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Since the first application of a metal halide perovskite (PVK) absorber in a solar cell, these materials have
drawn a great deal of attention in the photovoltaic (PV) community, showing exceptional rapid progress
in power conversion efficiency. The potential advantages of high efficiency, easy
processability, and wide range of applications make PVK solar cells (PSCs) a desirable candidate for

low-cost,

future uptake in the PV market over traditional semiconductors such as silicon. Furthermore, PVK thin-
film technology holds a concrete potential to closely approach the theoretical efficiency limit for single-
junction solar cells via unique control of the optoelectronic properties. However, for a disruptive
breakthrough of PVK technology from fundamental research to industry, systematic research efforts are
required to unravel the poor long-term stability and to reach a reliable large area fabrication process. In
this review, we examine in detail recent progress on large-scale PSCs and we discuss challenges for

. 4 7th July 2021 commercialization touching upon the following aspects: material properties, fabrication technology, and
eceived 7th July . T . - -
Accepted 24th November 2021 industrialization challenges. Besides, the long-term stability and efficiency of large-area PSCs as well as

PVK-based two-terminal tandem devices are discussed. In addition, strategies for PSC upscaling are

DOI: 10.1039/d1se01045) further studied for scalable deposition technologies. Finally, we review the most recent literature on

Open Access Article. Published on 01 December 2021. Downloaded on 2/7/2026 11:08:12 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

rsc.li/sustainable-energy

1. Introduction

Photovoltaic (PV) technology converts solar energy into elec-
tricity. Over the last seventy years, many different absorber
materials and device architectures have been developed result-
ing in high power conversion efficiencies (PCEs). Among them,
crystalline silicon (c-Si) and so-called III-V solar cells have
demonstrated high efficiencies and a mature level of develop-
ment. Currently, c-Si solar cells dominate more than 90% of the
PV market share' because of cheap raw materials, long stability,
and well-established technology. However, the limitation of c-Si
PV is the complex fabrication process as well as high require-
ments for wafer quality, which increase the fabrication cost and
hinder further commercialization of high-efficiency architec-
tures.”* The promise of emerging thin-film PV technology is to
cost-effectively fabricate high-quality semiconductor materials
by simpler deposition processes and reducing the amount of
material used.

Over the last decade, organic-inorganic metal halide perov-
skite (PVK) has attracted much attention in the PV research
community, after Kojima et al.® discovered in 2009 the ability of
PVK to convert the energy carried by sunlight into electricity.
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costs and environmental assessment.

The reasons behind the success of PVK can be ascribed to its
exceptional electrical properties with direct bandgap and high
absorption coefficient, long carrier diffusion length, tuneable
bandgap by compositional engineering, and simplified depo-
sition process. With these outstanding properties, PVK solar
cells (PSCs) have been developed rapidly, demonstrating in only
a decade, albeit on a sensibly smaller device area, PCEs
approaching those recorded by solar cells based on c-Si.*

However, compared to c-Si, PVK technology still has two
main drawbacks namely device stability and device upscaling.
These two factors directly determine the steps toward
commercialization. Pinholes and defects existing in thin films
have a negative impact on photoelectric properties”® and their
influence becomes more severe for an effective lab-to-fab tran-
sition.” To address this problem, various scalable deposition
strategies are employed for each layer of the PSC to obtain high-
quality films and excellent device properties. Challenges in
device stability, as well as cost including environmental impact,
are all crucial topics of relevance for the PV industry.

In fact, PVKs suffer from different degradation pathways
related to temperature,’™ humidity,"”>** composition,™ and
light.">'* This leads to decomposition of the material and
decrease of performance as time goes on. Several
approaches'*° have been explored to prevent this reduction in
performance. Recently, PVK degradation mechanisms have
been reported® and different materials are tested to replace less
stable systems.?> Up to now, large-scale (100 cm?) PSCs show
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promising stabilities.>*** Nevertheless, there is still a long way
towards commercialization, especially compared with c-Si PV.
An approach to control degradation deals with tailoring the
nature of the PVK lattice by using various cations® and halide
anions.”*”” Other strategies comprise functionalizing the PVK
material to improve stability.*®

Although there are numerous challenges, the progress of
PSCs towards commercialization is unprecedented in the PV
community. Many technologies are demonstrated to be suitable
for scalable film deposition, which can produce each layer of
PSC with high film quality. With the application of various
strategies, such as precursor engineering and interfacial engi-
neering, the efficiency for large area devices has been largely
improved. PSCs with an active area of more than 57 cm” have
been fabricated with a certified PCE of 14.6%.>°

Besides, PVK is also employed as at least one of the absorbers
in double and triple-junction solar cells fully based on PVK PV
technology®*** or in combination with c-Si PV technology. For
their promising PCEs, the PVK-based tandem solar cells provide
a valuable economic approach to break through the Shockley
and Queisser (SQ) limit* for single-junction devices. Currently,
the world record PCE for PVK/c-Si tandem solar cell has ach-
ieved 29.8%.%* Apart from efficiency, long-term stability has also
been improved in the last years with the introduction of inor-
ganic cations, such as cesium (Cs). Nowadays, large-area devices
are reported to work consistently for 1000 h under the condition
of 25 °C and 85% humidity with an area of 25 cm?.3 With
further development of encapsulation technology and device
optimization, the device stability aims at fulfilling the test
requirements for commercialization in near future.

In this review, we discuss recent progress in large-scale PSCs
and focus on the challenges for commercialization. Section 2
summarizes several high-volume manufacturing technologies
which are suitable for scalable deposition of PVK film. Section 3
summarizes the challenges of up-scaling for different PVK
layers. Section 4 provides an overview of efficiency and stability
for large area PVK-based monolithic tandem solar cells. Addi-
tionally, to have a reasonable assessment of PVK industrializa-
tion, cost and environmental impact are discussed in Section 5.
Finally, we review several companies which have started their
business using PSCs for a variety of applications.

2. Progress for scalable techniques

Fabrication of uniform and pinhole-free large-area PVK films
can be realized by employing suitable deposition methods, such
as blading, slot die coating, spray deposition and more. In this
section, we review some deposition methods enabling scalable
processes for PVK film fabrication.

2.1 Solution based processes

2.1.1 Blade coating. In the blade coating process, the
precursor solution is spread onto a substrate by a moving blade,
forming a wet film, as shown in Fig. 1a.*® The film quality
depends on the properties of the substrate surface,* velocity of
the blade, solvent properties (for example composition,*
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concentration, solvent viscosity),*®** annealing temperature,*’
and atmosphere. As an example, Fig. 1b illustrates the rela-
tionship between coating speed, film thickness, and solvent
evaporation.* Since the first PVK film was formed with blade
coating in 2015, many studies have been reported ranging from
in situ observations to technical optimization.*>** In situ
grazing-incidence XRD measurements are employed for blade
coating to observe the ink-to-solid phase transformation of PVK
films during preparation.** The composition, solvate phase, and
intermediate complexes are observed under low processing
temperatures; the crystallization process takes place directly
without forming intermediate phases, leading to a successful
method for large-area film fabrication.** Apart from the in situ
observation of PVK crystallization, various basic technical
parameters are also optimized. Temperature and solvent evap-
oration rate are of critical importance to control the film
formation.** Kim et al** found that a slow solvent drying
process could encourage the formation of large crystals, which
were formed immediately after solution blading. In Mallajo-
syula's work,*’ a temperature-controlled blading technique was
employed for the growth of large-grain PVK thin films. Apart
from temperature, other parameters, like coating speed, is
found to have a relationship with film thickness, which is
clearly explained in Horizontal dip-coating regime.*® Besides,
a combination of blade coating and rapid thermal processing
has been demonstrated to exhibit high PVK film quality.*
Devices with a PCE over 17% for an active area of 2.7 cm” were
reported.”” The interaction between the ink and the substrate
was also investigated. Dai et al.*® introduced ammonium chlo-
ride as an additive into precursor solution to reduce film trap
density, flexible PSCs with a record PCE of 15.86% was obtained
for an aperture area of 42.9 cm” (see Fig. 1c). Similarly, Chen
et al.*® recently partially replaced dimethyl sulfoxide with solid-
state carbohydrazide to avoid the formation of voids at perov-
skite-substrate interfaces. Based on the research mentioned
above, this technique shows a high sensitivity towards
temperature and towards the interaction between the ink and
the substrate. Blade coating approach is flexible to combine
with other methods to prepare PVK films, such as roll-to-roll
setups, rapid thermal processing,’ and sequential deposi-
tion,*® which provides more possibility for the future commer-
cial application.

2.1.2 Spray coating. The spray coating technology was
firstly used for PVK preparation in 2014 (ref. 51) and developed
rapidly from then on with various ways of creating the spray
droplets. In this process, tiny liquid droplets are formed with
a nozzle and then dispersed onto a substrate, as shown in
Fig. 1d and e. According to the investigation of Chen et al.,>* the
spray process is classified into three stages: (i) atomization
process, (ii) droplet flight, and (iii) film deposition. Each of
them was discussed in detail from principles to parameters in
ref. 52. The flying route of these tiny droplets during spray has
a strong influence on the final film quality. Ishihara et al.>
studied the fluid dynamics of droplets and Girotto et al.*
described the relationship between spray velocity and precursor
solution spreading capabilities. Besides, factors affecting the
deposition were systematically optimized, such as precursor

This journal is © The Royal Society of Chemistry 2022
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Fig.1

(a) Diagram of blade coating of PVK film?® (b) the film thickness as a function of coating speed for blade coating? (c) J-V curves for flexible

PSCs with a record aperture area of 42.9 cm? and PCE of 15.86% (ref. 36) (d) diagram of the spray coating process* (e) diagram of the magnified
structure of nozzle trajectory*® (f) J-V curves for PSCs with different active areas.>®

solution (viscosity, concentration, compositions),**** substrate
(wettability, roughness, temperature),”®*” boiling point of solu-
tion,*® distance between the nozzle and substrate.* Park et al.>®
prepared high-quality PVK layers by controlling the flow rate of
precursor solution and the reaction temperature. As a result,
larger-scale PVK film with an area of 7.5 x 7.5 cm” showed
excellent photovoltaic properties and uniformity.*® Chou et al.*
realized a PCE of 7.01% with an aperture area up to 3 cm” by
controlling precursor solution concentration and spray passes;
the corresponding J-V curves are shown in Fig. 1f. Recently, Heo
et al.* successfully prepared CsPbl;_,Br, sub-module by spray
coating with an efficiency of 13.82% (112 ecm” aperture area). A
graded PVK absorber structure is created and it shows only 9%
degradation after 1-sun light soaking for 1000 h.*® All-spray
coating PSCs (CTLs and PVK) have also been reported,* and
PCEs are in the range of 10-12% with an aperture area of about
1 cm”. Spray coating of PVK PV shows an increasing PCE situ-
ation in the recent few years and the future experiments can
concern more about low volatility controlling, new additives for
PVK solution and novel transport materials.*®

2.1.3 Slot-die coating. Slot-die coating can be applied for
film deposition of different layers, especially the PVK layer.
During the process, the coating head is positioned close to
substrate and there is a narrow slit on the coating head.
Precursor solution is pumped into the coating head and is
forced to flow out of the narrow slit onto the moving substrate.
The film quality is extremely sensitive to the processing
parameters such as the substrate temperature, wettability,

This journal is © The Royal Society of Chemistry 2022

moving speed, and width of the slit. Besides, the wettability,
viscosity of precursor solution also influences the degree of PVK
crystallinity.®»®®* In Cotella's work,** the preheated substrate
combining with air-knife led to a temperature gradient in the
wet film which plays a crucial role in controlling the crystalli-
zation. By selecting low boiling solvents and employing multi-
functional additives, the processing window time can be
widened. The Dutch institute Solliance, which is specialized in
the roll-to-roll slot die production process of PVK layers,* has
modified the ink with a co-solvent and additive, avoiding effi-
ciency losses with the increase of area during the drying
process. They demonstrated a 144 cm® module with a PCE of
14.5%.°¢ Apart from the physical property influence of precursor
solution, chemical properties such as additive®”*® and compo-
sition®»7® can also lead to excellent film properties. By applying
additive method, Yang et al.”* prepared large-area FACs based
perovskite films with a certified quasi-stabilized efficiency of
16.63% (20.77 cm?). Besides several basic parameters, models
and principles are also introduced to further explain the slot die
coating process. Xu et al.”” investigated the infiltration process
of the precursor solution into a mesoporous titanium oxide
(TiO,) according to the Lucas-Washburn model.” Under the
guidance of the model, coating parameters were optimized and
a PCE of 12.87% was obtained with an active area of 60.08 cm>.”
Fig. 2a and b show the device structure and corresponding j-V
curves.”” Bu et al. prepared 65 cm” FACs-based PSCs with
a certificated PCE of 19.54%. In their work, avoiding the
formation of PVK intermediate complex is the key point to

Sustainable Energy Fuels, 2022, 6, 243-266 | 245
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Fig.2 (a) Image of slot die coated PSC-based mini-module with an active area of 60.08 cm?;72 (b) the J-V curves of the device shown in (a);72 (c)
image of 7 m? fully printed PSC-based modules;® (d) diagram of fabrication process for fully printed PSCs

obtain high quality PVK film.” Not only for PVK film formation,
but deposition of CTLs can be also realized with slot-die
coating. All-slot-die coating devices with PCEs around 11%
have been successfully fabricated.”””” Among all-slot-die
coating works, Di Giacomo et al.”® in Solliance fabricated PVK
solar modules; the highest PCE exceeded 10% with a power
output of 1.7 W for an area of 168.75 cm”. Slot-die coating shows
a great potential toward industrialization because it is one of
the most used techniques for the roll-to-roll fabrication of
PSCs.”

2.1.4 Inkjet printing. In terms of inkjet printing, precursor
solution is dispersed by nozzles. The influence of some basic
factors (such as substrate wettability, temperature, ink droplet
wetting behavior, viscosity, and solvent evaporation rate) on
PVK film quality was investigated. Properties of the precursor

246 | Sustainable Energy Fuels, 2022, 6, 243-266

solution play an important role in controlling PVK film forma-
tion.** Li et al.® reported a new ink system, whose solvent was
composed of n-methyl pyrrolidone (NMP) and dimethylforma-
mide (DMF), because NMP can effectively adjust the viscosity
and surface energy of the precursor solution. As a consequence,
devices were fabricated with PCEs of 14.5% (4.04 cm?).* As the
most basic factor, temperature is also taken into consideration.
In Liang's work,* inkjet printing combined with vacuum-
assisted thermal annealing was employed for scaling up.
High-performance PSCs based on printed MAPbI; were
demonstrated to obtain a PCE of 13.3% with an active area of
4.0 cm>® Recently, the emerging of all-inkjet-printed PSCs
accelerates the process of industrialization. Hu et al.®® fabri-
cated a large-area (49 cm”) PVK module that exhibited a PCE of
10.4% with a fully printable process. Besides, a 7 m* fully

This journal is © The Royal Society of Chemistry 2022
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printed PSC-based module has been successfully prepared (see
Fig. 2c and d), showing promising potential in the practical
photovoltaic application.

2.2 Vacuum based processes

As an alternative to solution-based processes, vacuum deposi-
tion has been explored to grow thin-film PVK from dry sources.
There are two unique advantages of vacuum-based process.
Firstly, the process does not involve the use of toxic solvents
which may have a negative effect on the environment. The
second advantage is the conformal growth onto rough
substrates allowing, for example, the use of textured substrates
in devices to improve light in-coupling.®* This opens the inte-
gration of PVK cells on textured c-Si bottom cells for further
applications.®**

2.2.1 Thermal evaporation. In the thermal evaporation
process, the precursor materials are sublimated by heating
under high vacuum conditions. They are deposited onto
substrates to form different material layers as shown in Fig. 3a.
Therefore, this approach to fabricate PVK layers is scalable.
According to the evaporation temperature of different source
materials, a PVK film can be grown using two methods: co-
evaporation®® and sequential vacuum deposition.” Liu et al.*
firstly reported PSCs with high PCEs, which were prepared by
the dual-source co-evaporation method. Large area PVKs have
also been reported. Borchert et al.®* applied the co-evaporation

Organic
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Inorganic
source

CH(NH,),Pbl,

p=26cm?Vist

View Article Online
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method for large-area PVK deposition. Formamidinium lead
triiodide (FAPDbI;) thin films were obtained with an area of 64
cm?, as shown in Fig. 3b. Up to now, MAPbI; layer deposited by
thermal evaporation demonstrates a PCE of 18.13% with 21 cm?
active area (mini-modules).”” However, a challenge for PVK
deposition with thermal evaporation is the control of reaction
between lead iodide (Pbl,) and MAL The introduction of MAI
may have an influence on chamber pressure, which will lead to
fluctuations of the evaporation rate.”> Therefore, hybrid
approaches and multi-source depositions can be applied for
PVK fabrication to avoid the MAI-induced chamber pressure
fluctuations.”*** Feng et al®® successfully deposited some
superior FA-based PVK films using low temperature annealing
under vacuum. Compared with other solution based methods,
thermal evaporation has been demonstrated to allow PVK
deposition onto textured substrates,”” and this feature provides
a promising future for further applications. Sahli et al.*” applied
the sequential two-step method to deposit the PVK layer for
a monolithic tandem device. The PVK film fully covered the pm-
sized silicon pyramids (see Fig. 3c and d), and the tandem
device achieved an efficiency as high as 25.2%.%” Following the
same approach, the same group demonstrated a PVK/PVK/c-Si
monolithic triple-junction solar cell.”* All-vacuum-processable
PSCs are also obtained recently,”®*® Lei et al. reported an all-
evaporation method to achieve PCEs beyond 13% with an
active area of 16 cm”.**° The recently reported improved results

\rbi,

‘ Silver

Glass/FTO

1um

Fig. 3 (a) Schematic diagram of the co-evaporation of PVK film; (b) image of 64 cm? FAPbls thin film and corresponding fabrication process;**
(c) SEM image of the PVK film fully covering the silicon pyramids;®” (d) a cross-section of the PVK/SHJ monolithic tandem solar cell.®”
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based on thermal evaporation indicate the potential application
in PSCs scaling up, especially for scalability and the compati-
bility with textured device-Si bottom cells.

2.2.2 Pulsed laser deposition. Pulsed laser deposition (PLD)
is a versatile technique for stoichiometric deposition of various
inorganic materials independently of vapour pressure to form
thin films. The PLD configuration and deposition process are
shown in Fig. 4a. Different from other vacuum-based
approaches, PLD exhibits stoichiometric mass transfer of
materials from the target to the substrate.* This unique
advantage offers a potential application for PVK film formation.
PLD consists of two main stages, namely formation of the target
plasma and material deposition. In the first stage, the focused
laser strikes the surface of the target material for a short time,
ablating material that forms a so-called plasma plume contain-
ing ions and atoms. In the second stage, these excited ions
directly impinge the substrate in front of the target. Film prop-
erties can be optimized by controlling the laser parameters,'
substrate temperature,’® and chamber pressure.'”® The first
deposition of MAPbI; film based on PLD was reported by Ban-
sode et al'®™ in 2015. Following the same method, they
successfully deposited PVK films on silicon showing good crystal
quality. The corresponding SEM-based top view and cross-
sectional images are shown in Fig. 4b and c,'® respectively.
From then on, several PLD-grown inorganic metal halide PVKs
have been successfully prepared, showing good photovoltaic
properties and film stability."**'** Wang et al'** fabricated
a dense CsPbBr; film via PLD. No significant decomposition was
observed when the sample was placed in a highly humid (80%)
environment for 15 days.'** Lead-free PVK film formation is also
achieved with PLD. CsSnl; film was recently reported by Kiyek
et al.*® The thickness-optimized film shows a stabilized black
phase with a sharp absorption edge. About the deposition of
organic-inorganic hybrid PVKs, another method named reso-
nance infrared matrix-assisted pulsed laser evaporation'®”’

Hybrid Perovskite
Target

Plume

Substrate

(@)

High temperature

Fig. 4
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should be mentioned, showing low laser-induced damage of
organic material. A detailed description of the new pulsed laser-
based method can be found in Soto-Montero's review.'*® Based
on the film quality as well as stability mentioned above, PLD has
a potential application for scalable deposition of PVKs, espe-
cially in terms of fully inorganic PVK deposition.

2.3 Hybrid chemical vapor deposition

Hybrid chemical vapour deposition (HCVD) method can avoid
solvent-related complications, which are challenging to control
in industrial large-scale fabrication,"" such as fast solvent
removal and wettability issues. This method combines chemical
vapour deposition (CVD) and other scalable deposition
methods, such as thermal evaporation'*? or spray coating.'** A
typical PVK-based HCVD process consists of two steps: forma-
tion of inorganic film and organic/inorganic halide vapour
deposition. The inorganic film is mainly deposited via thermal
evaporation in reported works.****'¢ As for the CVD process, the
organic halide vapour is optimized by pressure and temperature
to deposit on the inorganic film, following a gas-solid reaction
and converting into uniform PVK films."** The HCVD configu-
ration and vapour deposition process for MAPbI; are shown in
Fig. 4d. Several works have reported a successful formation of
scalable PVK films by combining thermal evaporation and
CVD.1%1%1%5 Leyden et al.'® firstly prepared a planar MAPbCl;
device via HCVD method, achieving a PCE as high as 11.8%.
Following the similar approach, Leyden et al.*** again indicated
the device upscaling process via HCVD. They fabricated MAPbI;
based devices with a PCE of 9.5% (8.8 cm?) and obtained a PCE
of 9.0% (12 cm?) for FAPbI; based devices, the corresponding
up-scaling processes are shown in Fig. 4e. However, similarly to
solution-based film formation, mixed-cations and mixed-
halides play a critical role in film optoelectronic properties
and stability."*® Therefore, mixed cations/halides are commonly
introduced in the first step by co-evaporation.*® Differently
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(a) Schematic diagram of the PLD configuration and deposition process*® (b) top view of PVK film on silicon wafer deposited with PLD**

(c) the cross-section of the PLD PVK film'°* (d) schematic diagram of the HCVD configuration for MAI deposition onto Pbl, coated substrates!®®
(e) image of cells and modules prepared with HCVD approach demonstrating the up-scaling process.**®
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from this approach, Luo et al."** prepared a mixed-cation PVK
film by optimizing the second step. They replaced pure FAI
vapour with FAI/FAC] mixed vapour to optimize the vapour-
solid reaction, resulting in improved phase stability. Conse-
quently, the large-sized PSC modules (active area of 41.25 cm?)
demonstrated champion PCE of 12.24%.

3. Challenges for device upscaling

The abovementioned deposition techniques are all for large
area PVK film formation. As for other methods (e.g. CVD, soft-
cover deposition), detailed technical parameters and models
can be found somewhere else."**''*"'® The device PCEs, depo-
sition approaches, and corresponding areas are summarized in
Fig. 5, which clearly shows that PCEs significantly decrease for
large device areas. Therefore, the upscaling of PVK PV tech-
nology still faces challenges toward commercialization. In this
section, we review the most significant challenges for process-
ing high PCE devices from lab-scale to fab-scale.

3.1 Precursors and absorber layer

Upscaling of PVK films emphasizes the suitable storage of
precursors as well as film deposition process. For solution-
based methods, the precursor solution ratio and storage may
have impacts on film quality, influencing both the nucleation
and the crystal growth. To address this question, many attempts
have been performed to control the film morphology and
photovoltaic performance starting from a non-stoichiometric
precursor solution.***'** As an example, excess of PbI, can
lead to higher PCEs suggesting that unreacted PbI, improves
the crystallinity of PVK films.** The reported precursor engi-
neering may have some differences based on different solution
deposition methods, but most of them are related to
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introducing of additives as stabilizer or mixing solvents to
optimize the precursor viscosity as well as boiling point.**® Table
1 briefly shows the reported requirements, approaches and
corresponding solution-based deposition methods. Besides, the
detailed PVK precursor solution chemistry is reviewed by Jung
et al.*¥ from fundamentals to industrialization.

Compared with solution-based methods, vacuum deposition
can exactly control the deposited amount. However, one of the
drawbacks is the lack of compatibility with additive engi-
neering, which is an excellent approach to improve crystal
quality, as shown in Table 2. Furthermore, this method shows
less flexibility in the number of sources that can be incorpo-
rated in the final PVK material. For the deposition process, one
of the most challenging part is to form a suitable interaction
between substrate and precursors for both solution and vacuum
related deposition approaches.'®® A better interaction not only
depresses formation of non-radiative centres in the interfacial,
but also has an influence on PVK crystal growth.

3.2 Charge transporting layers

For large area film fabrication, charge transporting layers
(CTLs) should not only have appropriate energy alignment,
thickness as well as conductivity, but also be suitable for scal-
able deposition. Furthermore, environmental stability, energy/
time consumption, and costs, are also important aspects for
up-scaling. Therefore, the selection of compatible materials and
processes is important for PSC commercialization. In this
section, CTLs will be briefly discussed focusing on challenges
for both hole transporting layer (HTL) and electron transporting
layer (ETL).

3.2.1 HTL. Organic materials, such as spiro-MeOTAD"""'7>
and poly(triarylamine) (PTAA),"”*'"* are widely used as hole
transporting material for high-performance PSCs. Spiro-
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Fig. 5 Summary of PCEs as a function of the device area for PSCs prepared by different fabrication methods,39:57.728083,98,111.115,119-122.122-142
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Table 1 Different requirements and strategies of precursor solution preparation/storage based on different solution-based methods

Methods Requirements

Approaches

Purified organic precursor'*®
High viscosity®

Blade coating

147

Spray coating Low viscosity

Suitable boiling point solvent™

Slot die coating —

Inkjet printing Slow solvent evaporation'®*

Table 2 Comparison of solution- and vacuum-based depositions

Reductant**°

Moisture barrier'>"

Material with synergistic effects
Co-solvents'?

Low ink concentrations
Material with synergistic effects
Co-solvents'>®™%8

Lewis base additive”"

Material with synergistic effects
Material with synergistic effects
Co-solvents'®®

152

54,154

155

134,159,160
82,162-164

Advantages

Disadvantages

Solution methods e Simple
o Compatible with additive engineering"®”
o Uniformity control on large area

e Non-toxic solvent

Vacuum methods

e Flexibility in substrate usage (low processing temperature

MeOTAD is the most common HTL material in lab-scale device
preparation. There are some successful examples for large area
device preparation with spiro-MeOTAD as HTL. Luo et al.'*?
prepared PVK solar modules with spiro-MeOTAD, the device
achieved a PCE of 12.24% and device area is 64 cm®. Following
the spin coating method, Yang et al.** demonstrated a four-cell
module (12.6 cm®) with a stabilized efficiency output of 13.3%.
Nevertheless, these pure organic HTL materials have low hole
mobility, and dopants such as bis(trifluoromethane) sulfoni-
mide lithium salt (LiTFSI) are required to improve the device
PCE. Unfortunately, the introduction of the dopants can accel-
erate the degradation of PVK. Therefore, spiro-MeOTAD still has
a gap between lab and fab due to its cost and the negative effect
of dopant. In terms of inorganic materials, such as metal oxides,
they are utilized not only to improve device stability but also to
simplify the deposition process in mass production. Nickel
oxide (NiO,) is a popular HTL with high material stability."”
NiO, film can be formed with a variety of approaches, such as
screen printing,'”® spin-coating,””” and spray deposition.'”®
However, the carrier mobility in NiO, is also not so high and the
reported NiO, based device area is only 3-5 cm®.77*'%, Another
commonly used metal oxide is molybdenum oxide (MoO,)."**
Different MoO, film morphologies are obtained with different
approaches, such as solution preparation,'* thermal evapora-
tion,"™ blade coating,"®* and electrodeposition.’®® Thermally
deposited MoO, is commonly used in PSCs to realize energy
level alignment and hole extraction.'®***” It is generally applied
together with spiro-MeOTAD as a bilayer because the interface
reaction between MoO, and PVK may accelerate the degrada-
tion of PVK."™ Several other inorganic materials are also
researched for HTL application, for example, CuSCN"** and
VO,.**"** Even though small area devices based on CuSCN and
VO, have achieved excellent PV properties, PCEs drop
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o Solvent usage'®®
o Low material utilization*®®
e limitation in number of sources evaporated

e Long deposition process
)170

dramatically with the increase of device area. Next to the
abovementioned materials used as HTL in PSCs, some novel
materials (such as TaTm:Fs-TCNNQ, TaTm) are also applied as
HTL and the details can be found in ref. 192. Taking the cost
and stability into consideration, inorganic materials show
potential candidates for large area devices, further works
focused on good film quality with high hole mobility should be
achieved in near future.

3.2.2 ETL. SnO,,""»'% Cg,°** and PCBM"*** are most
frequently used as ETLs for high PCE devices because of their
high carrier mobility and excellent conductivity. Those mate-
rials can also be used for large area ETL fabrication. For
TiO,,**9>1% gseveral works show outstanding properties.'*”'*®
Keremane et al."® printed in ambient atmosphere mesoporous
TiO, enabling 11.55% PCE (70 cm?). However, TiO, is reported
to show a photocatalytic effect which may degrade the PVK
absorber layer.'” Atomic layer deposition (ALD)-based SnO, is
also an excellent candidate demonstrating high V., small j-V
hysteresis, and negligible photocatalytic effect. Currently, the
highest PCE of SnO,-based PSCs has achieved 23.3% with an
active area of 0.1 cm®2* However, SnO,-based large-area device
fabrication still needs to be further improved, because SnO, has
a higher probability of pinhole formation during film fabrica-
tion compared with TiO,."*® SnO, film needs to be thin while it
is not easy to fully cover the substrate surface with extremely
thin SnO, film. This problem is more critical for large area PSCs.
Therefore, a trade-off between thickness and mobility needs to
be carefully found. Up to now, the most successful example for
SnO, film scaling up is by Qi's group.'*® By precise interface
engineering, they demonstrated a PCE of 10% with a designated
area of 91.8 cm>.'® PCBM is also applied for scalable deposi-
tion, which is usually in combination with other materials such
as Cgo or BCP to form an efficient electron transporting

This journal is © The Royal Society of Chemistry 2022
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bilayer."**'*1** Especially, C¢o and BCP can be deposited by
thermal evaporation, that makes these films easy to realize also
on large area substrates, making it compatible with industri-
alization. The reported Cq, and BCP based devices show PCEs of
14.6% (57.2 cm*)** and 16.4% (63.7 cm?).%

3.3 Back electrode

Thermally or e-beam evaporated metals (Au, Ag, Al) are the mostly
used materials for the back electrode in PSCs. Analogous to the
metal electrode in c-Si solar cells, a scalable and industrial
process for metallization is a critical aspect to address in terms of
material consumption for large-area devices. Cheaper materials
are needed in replacement of noble metals when looking into
commercialization. Nickel (Ni) film is also applied as back elec-
trode for scalable PVK application.>* One interesting aspect is
that degraded PVK can be washed off from a device with Ni
electrodes and then fresh PVK can be reloaded.”* This unique
recycling technology shows a new way for further development of
low-cost PSCs. Besides, the direct contact between a metal and
the CTL or PVK may lead to additional reactions. To address this
issue, TCO films (for example, indium-doped tin oxide (ITO),
aluminum-doped zinc oxide (AZO), indium-doped zinc oxide
(IZO)) can be inserted between metal and CTL to prevent the
undesired ion immigration. Lee et al.>” fabricated large-scale PVK
solar modules with application of multi-layered transparent
electrodes, demonstrating excellent thermal stability. Carbon has
also been proposed as electrode due to several advantages, such
as high stability, low cost, excellent conductivity, and environ-
mental protection.>®*?* A large-area (70 cm®) PVK solar module
with carbon electrode was fabricated, achieving a PCE of 10.74%
(certified PCE 9.11%).** Besides, graphene is also an excellent
candidate as electrode due to its good conductivity, stability and
transparency.>**** Thus, it is commonly applied as electrode for
PSC, especially for semi-transparent PSCs*”**® or flexible
PSCs.?*?'® Based on the above discussion, carbon electrodes
show a potential application in PSC commercialization, especially
because of their stability and low cost.

3.4 Stability of large area PVK devices

For commercialization of PSCs, device stability is a critical
factor that should be taken into consideration, since long-term
applications require that PSCs must be stable enough to
continuously operate under outdoor conditions. However, PVK
materials are sensitive to temperature, light, and humidity,
leading to material decomposition and ion migration,*'* finally
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resulting in poor device stability. This part will highlight the
potential instability of PSCs and strategies on the way towards
industrialization.

3.4.1 Sources of instability. The instability of PVK and
degradation mechanisms have been systematically studied
based on experiments and simulations.>**> Lab-scale devices
show improved stability via different optimization steps, such
as introducing inorganic cations,""*** surface modification and
using 2-dimensional (2D) materials.>**?'* However, to make
PVK competitive to c-Si, the issues related to device lifetime still
need to be addressed. The instability of PVK film comes mainly
from defects (ion migration),>”*** pinholes (lattice deforma-
tion),** and phase transition, which may accelerate the
degradation in presence of water,*** high temperature,* light**
and electric field.”* To estimate the potential lifetime of PSCs,
the International Electrotechnical Commission (IEC) is nor-
mally used based on a series of strict tests, such as UV-light,
thermal cycling and damp heating.**> The long-term operation
of PSCs does not only depend on stability of PVK film, but also
properties of CTLs and electrode, for example, the thermal
instability of spiro,*** UV-instability of TiO, (ref. 226) and reac-
tion between I and Ag.*”’

3.4.2 Developments and strategies on long term device
stability. Focusing on the instability problems mentioned in
section 3.4.1, some strategies are proposed to improve the
stability of large area PSCs, which can be summarized into four
main parts. Firstly, component engineering. Inorganic cations
such as Cs" and Rb" are introduced to stabilize the PVK cubic
phase.?”®** Secondly, interfacial modification is useful to not
only passivate non-radiative central defects, increase resistance
to moisture, but also hinder I migration.**® As an example, the
use of 2D materials has been successfully extended to large-area
PSC fabrication.>®* It was reported that 2D material-based large-
area PVK solar modules (PCE 13.4% for 108 cm” and 15.3% for
82 cm®) showed excellent stability under thermal stress test at
65 °C (ISOSD2) for over 1000 h.*** Thirdly, select other func-
tional layer materials to replace susceptible CTLs and elec-
trodes. Especially for the HTL, inorganic candidates such as
NiO,,>*? CuO,*>** and CuSCN?** are introduced to substitute
organic materials. Table 3 summarizes the structure, stability,
and corresponding performance of PSCs with areas larger than
5 em®. Finally, encapsulation. It is the final step of device
fabrication, which provides a physical barrier protecting against
various outdoor environmental factors. The company Micro-
quanta Semiconductor announced that their encapsulated PVK

Table 3 The structure (light entering from the left-hand side), performance, and stability of large area (=5.00 cm?) PSCs

Structure PCE (%) Area (cm?) Stability Ref.
Glass/ITO/NiO,/PVK/Nb,Os/Ag 11.20 5.00 98% for 150 min, N, glove box, 100 °C 180
Glass/FTO/TiO,/PVK/spiro-MeOTAD/Au 14.60 12.00 96% for 1200 min, steady-state measurement 111
by tracking the MPP in N,
Glass/FTO/d-TiO,/m-TiO,/PVK/WBH/P;HT/Au 16.00 24.97 85% for 1370 h, RH 85%, room temperature 35
Glass/FTO/c-TiO,/m-Ti0,/ZrO,/PVK/carbon 10.40 49.00 30 days for RH 80%, 30 °C 80
Glass/FTO/c-TiO,/m-TiO,/ZrO,/PVK/carbon 10.75 70.00 95% 2000 h, RH 65-70%, T 25-30 °C 243
Glass/FTO/c-TiO,/m-Ti0,/ZrO,/PVK/carbon 6.40 100.00 96% for full sun light illumination at 35 °C, 1046 h 244

This journal is © The Royal Society of Chemistry 2022
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module (20 cm?) showed degradation of less than 2% after a 100
kW h ultraviolet (UV) preconditioning test (6.5 times IEC stan-
dards).*®* One thing need to be noted, we can observe a great
variety of test conditions reported in the literature which makes
a systematic comparison difficult. To solve this issue,
a consensus statement*® was given by many researchers for
stability assessment. Based on the International Summit on
Organic Photovoltaic Stability (ISOS) protocols, some other
properties of PSCs are investigated, such as ion redistribution
under electric fields, reversible degradation, and distinguishing
ambient-induced degradation from other stress factors.>*® This
section has a summary about strategies on PSC stability towards
commercialization, the corresponding detailed information can
be found in ref. 142, 237 and 238-242.

4. Scaling up of two-terminal
monolithic tandem devices

To overcome the SQ limit of single-junction solar cells, the
multijunction (M]) configuration has been developed. The MJ
approach is certainly not new in the PV community. In fact, it
has been intensively investigated for thin-film Si*****” and III-V
PV technologies.>**°® It consists of two or more sub-cells that
absorb light of different energies. By tuning the bandgap (E,) of
these sub-cells, better utilization of solar photons can be ach-
ieved resulting in higher PCEs. The simplest example is a so-
called ‘tandem’ device consisting of two sub-cells stacked one
on top of the other with engineered absorber layers. In the
monolithic configuration, also known as two-terminal (2T), the
sub-cells are electrically connected in series, meaning that the
absorber properties must be carefully designed for ‘current
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matching’, namely each sub-cell should deliver an equal
photocurrent. There are also other configurations, such as the
four-terminal (4T),*” which eliminates the current matching
requirement and provides only a mechanical stacking, and the
three-terminal (3T),”*® which is suitable for back-contacted
bottom cell architectures.>***7°

In this context, PVK/c-Si tandem device attracts much
attention because of the stable and mature c-Si technology, the
bandgap compatibility between the two absorbers, and the low
processing temperature of the PVK top cell. Starting from the
1.12 eV of the E, of c-Si and using a PVK top cell of 1.70 eV, the
theoretical limit of PCE for PVK/c-Si monolithic tandem device
is 44.1%.”"* Considering the great variety of PVK compositions
and the ease of integration of new elements in the PVK lattice,
E, can be varied in a wide range of energies from 1.2 eV (ref. 272)
to 3.0 eV.*”*** Consequently, M]J solar cells fully consisting of
PVK devices**** or combinations with CIGS bottom cells*”*>"
have been demonstrated. Independent of the deployed hybrid
technologies, MJ devices using PVKs have shown a rapid PCE
increase which can contribute to the acceleration towards the
commercialization of PVK devices.

This section focuses on progress and challenges for PCE and
stability, which is based on large area (=1 cm?) PVK/c-Si two-
terminal monolithic tandem devices. The detailed discussion
based on material, technical and device levels of small area
PVK/c-Si tandem devices can be found somewhere else.?”*>%

4.1 Conversion efficiency

The efficiency of tandem devices is related to the properties of
bottom cell, top cell, and various anti-reflective, recombination,
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and contact layers. Homojunction and heterojunction silicon
(SHJ) can be used as the bottom cell for both 4T***?%* and 2T
tandem devices.?””*> SHJ solar cells are commonly chosen due
to their high V,. and PCE, which have a positive effect on the
tandem device performance. Homojunction cells are also
excellent candidates because they currently dominate most
parts of the PV market. Up to now, works reported on efficiency
improvement of large area tandem devices can be classified into
three areas: PVK sub-cell optimization, recombination layer
optimization and optical design. Fig. 6 shows a summary of
different tandem structures, which were reported to be used for
large area tandem devices.

4.1.1 PVK sub-cell. For 2T large area tandem solar cells, the
PVK film quality strongly determines the top cell photovoltaic
properties. It is a big challenge to form high-quality large area
PVK film on a textured surface to enable integration with
industry-relevant textured c-Si bottom cells. Hou et al”*®
demonstrated a solution processed PVK top cell with fully
textured c-Si bottom cell by employing an pm-thick PVK layer.>*¢
In recent work, a two-step sequential vacuum process was
applied for PVK deposition on textured surface.”® Conse-
quently, 100 cm® textured silicon substrate was perfectly
covered by a PVK film via sputtering and CVD. In addition,
interface modification, as well as composition engineering,
have a huge influence on the whole device efficiency. Low-
temperature (70 °C) slot-die coating was applied with a combi-
nation of modification strategy for top cell preparation.”®® A
PVK/textured silicon monolithic 2T tandem device achieved
a PCE of 23.8% with an area of 1 cm?.?® Besides, Cs* and FA"
were also applied to tune the PVK bandgap and high device
stability was obtained. The mixed-cation based PVK/c-Si solar
cell achieved a PCE of 23.6% with an area of 1 cm*2* Current
matching cannot be ignored to obtain a high PCE for tandem
device, and the most common method is to optimize the
bandgap of the top cell. The bandgap optimization can be
realized by composition engineering.

4.1.2 Recombination layer. Improvements in PCE are also
driven by selection and optimization of the recombination layer
between the two sub-cells. A thorough analysis of many aspects
related to the recombination junction for tandem devices was
recently published by Bastiani et al.>** Most commonly, trans-
parent conductive oxide (TCO) materials are used as recombi-
nation layers because they can fulfill both optical and electrical
interconnection requirements. Up to now, recombination layers
such as ITO, IZO, AZO have been generally applied for large area
2T tandem devices and excellent outcomes have been obtained.
With optimization of the 1ZO thickness, Werner et al.>** ach-
ieved a stable PCE of 19.2% over an aperture area of 1.22 cm>. A
PCE of 22.6% (area 57.4 cm”) was achieved with a sputtered ITO
recombination layer.>® Apart from TCO layers, doped hydro-
genated nanocrystalline silicon (nc-Si:H) has also been
employed as a recombination layer. For example, Sahli et al.®”
introduced a nc-Si:H recombination junction to the tandem
device with an effective decrease of the parasitic absorption and
optical reflection, demonstrating a certified PCE of 25.2% with
an active area of 1.419 cm”.”” Following a similar approach, PCE
of 18.0% and 25.1% were obtained with areas of 12.96 cm” and

This journal is © The Royal Society of Chemistry 2022
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1.42 cm?, respectively.?®® The use of nc-Si:H as the recombina-
tion layer for large area monolithic tandem devices has been
mainly reported by EPFL until now. Another unique structure
was reported by Zheng et al.:*** the tandem device shows
arecombination contact between SnO, and a p-doped region, as
illustrated in Fig. 6. Compared with the common structure with
an interfacial layer, SnO, serves not only as an ETL for the top
cell, but also a recombination contact with the n-type silicon
homojunction solar cell. As a result, PCEs of 17.6% (area 16.00
cm?®) and 21% (area 4.00 cm?) were achieved.?

4.1.3 Optical design. Optical design is an efficient
approach to further improve the device's short current density
(/se) and to achieve current matching. Currently, optical design
for PVK-based tandem devices deals with three aspects: (i) light
trapping, (ii) reflection losses, and (iii) parasitic absorption.>*’
Regarding light trapping, a rear-side textured bottom cell can
effectively improve light trapping and increase its near-infrared
spectral response.>*® In addition, textured structures can also be
applied for light management at the front side of tandem
devices.?**?*%% Ag an example, Jost et al.*** employed a textured
foil on the planar front-side of a tandem solar cell, significantly
improving J,. from 17.3 mA cm ™ to 18.5 mA cm ™. As for the
reduction of reflection losses, introducing an optical interlayer
between the sub-cells can significantly decrease the reflection
losses resulting from large differences in optical refractive index
of Si and PVK. Mazzarella et al**®> employed hydrogenated
nanocrystalline silicon oxide (nc-SiO,:H) with optimized
refractive index and thickness as an optical interlayer of
a tandem device resulting in 1.4 mA cm™ > current gain with
a device area of 1 cm” Besides, nc-Si:H replacing ITO as
a recombination layer improves the optical properties of
monolithic tandem device,”® shown in Fig. 6. Based on
comparison with ITO, the nc-Si:H recombination junction was
demonstrated to mitigate reflection at the sub-cell interface and
increase the light transmittance to the bottom cell, conse-
quently, the bottom cell photocurrent increased by more than 1
mA cm 2.2 In addition, thinner front ITO can also improve
light-harvesting due to a lower parasitic absorption as well as
reflection. Focussing on decreasing parasitic absorption, spec-
trum down-conversion materials can convert high energetic
photons into visible light, which can be used to avoid the
parasitic absorption of CTLs for tandem devices. Zheng et al.>*
employed (Ba,Sr),SiO4:Eu®" phosphor at the front of the
monolithic tandem cells to realize PCE as high as 23.1% for an
area of 4 cm®. It should be noted that J,. has been dramatically
improved from 14.1 mA cm™? to 16.5 mA cm > Besides,
a thinner transparent electrode and inorganic HTL can effec-
tively decrease the parasitic absorption and further improve the
device Jg.. Current progress in terms of parameters and prop-
erties of PVK-based large area 2T tandem devices are summa-
rized in Table 4.

4.2 Stability of large area PVK-based monolithic tandem
devices

Currently, there are some works based on the stability of large-
area monolithic tandem devices. The stability of PVK-based
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Table 4 Parameters and properties of PVK-based large area 2T tandem devices. Reported results are sorted by date
PVK/silicon
Top cell bandgap Recombination  Efficiency Area
Silicon Perovskite (eV) layer (%) (cm?)  Institute Year Ref.
Homo- MAPbI, 1.55 n*/p™t Si 13.7 1.00  MIT/ 2015 304
junction stanford
MAPDI; 1.55 ZTO 16.3 1.43 EPFL/CSEM 2016 305
CsRbFAMAPDI;_,Br, 1.62 ITO 22.5 1.00 ANU 2017 292
MAPDI; 1.58 — 21.0 4.00 UNSW 2018 291
MAPDI; 1.58 — 17.6 16.00 UNSW 2018 291
(FAPbL;)y.53(MAPbBr3), 17 1.59 — 21.8 16.00 UNSW 2018 291
CsRbFAMAPDI;_,Br, 1.62 — 23.2 1.00 ANU 2018 285
FAMAPDI;_,Br, 1.61 — 231 4.00 UNSW 2019 303
SH]J MAPDI; 1.55 170 19.2 1.22 EPFL/CSEM 2015 290
MAPDI; 1.55 1ZO0 20.5 1.43 EPFL/CSEM 2016 283
CsFAPDbI;_,Br, 1.63 ITO 23.6 1.00 Stanford/ 2017 289
ASU
CsFAPDbI;_,Br, 1.63 nc-Si:H 21.2 1.43 EPFL/CSEM 2017 296
CsFAPDbI;_,Br, 1.63 nc-Si:H 18.0 12.96 EPFL/CSEM 2017 296
CsFAPDbI;_,Br, 1.63 nc-Si:H 25.2 1.419 EPFL/CSEM 2018 97
CsRbFAMAPbI;_Br, 1.62 — 24.1 1.00 ANU 2018 285
CsFAPDbI;_,Br, 1.68 ITO 25.0 1.00 Stanford/ 2018 300
ASU
CsFAPDbI;_,Br, 1.63 nc-Si:H 25.4 1.43 EPFL 2019 306
CS0.05(FA9.77MAg 23)0.0sPb(Io 77Br0 23)  1.68 ITO 29.1 1.06 HZB 2020 307
3
(FAo.65MAg 2Cs0.15)Pb(I5 sBro.)s 1.68 ITO 26.2 1.00  KAIST 2020 308
FAg.55CS0.25Pb(Io.sBro.2)s 1.67 ITO 27.1 1.00 CU-Boulder 2020 309
(Cs0.06FA¢.7sMAg 16)Pb(Brg.1710.53)3 1.64 ITO 26.3 1.43 C.H.O.S.E 2020 310
Cs,FA, _,PbLBr, _, 1.63 ITO 22.6 57.4 CSEM/EPFL 2019 295
MAPb(I, 55Bro 25)3 1.68 ITO 23.8 1.00 KSC 2020 288

monolithic tandem devices is mainly determined by the PVK
sub-cell. c-Si is stable enough to operate consistently for many
years in ambient conditions. Therefore, the research based on
large-area tandem device stability is mainly focused on the top-
cell stability improvement. According to recent studies,
pinholes are among the factors responsible for device insta-
bility. The existence of pinholes leads to film instability because
of a decrease in carrier lifetime and mobility.>*® To solve this
problem, Bush et al.*®® applied a bilayer SnO,/ZTO by ALD or
pulsed-CVD deposition to prevent the formation of pinholes.
The double-layer enables the device to withstand a 1000 hour
damp heat test at 85 °C and 85% relative humidity. Another
factor is the reaction between the electrode (Ag) and halogens in
PVK. Reducing the reaction between PVK and the Ag electrode
can also improve the device stability.>* Sahli et al.®” pointed out

that buffer layers, as well as a transparent conductive electrode,
can efficiently prevent ion migration and suppress the reaction
of PVK with the Ag electrode. Besides, a stable carbon or gold
electrode can largely improve the device's stability. A third
factor impacting stability is moisture/light/temperature-
induced environmental degradation. Inorganic materials can
be applied to improve thermal stability, such as Cs* for PVK**®
and NiO, for the HTL. As for molecular water, dense buffer
layers or transparent polymer layers are introduced to realize
a moisture barrier.”** In addition, spectrum down-conversion
materials are employed to transfer high-energy photons into
low energy photons, realizing a device UV stability.**® Table 5
summarizes the large area device stabilities in detail. Compared
to c-Si solar cells, the stability of PVK-based large area 2T
tandem solar cells still needs to be improved further.

Table 5 Summary of stability for large area PVK-based 2T tandem devices sorted per device area from the smallest to the largest

Structure PCE (%) Area (cm?) Stability Ref.
CsFAPbI;_,Br,PVK/SH] 23.6 1.00 80% for 1000 h, 85% RH, 85 °C 289
FA¢.75CS0.25Pb(Io gBro.2)3PVK/SH] 27.1 1.00 96% for 1000 hours of MPP operation at 60 °C. 309
Cs5(MA;;FAg3)95Pb(Ig3Br;5);PVK/CIGS 23.3 1.03 97% for 11 h, 40 °C, under constant illumination at MPP 311
CsFAPbI;_,Br,PVK/SH]J 25.2 1.42 90% after 270 hours under constant illumination at MPP 97

FAMAPbDI;_,Br,PVK/homojunction 23.1 4.00 90% for 288 h, UV exposure 303
(FAPDI;), s3(MAPDbBTI3),.1,PVK/homojunction Si 21.8 16.00 91%, for 31 days, room temperature, N, 312
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5. Other issues
5.1 Costs

PVK holds the potential for low-cost production due to the use
of abundant material, low processing temperature, and simple
deposition methods. The cost of modules is estimated to be
around 2 US$ m 2.3 Therefore, the potentially low cost of PSCs
has drawn a lot of attention in the PV market. However, the total
industrialization costs, especially when the materials, the life-
cycle, and energy consumption are taken into consideration,
still don't have a conclusive assessment yet. This section will
give a brief illustration of the industrialization cost, focusing on
manufacturing cost and levelized cost of energy (LCOE).

5.1.1 Manufacturing cost. The processing cost of PVK solar
modules is estimated to be 6.8 + 1.2 US$ m 2 based on fully
printed devices with sputtering TCO and Al electrode,** while
the processing costs of CIGS and CdTe modules are 29 and 27
US$ m™2, respectively.*'>® The costs mentioned above exclude
the price of glass, frame, laminating film, junction-box, and
testing. The lower costs for PVK solar modules originate from
cheaper materials used and lower energy consumption. A
detailed comparison between PVK and other PV materials for
industrialization has been reported in ref. 317. About the
material costs, Cai et al.**® listed a comparison based on two
representative examples of PSCs. The results are shown in
Fig. 7a where the calculated costs for materials of module A
(expensive example) was 0.127 US$ W™ ', which was higher than
that of module B (cheap example) of 0.102 US$ W~ '. For both
examples, the highest expense among the materials comes from
the TCO, while the cost of the PVK layer is minor. For the pro-
cessing costs, Chang et al*® performed a detailed cost
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distribution of all steps for PVK solar modules based on a fully
printing method, as shown in Fig. 7b. Once again, TCO fabri-
cation accounts for a large part of the fabricating cost.

Cost modelling is also applied to analyse the PVK/silicon
tandem PV technology. Efficiency potential and cost evalua-
tion are accessed in terms of tandem devices and modules.
Based on six demonstrated tandem structures, Chang et al.**°
found that the cost barriers are in PVK part because of the
expensive transporting layer materials. In particular, the use of
homojunction cells with p-type wafers helps to decrease the
total costs. With similar approach, Messmer et al*** has an
assessment on both PCEs (optical and electrical) and costs
based on four promising silicon bottom cell concepts. The
detailed comparison between these structures is shown in ref.
321. All these tandem-based cost analysis points out that
attentions should be directed to cheaper materials and feasible
techniques in the recent future.

5.1.2 Levelized cost of energy. PV techno-economic
competitiveness can be evaluated by the LCOE value.
Compared with silicon solar cells,*** PSCs still exhibit a higher
LCOE because of their high capital expenditure. It is a big
challenge for PSC fabrication to reach similar costs as silicon
solar cells with a similar size, especially considering that the
price of silicon drastically reduced over the last 39 years.*** The
relationship between LCOE, PCE and lifetime based on PVK
solar modules has been discussed by Song et al*' and Cai
et al.**® The LCOE values ranging from 4.93 to 7.90 ¢ kW~ * h™*
when device can operate with a PCE of 16% for around 30
years.*** Fig. 7c summarizes the LCOE for PVK PV modules with
different PCEs and lifetimes. The module lifetime strongly
affects the value of LCOE. Under the condition that modules

Module B Cost of Materials: 0.102 US$/W

58%

9 US$/m?

mTCO

m Active Layer

2.21 US$/m?
b 17%
11% 2:96 US$/;'1;|2
1.7 USS/m* &

= Solvent
H Other

25

Lifetime (year)

&
(Wwir) 3001

Testing

10 15

20 25
Module efficiency (%)

(a) Material cost analysis for two representative examples®® (b) cost contribution of each step for PVK solar modules manufacturing

process.®? (c) The relationship between PCE, lifetime, and LCOE for PVK PV modules.3**
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work constantly, the LCOE are 10 (kW ' h 'and 6 C kW ' h™!
assuming different lifetimes of 10 years and around 23 years,
respectively.*** Therefore, stability improvement is an impor-
tant factor for industrialization of modules related to ambient
stability and encapsulation.

The LCOE of PVK/silicon tandem modules is also evaluated,
normally together with a detailed comparison of silicon and
PVK single junction in reported works.*”® By applying this
approach, Zafoschnig et al*** find that PVK/silicon tandem
devices have a promising application if the module has a long
lifetime and the PCE can exceed 30% using low-cost industrial-
scale processes in the next 5-6 years.*** Therefore, the short
lifetime of PSCs (compared to more than 25 years for silicon
solar cells) and low-cost processing should be especially
addressed in near future.**>*?¢

5.2 Perovskite solar cell reproducibility

Although many PSC-related articles have reported high PCEs
and excellent stabilities, these data are usually the best or
average value over many cells. For the PSC industrialization,
efforts based on large-area PVK fabrication need to overcome
the reproducibility problem. For different fabrication tech-
niques, device reproducibility is mentioned. Vapor-assisted
growth method is indicated to have high reproducibility.
Gujar et al.*” demonstrated that 35 devices (36 in total) fabri-
cated with vapor-assisted method worked with very little fluc-
tuation of the photovoltaic parameters (Vy, Jsc, FF and PCE).
Following a similar method, Leyden et al**®* and Borchert
et al.>* also achieved high device reproducibility for large-area
PSCs. In addition, spray coating®® and slot-die coating* have
also been discussed in detail based on large-area PSC repro-
ducibility. Apart from the active layer, the reproducibility of
CTLs is also reported.**® PSCs with e-beam evaporated NiO, as
HTL show high uniformity and reproducibility.*** However,
these studies emphasize the influence of the fabrication tech-
nique on reproducibility. Materials should also be taken into
consideration for PSC fabrication. Odabasi et al.>** assessed the

View Article Online
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reproducibility by comparing a large number of PSCs using
pooled variances (S,”) comparing different materials and
methods. The S,> parameters are graphically reported in Fig. 8
and classified by materials that are commonly used in PSCs.**?
The reproducibility is higher for lower S,” values. This figure
provides guidance for identifying the most promising materials
for PVK in PV applications. For the ETL, compact SnO, is an
excellent candidate compared with other materials. P3HT and
PTAA show smaller S, values compared with spiro-MeOTAD
when looking at the HTL. It should be noted that HTL-free
devices have also smaller S,” values when compared to inor-
ganic HTLs for instance. For common electrode materials re-
ported in this study, the use of carbon results in a higher device
reproducibility.

5.3 Life cycle assessment

A life cycle assessment (LCA) is employed to evaluate the envi-
ronmental profile and potential impact of PVK solar modules
due to lead toxicity and fabrication exhaust.*** A detailed rela-
tionship between PCE, stability and environmental impacts
based on PSCs is systematically reviewed by A. Urbina.*** In his
work, the author reports different materials and configurations
discussing the corresponding environmental impacts.*** Ibn-
Mohammed et al®® reported on the LCA of PVK solar
modules based on MAPbX; and CsFAPbX;. They provide
a comparison of a PVK device to other existing PV technologies
based on energy consumption, environmental profile and
energy payback period (EPBP).*** They pointed out that not only
the toxicity of lead, but also the processing of the operating
emissions and used materials should be taken into consider-
ation when evaluating the impact on environment. Besides,
greenhouse gas emissions factor (GEF) of the PSC, as well as
OPV, are much higher than other PV technologies because of
their short lifetime, shown in Fig. 9a.*** Therefore, long-term
stability indirectly affects energy consumption. In addition,
a HTL-free device is also modelled providing excellent LCA
results.**® Fig. 9b shows the comparison of the PSCs with

2.0
DMF+others (1.90) MAPbL, CL, (1.86)
15 - ;
FA based (1.59)
DMF (1.40)
TiO, (1.20)
~ ZnO (1.17)
v 10 T
GBL (0.96) MAPbI; (1.00)
4 y DMSO (0.71)
DMSO+GHL Mixed cation (0.75) Doped-mTiO, (0.74)
0.59@ :
05 + 5 DMSO+DMF (0.60) e w/o ETL (0.57)
DMF+DMSO+others (0.56) Cs based (0.48) SnO, (0.55)
MAPbI; Br, (0.46)
0

Precursor Solution PVK

ETL

Fig. 8 The S,? value of materials for each layer of PSCs. The data comes from ref. 332.
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between PSC and other PV technologies.?*¢

commercial PV technologies. Environmental impact of global
warming potential and primary energy demand are shown as
GWP and PED in Fig. 9b.

Moreover, a LCA of PVK-based tandem solar cells has also
been modelled.**”** Tian et al.**® performed a LCA on the EPBP,
carbon footprint, and environmental impact scores for both
PVK/silicon and PVK/PVK tandem devices. They emphasized
that periodic module replacement and material recycling
strategies should be implemented to accelerate the application
of PVK/silicon tandem devices in PV market.**® To avoid the
trouble of module replacement, a method was proposed by
Barkhouse et al.**" in 2015. Their modelled results showed that
it is important to maintain high infrared transparency and
conductivity for the PVK layer after the top cell has stopped
working. These properties could ensure that the underlying
silicon cell can continue to work without requiring module
replacement.*** The detailed discussion and comparison of LCA
on PVK/silicon and other single-junctions can be found in

Leccisi's review.?*?

Table 6 Recent development of PSCs for institutions and companies

mono-Si poly-Si
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m Total freshwater
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uPED
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® Human tox, c.
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= Eutroph.
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a-Si CdTe CIS  Solution Vacuum HTL-free

2 nd generation Perovskites

(@) A comparison of GEF based on different PV technologies®* (b) a comparison of environmental impacts based on different factors

5.4 Summary of companies

With the rapid development towards PSC scaling up, a few
companies have been focussing on module fabrication. Most of
these companies aim to realize large-area devices (area >100
cm?) mainly using screen printing,?** roll-to-roll printing,**
inkjet-printing®** for the PVK film formation. Besides, some
companies fabricate flexible PVK solar modules, such as Tosh-
iba,*** Saule Technologies*** and Energy Materials Corpora-
tion.*** Oxford PV has started a manufacturing line for PVK/c-Si
tandem cells that are expected to commence production in the
year 2021.%*¢ Detailed company information and corresponding
progress are summarized in Table 6.

6. Conclusion and outlook

In this review, the developments and challenges for PSCs from
lab-to-fab are systematically discussed focusing on different
relevant aspects. In the past years, key material processing,

Company name Country Efficiency (%) Area (cm?) Type of devices Ref.
Oxford PV United Kingdom 28.0 1 PVK/silicon tandem cells 346
29.5 — PVK/silicon tandem cells 352
HZB Germany 29.8 1 PVK/silicon tandem cells 34
Greatcell solar Australia — 20 Focusing on the solar enablement of two 347
substrates: glass and steel, 20 cm® PVK
module
Weihua solar China 10.6 25 PVK solar module, carbon electrode, 348
HTL-free
Solliance solar research Netherlands 14.5 144 PVK solar module 66
Microquanta semiconductor ~ China 17.9 227 PVK solar module 235
Solaronix Switzerland 12.0 500 PVK solar module 349
Toshiba Japan 11.7 703 PVK flexible solar module 345
Panasonic Japan 16.1 802 PVK solar submodule (55 series cells) 350
Wonder solar China — 110 x 10* PVK PV system, screen-printed triple 9
(3600 cm” for each module) mesoscopic PVK solar modules
Saule Technologies Poland — — Inkjet-printed flexible PSCs 344
Energy materials Corporation United States — — High speed, roll-to-roll printing lines 343
Swift solar United States — — All-PVK tandem cells and modules 351
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scalable device fabrication, and PSC properties have been
investigated in depth. However, compared with other well-
established PV technologies, both the efficiency and stability
of PSCs show a large gap between small-area cells and large-area
modules. To achieve the goals of PSCs upscaling and further
industrialization, many issues need to be addressed, including
not only the efficiency, but also stability, costs, reproducibility,
and fabrication techniques. At present, the main challenges
involving PSCs commercialization are: (1) long term stability.
Modules should ensure durable outdoor operation under
operative conditions such as long-term illumination and heat;
(2) cost issues. More efforts should be devoted to identify
alternative low-cost raw materials for each layer composing the
cell, as well as simplifying the device process; (3) further
applications. Broad the PSCs application market, for example,
tandem device, flexible device, and indoor PV technology.
Finally, we are still at the early stage of the PSCs industrializa-
tion. In the long term, can PVK realistically become a competi-
tive candidate in the PV market to uptake silicon technology?
How the research community will be able to come up with new
ideas and solutions aiming at addressing the key challenges/
problems we discussed in this review, will indicate the future
paths, and define the success of the emerging PVK technology.
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