developed as reviewed by Sarathy et al.46 Many of
Sustainable Energy Fuels, 2022, 6, 5371–5383 | 5373
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these mechanisms do perform well for certain combustion
conditions but very notably, Sarathy et al.46 highlights the lack
of data available for the important low-temperature chemistry
reactions, specically R2–R8 for many alcohol fuels. Further-
more, these initial low-temperature oxidation reactions are
highly pressure dependent and can directly inuence ignition
behavior.

For n-butanol ignition kinetics, although studies have pre-
sented experimental ignition delay time (IDT) data,42,47–53 an
even smaller subset include temperatures for which low-
temperature chemistry is dominant (T < 1000 K).42,51,53,54 In
their review, Sarathy et al.46 point out the difficulty of building
comprehensive models that can capture low-temperature
oxidation, NTC behavior, and high-temperature combustion.
Only a handful of mechanisms exist containing the highly
pressure and temperature sensitive peroxy chemistry which
governs auto-ignition in the low-temperature regime for n-
butanol.42,54–56 To the authors' knowledge, only one study has
directly investigated the oxidation of the hydroxybutyl radicals.
Welz et al.57 used multiplex tunable synchrotron photoioniza-
tion mass spectrometry in conjunction with potential energy
surfaces for the decomposition of each ROO and the subse-
quent QOOH radicals to uncover the dominate pathways. No
theoretically based reaction rates for the low-temperature
oxidation of n-butanol have been published up to this point.
Thus, in the models that include this chemistry,42,55–57 rates for
the peroxy decomposition reactions were assigned using esti-
mation methods based on theoretical work for alkane58,59 or
ethanol oxidation.60 The most recent model by Saggese et al.55

also incorporates updated thermochemistry and reaction rates
for n-butanol H-abstraction chemistry based on theoretical
work.

N-pentanol has received less attention in the literature than n-
butanol, especially regarding its low-temperature oxidation
chemistry. In 2011, Togbé et al.61 proposed a kinetic model, for n-
pentanol validated by experiments in a jet stirred reactor and
combustion bomb, at intermediate temperatures (800 K–1200 K).
Their mechanism is based on adapting models for smaller
carbon alcohols to include n-pentanol chemistry by employing
group additivity methods. Modications to rate constants in this
mechanism were done in 2013 by C. Tang et al.62 and were esti-
mated by an n-butanol mechanism.63 In a 2013 experimental
study44 and 2017 theoretical study,64 attempts were made to
correlate structural features to ignition phenomena. Work done
in 2013 by Heufer, Bugler, and Curran,44 studied the reactivity
between n-alcohols and n-alkanes and also considered carbon
chain length. In 2012, Heufer et al.43 developed a mechanism
covering the low and high temperature oxidation of n-pentanol
using modeling rules previously published for n-butanol.65,66

More recently, Pelucchi et al.56 published a lumped kinetic model
containing oxidation and pyrolysis chemistry for the n-C3–C6

alcohols including n-pentanol. A follow up paper67 included new
experimental data for this subset of alcohols including new low-
temperature rapid compression machine ignition delay times.
Two theorical studies focusing on the 1–hydroxy–1-pentyl radical
+ O2 pathway to form the 1–hydroxy–1-peroxypentyl radical have
been published.65,66 Bu et al.,65 focusing on a wider range of
5374 | Sustainable Energy Fuels, 2022, 6, 5371–5383
oxygenated C5 molecules, used theoretical methods to calculate
bond dissociate energies and energetics for the decomposition of
the 1–hydroxy–1-peroxypentyl radical presented in the form of
a potential energy surface. Duan et al.45 used high level ab initio
calculations resulting in rate constants for the decomposition
of one ROO formed during the low-temperature oxidation of n-
pentanol.

Results and discussion
Approach

In this section we will outline and elaborate on our process of
applying computational chemistry calculations and kinetics
tools to gas phase organic chemistry problems for chemistry
informed design applications. This goal is achieved through
building predictive gas-phase chemical mechanisms faster and
less computationally intensive using state of the art semi-
automated chemical tools and linking the predicted chemical
reactivity to underlying chemical structure information. Our
process may be described in 7 steps as outlined in Fig. 1.

To illustrate the process, we will describe each step and then
provide a specic example from our current work on either n-
butanol or n-pentanol when relevant. Of note, Steps 2–6 are
completed without the inuence of target experimental data
sets (e.g., ignition delay times). As such, the results of Step 7 are
presented without modication, highlighting the predictive
value of our methodology. This contrasts with the common
practice in combustion modeling to adjust reaction rates to
achieve better ts to experimental data.

Step 1: down selection of reaction system to study. To begin
our approach to mechanism development, we must rst iden-
tify which reaction classes are highly sensitive or important to
the accuracy of the prediction targets. This focuses the high-
level quantum chemistry calculations only to targeted reac-
tions that will have the biggest effect on the accuracy of the
target parameter, thus saving computational time and cost. The
approach is widely applicable for a variety of parameters, each
having their own set of sensitive reaction classes. For example,
if the primary interest was to predict accurate ame speeds,
modeling efforts would best be focused on the reactions most
important for heat release. In the case of low-temperature
ignition, there are two primary sets of chemistry to consider:
ignition initiation (R1) and propagation (R2–R8).

Initiation steps. As stated earlier, two primary reaction classes
are responsible for ignition initiation: unimolecular decompo-
sition reactions and H-abstraction reactions. These initial
reactions are highly important because they determine which
radicals are likely generated, which determines the composition
of the initial radical pool fromwhich the ROO radicals form. For
n-butanol and n-pentanol there are 5 and 6 possible fuel radi-
cals respectively that can form via abstraction (Fig. 2), each of
which can form a unique ROO species and undergo subsequent
series of reactions. Not all radicals will be favored to form, so
determining the most favorable abstraction sites up front will
help reduce the computational work scope.

Thermal decomposition is unlikely to play a signicant role
in ignition initiation for alcohols under low-temperature
This journal is © The Royal Society of Chemistry 2022
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Fig. 1 A process flow diagram of the 7-step theoretical methodology
described in this work.

Fig. 2 Schematic mechanism of the formation of the n-butanol (top)
and n-pentanol (bottom) peroxy radicals examined in the current
work. The hydroxybutyl and hydroxypentyl radicals in red were not
explored further due to their high abstraction energy barrier deter-
mined from the experiments and literature data.
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ignition conditions since the reaction energy thresholds for
thermal decomposition reactions are high. This means
abstraction reactions are most likely the only class of initiation
reactions of importance. A literature search revealed several
studies in which rates for abstraction reactions for n-butanol
and n-pentanol were determined. Galano et al.68 studied
abstraction reactions of n-butanol via hydroxyl radical. In their
study, high delity rates calculated at the CCSD(T)//
BHandHLYP/6-311G(d,p) level of theory were calculated over
the 298–500 K temperature range. The calculations were later
updated by Seal et al.69 using the M08-HX/MG3S level of theory
over a wider temperature range of 200–2400 K and were
This journal is © The Royal Society of Chemistry 2022
compared directly against experiment. Focusing on the updated
theory, abstraction from the a-site (carbon next to the hydroxyl
group) is favored, with up to 70% of all abstraction occurring
from that one location. Abstraction from the b- and g-carbons
are next most favored, followed by the terminal d-carbon. In
another study, Welz et al.58 combined quantum chemistry
calculations and multiplexed tunable synchrotron photoioni-
zation mass spectrometry (MPIMS) experiments to nd active
pathways in 4 of the 5 possible ROO radicals denoted ROO1
through ROO4 in Fig. 2. This combined with the knowledge that
O2 is unlikely to add to an O-atom under the temperature
conditions relevant to ignition, leads to the conclusion that only
4 of the 5 fuel radicals may play an active role for ignition.

More limited information is available on n-pentanol
abstraction reactions. Bond dissociation energy calculations
performed by Heufer et al.43 at the CBS-QB3 level of theory
shows the O–H bond is the higher than all other C–H bonds by
3.4 kcal mol−1. Following similar logic as with n-butanol,
abstraction from the hydroxyl site is unlikely to play a role in the
low-temperature oxidation chemistry, thus the resultant fuel
radical does not need to be explored computationally. The
kinetics of eight linear chain alcohols + OH including n-penta-
nol were examined theoretically70 and found the H on the a-
carbon to be the most easily abstracted for all eight alcohols.
This suggests the a radical will play a dominate role and should
be included in our study. Sarathy et al.46 used these studies to
select rates for n-pentanol + OH and suggested that the a, g, and
d fuel radicals form most oen. However, in a theoretical study
by Aazaaad & Lakshmipathi,71 the abstraction reaction energy
barriers for three pentanol isomers were calculated using M06-
2X/6-311+G(d,p). Their work suggests the barrier to form the b-
radical is the lowest followed by the a, g, and d but did not
calculate rate constants. Taking all this into account, the a, b, g,
and d fuel radicals for n-pentanol were deemed of importance.
Sustainable Energy Fuels, 2022, 6, 5371–5383 | 5375
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All eight studied radicals for our two parent fuels and their
associated ROO species are highlighted in Fig. 2.

Step 2: identication of reactions of importance. Aer nar-
rowing down the number of fuel radicals, we begin the
computational work to explore the next step in the low-
temperature oxidation chemistry, the formation of ROO radi-
cals via R2, and their subsequent reactions R3–R6. Preliminary
potential energy surfaces (PESs) were calculated for each ROO
and QOOH using KinBot.25 KinBot is a python-based code
developed out of Sandia National Laboratory which automates
reaction searches to generate PESs. One major time sink, even
for an experienced kineticist, is correctly identifying all possible
pathways and the geometries of the transition state structures.
KinBot signicantly speeds up this process by identifying most
possible reactions under a dened reaction threshold and
providing optimized geometries for all stationary points on the
PES. In this context, KinBot allows us to rapidly obtain a basic
understanding of how the ROO radicals would decompose
while reducing the likelihood that a reaction step would be
omitted erroneously.

In addition to identication of the starting molecule of
interest, two key parameters must be identied for the simu-
lations: the level of theory at which the scan should be per-
formed, and the cutoff threshold for which reactions to include.
For this work, KinBot scans were run at the B3LYP/6-311++G*
level of theory. This method was chosen for its computational
speed and accuracy compared to other density functional
methods. To test whether our method selection was important,
KinBot was run at three other levels of theory for a job with
seven heavy atoms (i.e., atoms other than H-atom), the results of
which are shown in Fig. 3. In addition to the B3LYP/6-311++G*
level of theory, we chose the same level of theory with a smaller
basis set (B3LYP/6-31+G*), a more sophisticated method with
the same basis set (MP2/6-311++G*), and the level of theory we
Fig. 3 Computational time study of a KinBot job with seven heavy
atoms. The same job was run at four unique levels of theory to discern
the tradeoff of accuracy vs. computational time. The KinBot job was
set up to only perform a reaction search without rotor scans or
conformer searches activated.

5376 | Sustainable Energy Fuels, 2022, 6, 5371–5383
typically perform our geometry and frequency calculations at
(M06-2X/cc-pVTZ). The M06-2X method has been demonstrated
to perform better than B3LYP and other DFTmethods for a wide
variety of molecule classes and calculation types.72,73 All other
parameters within the KinBot input les such as reaction
threshold (60 kcal mol−1 in this work) were kept identical. The
computational time study demonstrated the signicant time
savings achieved using a lower level of theory like B3LYP/6-
311++G* which took only 16 days of CPU time compared to the
ideal level of theory M06-2X/cc-pVTZ which took over 120 days
of CPU time to complete the same job. The MP2/6-311++G* took
about 35 days of CPU time but missed many important reac-
tions altogether. For this reason, it was eliminated. Based on
this time study, we found it more efficient to run KinBot at
a lower level of theory and rene the important pathways
manually. Additional details of the settings and features used in
our KinBot jobs can be found in the ESI.†

Step 3: calculation of lowest energy conformers. Aer
selecting the important reactions from the preliminary KinBot
PESs, the next step is to rene the surfaces and calculate the
lowest energy conformers of all stationary points involved. A
basic KinBot scan does not consider whether the identied
molecules and transition states are in the optimal congura-
tion. And while KinBot has an option to perform a conformer
search, the process can be computationally expensive and
cannot be performed reasonably at higher levels of theory. To
address these pitfalls, we use the KinBot results as a starting
point to recalculate each reactant, product and transition state
under our cutoff threshold using Gaussian 1674 at the M06-2X/
cc-pVTZ level of theory.

Once the initial geometries were found with the M06-2X/cc-
pVTZ level of theory, relaxed 1-D hindered rotor scans were
performed at the same level of theory, scanning every 10 degrees
for 360 degrees on all rotatable bonds (Fig. 4). We have devel-
oped codes in house that identies rotors and runs relaxed
scans, though these sometime require user intervention if the
automated method fails to return to the initial geometry point.
Fig. 4 An example output of a relaxed 1-D hindered rotor scan
demonstrating how the energy of the molecules changes as single
bonds are rotated. This particular scan shows the relative energy in kcal
mol−1 of the n-butanol ROO1 while rotating the C3H7 group 360
degrees. These are necessary for accurate reaction rate constant
calculations. Additionally, they serve as a tool to help confirm the
lowest energy conformer has been found for each stationary point.

This journal is © The Royal Society of Chemistry 2022
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Additional codes check for minima below the initial rotor
energy in rotor scans and rerun rotor scans to conrm lowest
energy conrmers. Another code takes the minimum energy
structure and runs high delity energetics calculations from
that, and a nal code can take the various inputs and put
together a skeleton Master Equation System Solver (MESS) le
for reaction calculations. The scans provide energy potentials
for bond rotations relative to the minimum energy geometry
which is used to help describe the internal rotational motion of
the molecule in the rate constant calculations. The hindered
rotor scans also help conrm the lowest energy conformer has
been identied. If a lower conformer is identied, the new
geometry becomes the starting point, and the hindered rotor
analysis is repeated.

Step 4: extrapolation to higher delity energetics. Once the
geometry optimization and rotors are complete, single point
energy calculations are performed for all stationary points using
a coupled cluster method (CCSD(T)) by extracting the geometry
from the lowest energy conformer calculations. This method
can have a chemical accuracy of ∼0.3 kcal mol−1 when paired
with a basis set of the appropriate size making it one of the most
accurate methods currently available. Molecule size and the size
of the basis set have a signicant effect on the time required to
complete the single point energy calculations. Due to the
number of heavy atoms in the peroxy radicals, the CCSD(T)
calculations become exponentially more time-intensive and
expensive as basis set size increases. For example, a seven-
heavy-atom ROO species took 1 CPU hour with the cc-pVDZ
basis set, 31 CPU hours with the cc-pVTZ basis set, and 723
CPU hours using the cc-PVQZ basis set. For these reasons the cc-
pVDZ and cc-pVTZ basis sets were chosen to estimate the
innite basis set via extrapolation.75,76 If this technique were
being applied to smaller molecules, the authors recommend
using larger basis sets for the extrapolation to produce even
more accurate energies. The nal energies are used to construct
nalized potential energy surfaces for each ROO through the
subsequent QOOH decompositions an example of which is
shown in Fig. 5.
Fig. 5 An example potential energy surface showing the results from
KinBot for the ROO-1 radical of n-butanol. Energies of the ROO and
QOOH wells are shown in blue, OH producing routes shown in green,
and HO2 producing routes shown in red. Energetics from Welz et al.58

are given in [brackets] for comparison.

This journal is © The Royal Society of Chemistry 2022
The extent of the multi-reference characteristic was checked
for each stationary point using the T1 diagnostic which is
a measure of multireference effects. Typically, structures gov-
erned by strong electron correlation effects can have high T1
diagnostic values.77 If the T1 diagnostic was below 0.2 for stable
species or 0.3 for radical species, single reference methods were
suitable for those molecules. For the best accuracy, stationary
points with higher T1 diagnostic values should be treated with
multi-reference methods, but because this hybrid method is
replacing rates developed with estimation methods, we expect
the errors associated with not using multi-reference methods to
be on the par with the errors associated with the estimation
methods themselves.

Zero-point energy correction factors from the density func-
tional theory (DFT) calculations were included in our nal
energies calculated at the CCSD(T)/cc-pVNZ//M06-2X/cc-pVTZ
level of theory. These energies were then used to produce
more accurate PESs for each ROO radical in this study. The
described process was repeated for QOOH radicals including
reactions with formation barriers below the R + O2 energy
barrier. Upon completion of the PES, the reactions were re-
examined to determine if more reactions could be eliminated
from the rate constant calculations, hence requiring user input.
Using a combination of energetics and preliminary rate
constant calculations, specic QOOH decomposition pathways
5 kcal mol−1 higher than the R + O2 energy barrier were elimi-
nated from the nal rate constant calculations. These pathways
were unlikely to be active at the low temperatures where this
chemistry is dominate. Removing these pathways from the rate
constant calculations help stabilize the rates and further reduce
unnecessary computational work. A detailed comparison of the
calculated energies and those found in the literature45,58 can be
found in the PESs in the ESI.†

Step 5: determination of reaction rate constants. Rate
constants were evaluated using the MESS78 code developed at
Argonne National Laboratory to generate new pressure and
temperature dependent rate constants. Solving the master
equation gives the time evolution of the probability of a mole-
cule existing in a specic state. This step is performed on
a semi-automated basis. All relevant molecular information
including geometry, frequencies, energetics, and rotor infor-
mation were directly extracted and assembled into a skeletal
input le using an automated code. All other inputs require
direct user interaction such as collider information and
symmetry. To model the collisional energy transfer and accu-
rately describe the ability of a molecule to be energized or de-
energized with pressure-related collisions, a value of <DEd> =

200 cm−1(T/298 K)0.85 was used for the collider, N2. Eckart
tunneling corrections were included for all appropriate chan-
nels which helps correct the rate constants to account for the
small probability associated with a molecule tunneling through
an energy barrier instead of gaining enough energy to go over it
in the traditional manner. Lennard Jones parameters for each
ROO and thermochemistry for new species (not included in the
base mechanism) were estimated using the RMG soware.21

Rates were calculated between pressures of 0.01 and 100 atm
and temperatures between 300–1500 K (in 100 K intervals). All
Sustainable Energy Fuels, 2022, 6, 5371–5383 | 5377
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Fig. 6 Measured (symbols) and simulated ignition delay times of n-
butanol and n-pentanol at f = 1.0. N-butanol: RCM data from Agbro
et al.80 at 20 bar (black) and RCM data fromWeber et al.51 at P = 30 bar
(green). N-pentanol: ST data from Heufer et al.43,44 at 30 bar (red) and
RCM data at P = 19 bar (blue). The original alcohol n-butanol base
mechanism from Saggese et al.55 is represented by the dotted lines,
and the reduced n-pentanol base mechanism from Sarathy et al.46 by
the dashed lines. The current models produced in Step 6 are repre-
sented by the solid lines.
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rates generated in this work are presented as a function of
pressure using a standard PLOG format accepted by Chemkin81

which uses logarithmic interpolation to calculate the rate
between specied pressure values. A full list of rate constants
calculated in this work along with a species glossary can be
found in the ESI.†

Step 6: assembly of reaction mechanisms. The calculated
rates for the ROO and QOOH decomposition pathways, for both
alcohols, deemed important by the PESs and rate constant
calculations were compiled into two sub-mechanisms, one for
each alcohol. Only rates with non-zero branching ratios, dened
as the rate constant of a reaction divided by the sum of all other
rate constants for reactions with the same reactants, were added
to the mechanisms for modeling purposes. In the end, a total of
31 species and 32 reactions for n-butanol and 35 species and 37
reactions for n-pentanol were calculated to complete our low-
temperature ignition sub mechanisms. Our calculated n-
butanol reaction rates were added to a n-butanol reaction
mechanism from Saggese et al.55 for demonstration using the
mechanism merging tool within Chemkin Pro.81 The Saggese
et al.55 mechanism contains updated low-temperature and
abstraction chemistry for C3 and C4 linear and iso-alcohols and
was able to simulate shock tube and RCM data. For n-pentanol,
a reduced mechanism from Sarathy et al.46 was used as the base
mechanism since it is one of the few mechanisms that contains
low-temperature reactions rates of n-pentanol oxidation.

The product of this method is truly a sub-mechanism. In this
case, we used Chemkin's81 mechanism merge tool but several
tools exist to merge mechanisms on the condition your chem-
ical naming scheme is consistent with whatever base mecha-
nism you wish to merge it into. We did not attempt automatic
merging as most literature mechanisms have variable species
naming schemes which are oen not explicitly explained in
universal chemical naming methods (e.g., InChI or SMILES). In
this way it can be highly exible, as the limitation of where the
sub-mechanism ends is the user's choice.
Results

Step 7: validation and application of mechanisms. To assess
the accuracy of our methodology for comprehensive gas phase
kinetic model generation, the resultant sub mechanisms were
used to directly predict the ignition behavior of n-butanol and n-
pentanol mixtures over a wide range of conditions. A variety of
literature experimental data sets were selected to predict the
delay in the onset of ignition from the time of gas compression,
including data sets from shock tube (ST) and rapid compression
machine (RCM) apparatuses. The experimental conditions
cover a pressure range of 10–30 bar and a temperature range of
670–1210 K, which are within the range of typical engine
operating conditions. In all cases, the fuel and oxidizer were
held at stoichiometric fuel loading conditions, which indicate
exactly enough oxidizer was present for complete fuel
combustion.

Of note, the ignition behavior from a ST is fundamentally
different than that observed in an RCM. For an RCM, low-to-
intermediate temperature auto-ignition response is observed.
5378 | Sustainable Energy Fuels, 2022, 6, 5371–5383
In Fig. 6, experimental RCM data for n-butanol include the
compressed air driven single piston University of Leeds RCM79

measurement data at P = 20 bar, and the heated dual piston
RCM data at 30 bar.51 For n-pentanol, the RCM ignition delay
times at 19 bar43 measured in the twin-opposed piston RCM
conguration from NUI Galway80 were used for model valida-
tion. Also, for n-pentanol, ST data was selected for comparison
from Heufer et al.44. However, ST experiments are most relevant
for high-temperature auto-ignition measurements. The two sets
of experiments combined probe ignition across most engine-
relevant temperatures.

The next step involved direct application of the newly
generated n-butanol and n-pentanol models to these experi-
mental data sets. The constant and variable volume closed
homogeneous ignition delay module of Chemkin-Pro81 was
used as the numerical simulation tool in this study. The pres-
sure histories from oxygen-driven non-reactive tests were used
to generate the volume histories necessary for all the RCM
variable-volume ignition delay simulations to account for
facility effects regarding heat loss in the experiments. The
simulated ignition delay time for RCM measurements was
dened as the time between the end of compression and the
maximum slope of the pressure rise at ignition. On the other
hand, the simulated shock tube ignition delay time is simply
dened as the time to reach the maximum rate of change in
pressure, (dP/dt)max. For performance comparison, two sets of
simulations were conducted. The original base mechanisms46,55

were used to demonstrated baseline performance of the models
and compared directly in Fig. 6 to the new kinetic mechanisms
generated in Step 6.
This journal is © The Royal Society of Chemistry 2022

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2se00773h


Fig. 7 Sensitivity analysis of the ignition of n-pentanol with conditions
of Tc = 740 K, Pc = 30 bar at Phi = 1.0. The top 5 most positively and
negatively sensitive reactions of the reduced Sarathy et al.46 mecha-
nism (red) and current mechanism (black) are included. Since this was
a temperature A-factor sensitivity, a positive coefficient corresponds
to an increase in temperature, thus a faster IDT. The reactions in red
text are those that were calculated in the current work.
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Model performance for ignition delay time predictions

Upon inspection of the simulation results in Fig. 6, we begin to
see deviations between predicted IDTs between our newly
generated models from Step 6 (solid lines) and the base
models46,55 predictions (dashed lines). For n-butanol we see the
updated model predicts longer IDTs than the Saggese et al.55

base mechanism across all pressures and temperatures. Inter-
estingly, for n-pentanol there is much less deviation between
the base and updated model predictions. Upon rst glance, the
differences noted between the model predictions may seem like
an indication that our updated mechanisms are not capturing
ignition behavior correctly. The reason for these discrepancies
is two-fold. First, the original mechanisms were developed
specically to model these data sets. Generally, for mechanisms
such as these, kinetic rate constants are adjusted within
uncertainty parameters to match the experimental data sets as
best as possible. This may be done either by purposely choosing
the rate constants when multiple rates are available in the
literature for ideal data tting, selecting molecules to which rate
constants may be estimated by analogy that have rates bene-
cial for data modeling, or through manual adjustment of A-
factors within the rate constant's perceived uncertainty
bounds until an acceptable t is reached. While these are all
valid approach to kinetic modeling, manual “tuning” of models
to experiments may have impacts on accuracy for temperature
and pressure regions outside of the validation data range.
Hence, it is a signicant advantage that our new kinetic models
are created completely agnostic of adjustment to data sets. The
overall good agreement highlights the power of the theoretical
approach outlined in this work to achieve similar accuracy
without any adjustment.

The second reason for the discrepancies centers around the
newly calculated reaction rate constants and those within
original n-butanol55 and n-pentanol46 mechanisms themselves.
A rst order sensitivity analysis can be used to indicate in
a mechanism which reactions have the largest parameter effect
in ignition predictions. In the rst order sensitivity analysis, the
A-factor in a rate constant Arrhenius expression is multiplied by
a factor of 2, and the model results are compared to the
unperturbed model. This process is sequentially performed for
each reaction rate. Then the change in the model parameter of
choice (in this case IDT) are normalized, giving the sensitivity
coefficient. Thus, the largest (most positive) sensitivity coeffi-
cients indicate which reactions most speed up the overall
ignition delay time, and in effect promote ignition, while the
smallest (most negative) sensitivity coefficients indicate which
reactions slow the IDTs most, and in effect inhibit ignition.

Fig. 7 shows an example sensitivity analysis performed at
a temperature of 740 K for the 30 bar stoichiometric n-pentanol
data set. The blue reactions in Fig. 7 indicate reactions which
were directly calculated as part of this work. Two reactions in
particular have an inuence on the model results for n-penta-
nol. O2 addition to a fuel radical (C5H10OH + O2 = PC4H9CHO +
HO2) for example was the second most responsible reaction for
retarding IDT in the Sarathy et al.46 mechanism but was found
to be inconsequential with our more accurate theoretical
This journal is © The Royal Society of Chemistry 2022
mechanism development. Another example is the decomposi-
tion reaction of a QOOH radical back to a fuel radical + O2

(C5H9OH–4OOH = C5H10OH + O2), which was not included in
the original model, but was found to be sensitive for retarding
IDT in the new mechanism. These directly show how mecha-
nistic differences exist in between the original and new models.
The reactions in black text in Fig. 7 are those that are
unchanged between the two models, however, still show
signicant deviations in relative magnitude of sensitivity.
Indirectly, this is a measure of the differences in the reactivity of
the resultant R + O2 cascade. The sensitivity analysis indicated
that in our model, the b-pentanol radical has less of an inu-
ence on IDT predictions due to the subsequent decomposition
chemistry being altered. Thus, the relative sensitivity of the rate
limiting reactions to form the b-pentanol radical are relatively
less sensitive than in the original Sarathy et al.46 n-pentanol
mechanism.
Linking observable NTC ignition behavior to chemical
structural features through model framework

Of particular interest is the ability of both models to capture
negative temperature coefficient (NTC) behavior, or lack
thereof, observed experimentally. In n-butanol, almost no NTC
behavior is experimentally observed, with the two data sets
showing near linear ignition versus temperature behavior. This
is true for other ignition data outside of those presented in
Fig. 6.48,50,52,53 For n-pentanol however, signicant NTC behavior
is observed, best highlighted by the ST data from Heufer et al.44

and is exceptionally well captured by our newly developed
kinetic model.

The fundamental chemical foundation of our newly devel-
oped models allows us to link the observation of NTC behavior
with the extension of the alkyl chain in n-butanol to n-pentanol
Sustainable Energy Fuels, 2022, 6, 5371–5383 | 5379
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Fig. 8 Rate of production plot for n-pentanol in air combustion at P= 30 bar and a fuel equivalence ratio of 1.0. Blue arrows indicate shock tube
model results at 740 K, black arrows at 900 K. Arrow thickness indicates the relative magnitude of the total reaction flux to each individual
product.
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using a reaction ux analysis of n-pentanol as shown in Fig. 8. In
this gure, the net reaction ux for all reactions linking the two
sets of molecular species between each arrow is calculated and
normalized relative to the reaction ux from n-pentanol to the
largest yield product, the a-pentanol radical. The thickness of
each arrow in Fig. 8 correlates to the total ux, which is also
reported in cumulative percentages on the gure. Finally, the
two colors indicated two different experimental simulation
points for the 30 bar, p= 1.0 n-pentanol in air simulations; blue
is 740 K, at the onset of NTC behavior, black is 900 K, as NTC
behavior is about to end. The differences in the magnitude for
each set of arrows highlight how temperature affects the
chemistry of n-pentanol, changing the radical cascade. The
chemistry of the a-pentanol radical, for example, has some
differences between the percentage of R + O2 resulting in
formation of a-ROO versus direct HO2 elimination. However, the
temperature effects on whether R + O2 forms a-ROO or HO2

directly, has almost no difference in the chemistry since all of
the a-ROO radical forms the same products as the direct HO2

formation.
A stark difference is noted in the reactions originating from

the d-pentanol radical. As stated earlier, HO2 and OH are both
readily formed by O2 addition to a fuel radical and its subse-
quent reactions. While both radicals contribute to propagating
chemistry leading to ignition, HO2 is notably less reactive than
OH, so an increase in OH production would decrease IDT, and
vice versa. The addition of the d-pentanol CH2 group is the
unique structural difference between n-butanol and n-pentanol.
Closer inspection of the reactions resulting from the d-pentanol
radical reveals why NTC behavior is observed in n-pentanol and
5380 | Sustainable Energy Fuels, 2022, 6, 5371–5383
not in n-butanol. At temperatures just below the onset of NTC
behavior, nearly all the d-pentanol radical is consumed via O2

addition reactions, resulting in the typical ROO chemical
cascade which ultimately forms reactive HO2 and OH radicals.
However, at temperatures where NTC behavior is active, one
notable difference is that the b-scission to propene + vinyl
alcohol radical or isomerization and b-scission to formaldehyde
and C4H9 radical have become the dominant two sets of prod-
ucts, reducing the number of reactive radicals produced. The
result is an 84% reduction in HO2 production pathways and
81% reduction in OH production pathways from the d-pentanol
radical. Hence, we can tie the origination of NTC behavior in n-
pentanol specically to the d-CH2 group.
Conclusions

The rapid development of accurate kinetic models for sustain-
able, low carbon energy gas phase reactions is a growing need in
the chemicals and fuels community as we continue to search for
renewable fuels and chemicals that have advantaged properties
for specic market applications. This work outlines a exible
semi-automated theoretical method that can predict gas phase
chemical behavior agnostic of experimental data which can be
used to extrapolate insights between chemical structure and
observable behaviors. This study highlights how recent devel-
opments in automated chemical kinetics tools can be leveraged
for a complicated gas phase system: renewable fuel combus-
tion. In this manuscript we highlighted which steps and
approaches are automated and which require user input.
Specically, the updated models generated with our outlined
This journal is © The Royal Society of Chemistry 2022

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2se00773h


Paper Sustainable Energy & Fuels

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
O

ct
ob

er
 2

02
2.

 D
ow

nl
oa

de
d 

on
 7

/2
3/

20
25

 1
:0

0:
01

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
methodology allowed for linear alcohol ignition delay time
predictions capturing both the non-NTC behavior of n-butanol
and the NTC-behavior of n-pentanol without adjusting to t
experimental data. This technique also allowed for insights into
the chemical reasoning as to why the extension of the alkyl
chain in n-butanol to n-pentanol signicantly changed ignition
chemical behavior, highlighting the importance of the d-pen-
tanol fuel radical in the NTC region.

While this work was demonstrated in the context of advan-
taged low carbon biofuels and accurate prediction of ignition
delay times, we want to highlight the versatility and utility of
this method to gas phase reaction systems. Our outlined
approach can be applied in a wide range of gas phase chemical
systems to develop predictive kinetic models. Perhaps more
importantly, the rigorous fundamental techniques used in
developing the kinetic models provide the information needed
to extract molecular insight on why chemical behaviors are
observed in real world applications, truly linking molecular
properties to global observables. This feature is a powerful link
that can be leveraged for rational chemical design in any
number of gas-phase reaction applications towards addressing
decarbonization such as CO2 reduction and utilization
approaches.
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36 I. O. Antonov, J. Zádor, B. Rotavera, E. Papajak, D. L. Osborn,
C. A. Taatjes and L. Sheps, J. Phys. Chem. A, 2016, 120, 6582–
6595.

37 B. Rotavera, J. D. Savee, I. O. Antonov, R. L. Caravan,
L. Sheps, D. L. Osborn, J. Zádor and C. A. Taatjes, Proc.
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