
Sensors &
Diagnostics

COMMUNICATION

Cite this: Sens. Diagn., 2022, 1, 465

Received 6th March 2022,
Accepted 9th April 2022

DOI: 10.1039/d2sd00038e

rsc.li/sensors

Single-channel digital LAMP multiplexing using
amplification curve analysis†

Kenny Malpartida-Cardenas, ‡ab Luca Miglietta, ‡ab Tianyi Peng,a

Ahmad Moniri,b Alison Holmes,a

Pantelis Georgioub and Jesus Rodriguez-Manzano *a

Loop-mediated isothermal amplification assays are currently

limited to one target per reaction in the absence of melting curve

analysis, molecular probes or restriction enzyme digestion. Here,

we demonstrate multiplexing of five targets in a single fluorescent

channel using digital LAMP and the machine learning-based

method amplification curve analysis, resulting in a classification

accuracy of 91.33% on 54186 positive amplification events.

Nucleic acid amplification tests for diagnosis and
epidemiological surveillance of infectious disease are
essential in the fight against outbreaks such as the ongoing
COVID-19 pandemic. In addition to the gold standard
polymerase chain reaction (PCR), loop-mediated isothermal
amplification (LAMP) has become a popular alternative due
to its high sensitivity, specificity, and rapidness. Although
numerous LAMP assays have been developed in the last two
decades, they have commonly been restricted to detect one
target per reaction, limiting the throughput of technologies
that rely on LAMP. Several methods have been employed to
increase the number of targets in a single LAMP reaction,
including: (i) fluorescence-based detection at different
excitation wavelengths through the incorporation of a specific
quencher–fluorophore pair per each target,1–7 (ii) DNA
restriction enzyme digestion followed by gel
electrophoresis,8,9 and (iii) melting curve analysis.10,11

However, probe-based approaches are still limited by the
number of fluorescence channels present in the PCR
platform and the increased cost of reagents, whereas post-
PCR analysis requires more complex instrumentation, longer
protocols and exposes the reaction to a greater risk of DNA

contamination.12 In an effort to enhance real-time
instruments capabilities for identification of multiple target
using single channel detection, our team has demonstrated
that kinetic information embedded in an amplification curve
can be used to distinguish nucleic acid targets.13–17 This
novel approach, named as data-driven multiplexing, utilise
mathematical algorithms to extract target specific features
from real-time amplification data which can be used as input
to a classifier. In particular, this work explores the use of the
amplification curve analysis (ACA) classifier, which consists
of a supervised machine learning model (i.e., k-nearest
neighbours) using the entire real-time curve from each
amplification event. Leveraging on the advantages that digital
amplification offers, such as absolute quantification, high
resolution and particularly high-throughput,18 this
manuscript demonstrates the first application of ACA in
digital LAMP (dLAMP) for multiplexing five LAMP assays
(5plex-LAMP) in a single reaction with a non-specific
intercalating dye (EvaGreen), therefore using a single-
fluorescent channel. As a case study, this work focuses on the
detection of five respiratory pathogens which present similar
flu-like symptoms:19–21 human influenza A virus (IAV),
human influenza B virus (IBV), severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), human adenovirus
(hAdV) and Klebsiella pneumoniae (KP). Publicly available
assays were used to demonstrate the applicability of the ACA
method for multiplexing in dLAMP without lengthy assay
optimisation. All primer LAMP sequences used in this study
are detailed in Table S1.†10,22–25 The LAMP assay for IAV
(targeting M gene) was designed in-house. Performance of
the 5plex-LAMP assay was evaluated with a fluorescence-
based real-time instrument (LightCycler 96 system, Roche)
using a 10-fold serial dilution of synthetic DNA, at
concentrations ranging from 1.8 × 107 to 1.8 × 102 copies per
reaction (Fig. S1A–E†). All assays amplified their specific
target down to 180 copies per reaction. Melting curve analysis
was used to confirm the target-specific amplification;
obtained melting temperature peak values (Tm) for IAV, IBV,
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SARS-CoV-2, hAdV and KP were 88.5 °C, 83.5 °C, 86.5 °C, 89.5
°C and 88 °C, respectively (Fig. S1F†). Self-dimer or cross-
primer formation was not observed in the non-template
control (NTC) during the 35 cycle (1 min per cycle) run.

The 5plex-LAMP was then tested in a digital real-time
instrument, dLAMP. In total, 110 880 amplification events
were generated including 54 186 positive amplification
reactions. Examples of dLAMP real-time amplification curves
and time-to-positive distribution obtained with the 5plex-
LAMP assay are provided in Fig. S2 and S3,† respectively.
Between 6000 to 14 000 positive amplification events were
obtained per target, and an adequate number of NTC
reactions (N = 6930) were included to verify the absence of
contamination, formation of any detectable secondary
structure or primer dimerisation. The obtained data was first
evaluated by unsupervised machine learning using the
uniform manifold approximation and projection (UMAP)
method to visualise how distinguishable the amplification
curves were per target.26 Classification and clustering
considered all available real-time data (in this case, 40 data-
point per amplification reaction). After dimensionality
reduction into a 3D space (Fig. 1A), it can be observed that
amplification curves obtained per each target formed
differentiable clusters. Subsequently, supervised machine
learning was employed to classify the amplification curves
demonstrating the capability of the ACA method for single-
channel multiplexing in dLAMP. The selected classification
algorithm was k-nearest neighbour (k-NN, with parameter k =
10).13,27 The overall classification accuracy of the ACA
method was 91.33% ± 0.33% (mean ± std), represented by
the confusion matrix shown in Fig. 1B. In addition, the
accuracy, sensitivity, and specificity for the one-vs.-one
classifiers is shown in Table 1, which demonstrates that the
5 targets can be distinguished with a classification accuracy
ranging from 91.10% to 99.15%.

Furthermore, we compared these results with two
alternative machine learning based methods commonly used

for the identification of multiple targets in single-well PCR
multiplex assays; final fluorescence intensity (FFI) and
melting curve analysis (MCA).15 The obtained classification
accuracy of the MCA method was 94.55% ± 0.33% (melting
curves distribution and confusion matrix are shown in
Fig. 2A and B), which represents a 3.41% ± 0.33%
improvement compared to the ACA. Whereas the results
obtained with the FFI method reported a classification
accuracy of 48.32% ± 0.56% (Fig. 2C), showing a 43.01% ±
0.56% decreased classification accuracy compared to ACA.
The FFI values were similar across different assays, and
consequently the LAMP mechanism may difficult the
classification based on this parameter (Fig. 2D). It is
important to note that the 5plex-LAMP has not been
optimised for any of the used methods, neither for ACA, MCA
nor FFI analysis, therefore obtained results could have been
improved. Furthermore, this is the first time FFI has been
applied for target identification in LAMP. The combination of
ACA and MCA methods, named amplification and melting
curve analysis (AMCA) has been previously reported by
Moniri et al.15 and Miglietta et al.14 as an approach that
combines coefficients from both classifiers improving overall
accuracy (as shown in Fig. S4†). As depicted in Fig. 3, all
methods except FFI achieved a classification accuracy
superior to 90% requiring 103 training data points. Although
MCA and AMCA have shown superior performance compared
to the ACA, the limitations that MCA impose in terms of
accurate thermal control restrict its future use in
combination with LAMP, particularly for point-of-care
applications.

The achieved throughput and turnaround time (<35 min)
in a single well reaction leverages target identification
accuracy of several pathogens. This proof-of-concept study
demonstrates that the ACA method can be used to multiplex
LAMP assays using only the amplification curves. No further
primer design optimisation, modifications in the reaction,
incorporation of molecular probes or accurate thermal
cycling are needed. Furthermore, we observed that 5plex
LAMP assays did not generate non-specific products (e.g.,
primer dimerisation). Although there may be a limitation in
the maximum number of assays that can be multiplexed in a
single well, the 5plex-LAMP used here has proven to be equal
or higher than the currently used methods for multiplexing

Fig. 1 Performance of the multiplex LAMP assay using the ACA
machine-learning based method in real-time digital LAMP. (A)
Visualisation of the similarity of real-time LAMP amplification curves
using the uniform manifold approximation and projection algorithm.
(B) Confusion matrix showing prediction performance of ACA for each
of the selected targets in the 5plex-LAMP: human influenza A virus
(IAV), human influenza B virus (IBV), severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), human adenovirus (hAdV) and Klebsiella
pneumoniae (KP).

Table 1 ACA classification performance by one-vs.-one classifiers

Targets Accuracy Sensitivity Specificity

hAdV vs. SARS-CoV-2 97.40% 98.74% 94.69%
hAdV vs. IAV 97.22% 98.32% 96.25%
hAdV vs. IBV 99.15% 99.88% 98.51%
hAdV vs. KP 97.55% 99.42% 94.45%
SARS-CoV-2 vs. IAV 97.03% 94.02% 98.34%
SARS-CoV-2 vs. IBV 98.64% 98.64% 98.63%
SARS-CoV-2 vs. KP 91.10% 93.08% 89.48%
IAV vs. IBV 98.96% 99.30% 98.63%
IAV vs. KP 97.94% 99.03% 95.86%
IBV vs. KP 98.25% 97.93% 98.86%
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in LAMP which rely on molecular probes,2 melting curve
analysis10 or restriction enzyme digestion.9

Notwithstanding the achieved results, limitations to this
study include the fact that real-time digital instruments are
not commonly available, and therefore, the performance of
the evaluated methods for target classification using data
from a conventional real-time instrument should be further
assessed. This will also require verifying if the trained data is
transferable across instruments such that the proposed
methodologies could be implemented in conventional real-
time instruments, and ultimately in affordable devices for
point-of-care diagnostics. Lastly, the conducted experiments
for the demonstration of data-driven multiplexing with LAMP

only considered the presence of synthetic pure DNA targets.
Co-infections are likely to occur, especially in the field of
infectious diseases where it is common to find patients
presenting more than one disease. The use of dLAMP with
single molecule resolution will increase the accuracy in
determining the presence of co-infections. This could also be
further investigated in future work, as well as the validation
of the proposed method with clinical samples to determine
its robustness and performance for multiplexing.

Conclusions

We have demonstrated that multiplexing five LAMP assays in
a single well reaction using a single fluorescent channel can
be achieved with the ACA method with high accuracy, limited
assay design, and without the need of downstream
experiments. We envision that the proposed method could be
applicable for multiplexing any desired LAMP assay at
standard laboratory settings enhancing the current testing
capabilities, and at the point-of-care once integrated in
portable devices that acquire real-time data.
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Fig. 2 Performance of melting curve analysis (MCA) and final fluorescence intensity (FFI) machine-learning based methods in real-time digital
LAMP. (A) Confusion matrix showing the prediction performance of MCA for each of the targets in the respiratory panel. (B) Melting curve
distributions for each target showing the median temperature of the distribution. (C) Confusion matrix showing the prediction performance of FFI
for each of the targets in the respiratory panel. (D) Distribution of FFI across the five targets.

Fig. 3 Effect of training data size on the classification accuracy using
5000 out-of-sample data points (10 iterations).
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