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Electrocatalytic conversion of formic acid oxidation to CO2 and the related CO2 reduction to formic acid

represent a potential closed carbon-loop based on renewable energy. However, formic acid fuel cells

are inhibited by the formation of site-blocking species during the formic acid oxidation reaction. Recent

studies have elucidated how the binding of carbon and hydrogen on catalyst surfaces promote CO2

reduction towards CO and formic acid. This has also given fundamental insights into the reverse

reaction, i.e. the oxidation of formic acid. In this work, simulations on multiple materials have been

combined with formic acid oxidation experiments on electrocatalysts to shed light on the reaction and

the accompanying catalytic limitations. We correlate data on different catalysts to show that (i) formate,

which is the proposed formic acid oxidation intermediate, has similar binding energetics on Pt, Pd and

Ag, while Ag does not work as a catalyst, and (ii) *H adsorbed on the surface results in *CO formation

and poisoning through a chemical disproportionation step. Using these results, the fundamental

limitations can be revealed and progress our understanding of the mechanism of the formic acid

oxidation reaction.
Introduction

Tremendous efforts are currently going into out-phasing fossil
fuels in favor of sustainable fuels.1 This is motivated by our
need to close the carbon cycle2 and pave the way for new fuel
production routes.3 Electrocatalytic technologies can in the
future possibly allow direct electrication of chemical and fuel
production. Examples include reduction of CO2 towards CO,
HCOOH, C2H4, C2H5OH and H2O towards H2.1 Efficient fuel
consumption through fuel cells (FCs) also holds great poten-
tial.4 Liquid fuels such as formic acid and methanol have
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attracted a lot of attention due to their viable energy density per
mass- and volume, attractive handling/storage properties and
potential uses in other non-fuel applications, e.g. as high value
chemical building blocks for industry.3

Some liquid fuels, such as methanol, are notoriously limited
in the oxidation toward CO2 since the process goes through
a CO intermediate.5 CO oxidation then becomes the limiting
factor determining the performance of direct methanol FCs
(DMFCs). Formic acid as liquid fuel behaves differently; it has
a CO2-like structure with two hydrogens attached. This molec-
ular structure predicates that the oxidation process only
requires the removal of two hydrogen atoms. Consequently,
formic acid oxidation should ideally circumvent the problem of
CO-poisoning.

To gauge formic acid's efficiency as a fuel we compare the
single round trip efficiency of relevant closed-loop chemical
compounds, i.e. hydrogen, formic acid, methanol and lithium
batteries as seen in Table 1. Here we observe that the Li-battery
storing and release of energy exhibits the highest efficiency
followed by hydrogen. However, both Li-batteries and H2 suffer
from low energy density. Storing energy as methanol and formic
acid is very similar in terms of the cost in electrolyzer energy.
The major difference between formic acid and methanol arises
when using the chemical in a fuel cell, where methanol is
limited by CO oxidation.6

Depending on the UFAOR, direct formic acid fuel cells
(DFAFCs) can be considered an attractive alternative to
Chem. Sci., 2022, 13, 13409–13417 | 13409
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Table 1 Estimated round-trip efficiencies

�
h ¼ UORR � Ufuel cell reaction

UOER þ Uelectrolyzer reaction
� 100%

�
calculated using the difference in energy potentials.

Common for hydrogen, formic acid, and methanol we use UOER = 1.6 VRHE and UORR = 0.8 VRHE

Energy stored (electrolyzer) Energy released (fuel cell)
Round trip efficiency,
h

Hydrogen UHER = −0.1 VRHE UHOR = 0.1 VRHE z41%
Formic acid UCO2/HCOOH = −0.8 VRHE UFAOR = 0.2 VRHE z25%
Methanola UCO2/CO+H2

= −0.6 VRHE UCO/CO2
= 0.65 VRHE z7%

Li-batteryb z90%

a Here only the cost of syngas production is considered, not the full formation of methanol. b Typical charge/discharge efficiency.
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methanol fuel cells. Methanol provides 6 protons per reacted
molecule and formic acid only two and therefore methanol has
a ∼3 times higher volumetric energy density. However, the
potential of a formic acid fuel cell is high; even a few hundred
millivolts reduction in overpotential can allow formic acid to
output more energy than methanol per molecule.

Key to understanding the limitation of formic acid oxidation
is the direct link to the reverse electrochemical reaction, i.e. the
CO2 reduction reaction (CO2RR).7,8 CO2RR to formic acid and
the formic acid oxidation reaction (FAOR) can be written in the
form:

ðCO2RRÞ CO2 þ 2Hþ þ 2e�/HCOOH;

DG0
CO2/HCOOH ¼ 0:12 eV per Hþ þ e� (1)

ðFAORÞ HCOOH/CO2 þ 2Hþ þ 2e�;

DG0
HCOOH/CO2

¼ �0:12 eV per Hþ þ e� (2)

where DG0 is the thermodynamic potential per proton–electron
pair of the reaction.

CO2RR selectivity is highly dependent on the catalyst mate-
rial used and the crystal orientation.9–12 Hori et al. showed that
hydrogen is produced on Pt, Ru, Fe and Ni, carbon monoxide is
produced on Au, Ag, Zn, Ga and Pd (with limited amounts of
H2), and nally, formic acid is produced on Pb, In, Hg, Sn, Cd
and Tl with almost 100% faradaic efficiency.11 Importantly,
hydrocarbons are uniquely produced on Cu.11 Using simula-
tions, we were able to classify the CO2RR product distributions
towards hydrogen, hydrocarbons, CO and formic acid due to the
catalyst's affinity towards adsorbed *H and *CO.10 Interestingly,
we noted that the CO2RR appears selective towards formic acid
when weakening *H binding (i.e. when there is no *H on the
catalyst surface). Moreover, from this study10 we noted that the
*OOCH vs. the *COOH intermediate cannot be used to distin-
guish the CO or formic acid product formation. Where previous
works used *OOCH as a descriptor for formic acid oxidation
and *COOH as a descriptor for CO production, and even recent
discussion for CO2 reduction highlights the possible formic
acid formation through *COOH.13 These ndings and discus-
sion are readily usable when considering the reverse reaction
FAOR, which involves similar reaction intermediates to CO2RR
and vice versa.

FAOR exhibits the highest intrinsic activity on Pt and Pd.14–19

However, the reaction is affected by high overpotential and
13410 | Chem. Sci., 2022, 13, 13409–13417
formation of various poisoning and site-blocking intermedi-
ates.20 The following observations are reported in the literature,
as also shown in ESI Fig. S1:† (i) FAOR onsets at low potentials
does not necessarily correspond to high FAOR currents. (ii)
Hysteresis between anodic and cathodic scans is a common
occurrence, showing a higher current in cathodic scans in than
anodic ones, which shows that the reaction rate depends on the
prehistory. Typically, this “memory effect” is related to
unwanted reactions which form species that block the surface,
i.e. poisoning species. (iii) Pt(111) is more active than Pd(100) in
the low overpotential region; however, interestingly, this rela-
tionship shis at higher potentials. (iv) As an observation it is
known that there is a difference for Pt and Pd with respect to the
CO poisoning during FAOR.8 The ideal FAOR catalyst on the
other hand should show reversible cyclic voltammetry (CV),
high activity, low onset potential and stable currents, as illus-
trated in Fig. S2.†

To understand the mechanism of this important reaction
numerous attempts have been made to map possible FAOR
pathways,20–24 which we illustrate by the literature study over-
view in Fig. 1. A dual-pathway mechanism for formic acid
oxidation is established by the community:25,26 The direct
pathways, which leads to the desired nal product of CO2

through the formate adsorption,27 and another path where
adsorbed CO, the poisoning species, is formed. The CO
formation can be thought of as being formed through a so-
called chemical disproponation reaction, where an activated
formic acid intermediate reacts with a hydrogen to form water
and CO (e.g. *COOH + *H / *CO + H2O). However, the nature
of the reactive intermediate in the direct pathway is still under
strong debate and it is not given that it is the most stable
intermediate (e.g., formate) should also be the reaction inter-
mediate. The community has focused on elucidating the reac-
tionmechanism and attempted to circumvent poisoning issues:
through pathway engineering,21,22 changing electrolyte compo-
sition,23 or inclusion of sites with the ability to remove
poisoning or site-blocking species.24,28–30 CO-poisoning from
partial HCOOH oxidation is oen considered the principal
culprit28 and various works suggest CO formation can be avoi-
ded utilizing a single/dual-site catalyst.31–34 However, catalysts
such as Au–Pt,21 Pt–Hg/C35 and Pd–Hg/C36 exhibit limited cata-
lytic improvement over their pure metal counterparts, for some
overviews see Fig. S4 in ESI.† In this work, we will take a new
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Electrochemical data recorded at room temperature of equal
loading nanoparticle catalysts: Pt/C (navy blue), Pd/C (crimson), Pt–
Hg/C (blue), Pd–Hg/C (red) and Pt–Bi/C (green) systems on glassy
carbon in Ar-saturated 0.1 M HClO4 with 0.1 M HCOOH at 1600 rpm,
unless otherwise stated. (a) FAOR CVs at 10 mV s−1. (b) Base CVs in Ar-
saturated 0.1 M HClO4 at 400 rpm and 50 mV s−1. (c) CA at 0.55 VRHE

for 30 min. All measurements were repeated at least three times
(shade represents standard deviation), IR-compensated and post-
corrected, for experimental details see ESI and Fig. S5–S8.† Note, Pt–
Bi/C was unstable at higher potentials (see ESI†) hence a reduced
potential range was utilized.

Fig. 1 Literature study highlighting all the conceived FAOR reaction
pathways during potential cycling.38 Historically, FAOR has been split
into the direct (gray)39,40 and indirect (green and yellow)16,39,41,42 path-
ways. Further, partial FAOR and catalyst oxidation forming unwarranted
surface blocking have been suggested, e.g. COxHy species
(purple),20,25,43 CO (red)44 and hydroxide/oxides (blue).38 Even CO2RR
induced CO formation by applying too cathodic potential (brown)40

have been suggested. Recently, formate (yellow)28,39,45,46 in various
arrangements has gained attention as potential catalyst site-blocking
agents.
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view on all possible pathways for working catalysts. We carry out
electrochemical characterization on Pd/C and Pt/C catalyst as
well as Pt–Hg/C,35 Pd–Hg/C36 and Pt–Bi/C,37 following the
protocols reported in the literature for the preparations of these
catalysts. Furthermore, we try to validate the possible reaction
path for not/low performing catalysts (e.g., Ag) for formic acid
oxidation.

In this work, we address the following fundamental ques-
tions in FAOR:

(i) Is the FAOR activity correlated with the *COOH or the
*OOCH intermediate?

(ii) How is CO formed during the FAOR?
To probe the scientic questions, we use a combination of

experimental tools based on cyclic voltammetry (CV) and
chronoamperometric (CA) and for simulations we use density
functional theory (DFT) calculations on the binding of carboxyl,
*COOH, formate bidentate, *OOCH, and hydrogen, *H.
Results and discussion

Fig. 2 summarizes experimental electrochemical data of Pt/C,
Pd/C, Pt–Hg/C, Pd–Hg/C and Pt–Bi/C. Here we investigate only
known and active FAOR catalyst, and both extended surfaces as
Pt/C and Pd/C, but also single site catalyst Pt–Hg/C and Pd–Hg/
C and the noteworthy very active Pt–Bi/C system. These inves-
tigated catalysts are synthesized from the same starting mate-
rials, i.e. premade Pd or Pt catalyst which we then modied by
(electro)deposition of Hg or Bi at room temperature. Conse-
quently, it is reasonable to expect that no signicant impact of
© 2022 The Author(s). Published by the Royal Society of Chemistry
the catalysts' surface area arises due to the modication,
allowing for catalyst comparison. However, verifying this
expectation using standard electrochemical surface area (ECSA)
evaluation (e.g. utilizing *CO-stripping or hydrogen under
potential deposited, H-UPD, charges) is not possible as these
species do not adsorb specically on Hg and Bi modied
catalysts.

Fig. 2a shows the formic acid oxidation CV during rotation
and 10 mV s−1 scan-rate on the ve catalysts. Fig. 2b depicts the
base CVs exhibiting suppressed hydrogen underpotential
deposition (HUPD) on the Pt–Bi/C, Pt–Hg/C and Pd–Hg/C
compared to the Pd/C and Pt/C counterparts. Fig. 2c displays
the formic acid oxidation CA at 0.55 VRHE for 30min, illustrating
the loss in activity at this potential due to the formation of
poisoning or blocking species. For Pt/C and Pt–Hg/C, an
apparent hysteresis is seen in the oxidation between the forward
and backward scans of Fig. 2a indicating an irreversible change
in the catalyst going to low potentials. Interestingly, taking
a combined view on Fig. 2a and c shows that forming single-
Chem. Sci., 2022, 13, 13409–13417 | 13411
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Fig. 3 DFT calculated binding energies for metal fcc(111) (light-blue
crosses) and single-site catalyst. MNC-based (black points), Pt atom in
Au(111) denoted Pt1Au(111) (cyan triangle), PdHg4 (black/red square)
and PtHg4 (black/blue square). (a) *COOH vs. *H. (b) *OOCH vs. *H. (c)
*OOCH vs. *COOH, here the dashed line shows the diagonal indica-
tion the affinity towards formate bound through carbon or oxygen.
Here its assumed DE0FAOR z DG0

FAOR. Further, we used CO2 and H2 for
references when calculating *COOH, DE0FAOR is 0.12 eV per electron.

13412 | Chem. Sci., 2022, 13, 13409–13417
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sites of Pt through Hg alloying35,36 tend to improve the FAOR
onset. In contrast, Pd-based catalysts generally do not exhibit
any hysteresis. The Pt–Bi/C system exhibit the highest FAOR
current with least hysteresis, but also with the highest over-
potential. Additional relevant electrochemical studies can be
found in the ESI,† represented through Fig. S10–S13.† To
explain these observations in Fig. 2 we turned to DFT.

Fig. 3a maps out the DFT calculated *COOH vs. *H binding
energies of the most relevant model metal (111) facets and
single-site catalysts, such as MNCs, PtHg4,35 PdHg4 (ref. 36) and
single Pt atoms in Au, Pt1Au(111)21 (for computational details
see ESI†). Via simulations we study both metals and the single-
site-catalysts as they both have a linear scaling: DE*COOH = DE*H
+ b. However, b is about 0.29 eV as previously47 observed for
metals and 0.0 eV for single-site catalysts, respectively. This
allows for a fundamental destabilization of *H vs. *COOH at the
single-site catalyst motifs as compared to metals, which is
benecial for improved FAOR by limiting the
Fig. 4 FAOR CVs at 10mV s−1, 1600 rpm and room temperature in Ar-
saturated 0.1 M HClO4 with 0.1 M HCOOH at different potential limits.
Ohmic drops were post-corrected. (a) Pt/C. (b) Pt–Hg/C. (c) Pd/C.
Note, increasing lower potential limit minimizes the hysteresis in the
CVs, lowering the upper potential limit generally decreases the activity.
Note, that after cycling in the different potential limits returning to the
full range of 0.025 to 1.05 VRHE re-initializes the FAOR response i.e. no
irreversible changes arise due to dissolution or sintering.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 2 s pulsed voltammetry and CVs at 10 mV s−1 at room-
temperature at 1600 rpm in Ar-saturated 0.1 M HClO4 with 0.1 M
HCOOH. (a) Pt/C. (b) Pd/C. Measurements repeated three times.
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disproportionation reaction. Besides the scaling, a vertical- and
a horizontal line indicating HUPD (DEHUPD

= 0 for 1/2H2 4 *H)
and formic acid's thermodynamic equilibrium potential have
been included in Fig. 3a and b. Here its assumed that DE0FAOR z
DG0

FAOR, as thermodynamic corrections and water stabilization
are expected to cancel out for the intermediates. The challenge
to understand the implications of Fig. 3a is that one needs to
compare *H as a reduction from H2O and *COOH as oxidation
from HCOOH. This means that *H stabilizes with negative
potential, while *COOH stabilizes with positive potential during
FAOR. Essentially, from Fig. 3a it can be inferred that materials
to the le of approximately DEHUPD

are limited by dispropor-
tionation at low potentials. While materials to the right are
limited by weak binding *COOH. Most importantly, the
fundamental scaling between *COOH and *H matter as
adsorption of *H on the surface leads to the possibility of
disproportionation towards CO. In conclusion, the single-atom
catalyst scaling crosses the FAOR thermodynamic potential at
values signicantly above DEHUPD

, which suggests that single-
atom catalyst may work for FAOR near the FAOR equilibrium
potential without carrying out the disproportionation reaction.

Fig. 3b displays the DFT calculated binding energies of
*OOCH vs. *H. Conversely to Fig. 3a, there is no apparent
scaling between formate bidentate and adsorbed hydrogen.
However the oxygen bond for *OOCH scales with *OH and (bi)-
carbonate (HCO3/CO3), which have surface binding through
oxygen. Carbonate species could be formed over time due to the
equilibrium with CO2 and hence poisoning the surface,
revealing a decaying activity as observed in Fig. 2c for all
working FAOR catalysts. Investigating *OOCH as a function of
*H is important as *OOCH has been suggested as an important
reaction intermediate. Fig. 3b shows that the binding energy of
the *OOCH intermediate on Ag is slightly too strong, but very
close to the thermodynamic potential and similar to Pt and Pd.
Essentially, if *OOCH was the important reaction intermediate
for FAOR, then Ag should be working as FAOR catalyst at very
low potential, and furthermore Ag does not suffer from
disproportionation (as Ag *H binding far exceeds DEHUPD

).
However, Ag is experimentally shown to be inert for the FAOR.
The role of formate in the reaction is clearly a puzzle. For FAOR
surface-enhanced IR absorption on Pt has experimentally
conrmed formate on the surface27 above 0.7 VRHE and further
for CO2RR in situ surface-enhanced Raman spectroscopy on Ag
has experimentally conrmed formate on the surface.48 As Pt
converts formic acid to CO2 and Ag converts CO2 to CO, there
seems no relation between the experimental observation of
formate on the surface as reaction intermediate. We note that
*OOCH scales with *OH, the *OOCH binding can be considered
a probe of the oxidation affinity of the catalyst, i.e. having
a strong *OOCH binding results in a lower oxidation potential.

Fig. 3c shows the *OOCH vs. *COOH binding for the catalyst,
with a dashed line indicating the affinity towards carbon or
oxygen. Depending on the catalyst we can see whether formate
bidentate or carboxyl is favored. The working catalyst is Pt,
which is well above the diagonal and Pd which is at the diag-
onal, while poorly working FAOR catalysts e.g. Ir49 or Au50 are
slightly below the diagonal. Catalysts having stronger *OOCH
© 2022 The Author(s). Published by the Royal Society of Chemistry
binding vs. *COOH (below the diagonal), are basically oxidized
before they can carry out FAOR.

The type of analysis illustrated in Fig. 3 is a powerful tool
able to identify which catalyst suffers from disproportionation,
poisoning or oxidation. By virtue of the *COOH vs. *H scaling-
relations,10 it gives fundamental insights into why literature
historically has shown no signicant FAOR activity at the ther-
modynamic potential for a metal catalysts. Implicitly Fig. 3a
shows disproportionation occurring at low potential arising
from the HUPD and the consequent creation of *CO poisoning
species. The creation of *CO leads to hysteresis between the
anodic and cathodic sweeps in FAOR CVs. From this insight,
one would expect that disproportionation is mitigated in the
CVs by simply staying above HUPD potentials.

Fig. 4 shows FAOR CVs of Pt/C, Pt–Hg/C and Pd/C cycled with
varying potential limits. The potential ranges from 0.00–1.05
VRHE reveals that Pt/C and Pt–Hg/C are poisoned in anodic
sweeps. While, changing to potentials, ranging from 0.40–1.05
VRHE for the Pt/C and 0.35–1.05 VRHE for the Pt–Hg/C, signi-
cantly increases the anodic activity. Hence, this allows us to
indicate that HUPD mediated disproportionation account for
poisoning through CO on Pt catalysts. For Pd/C in Fig. 5c,
decreasing the lower potential limit has no inuence on the
almost non-existing FAOR hysteresis. In this context, it is
important to note that Pd is well-known to form Pd-hydride
phases51 below 0.2 VRHE, which then competes with *H adsor-
bed, i.e. at potentials relevant for both FAOR and CO2RR. In
relation to CO2RR, we also note that Pd-hydride, leads to a high
faradaic efficiency towards formate,52 whereas at higher over-
potentials CO and H2 will dominate.11
Chem. Sci., 2022, 13, 13409–13417 | 13413
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Fig. 6 FAOR data on a Cu, Ni and Ag wire at 50 mV s−1 at room-
temperature Ar-saturated 0.1 M HClO4 with 0.1 M HCOOH taken at 50
mV s−1.
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Concerning Fig. 4, one could erroneously assume that
lowering the upper potential limit would not affect the CVs,
while staying above the CO oxidation potential. This is however
not the case, cycling 50 times from 0.35–1.00 VRHE reveals some
form of deactivation of both Pt/C, Pt–Hg/C and Pd/C. We do not
know what the origin of this deactivation is. Various studies
reported in the literature suggests different reasons including
deactivation to irreversible metal oxidation53,54 due to insuffi-
cient surface reduction or accumulation of either *OOCH,55

*COH,38 *OCOH56 or *CO species. Interesting is that in situ
Fourier-transform infrared spectroscopy (FTIR) work57,58 has
shown that Pt, contrary to Pd, continuously form CO above
HUPD potential during FAOR.

Finding that *H limits FAOR activity at low potential via
disproportionation, allows one to hypothesize about the Pt–Bi
and Pt–Hg systems, which perform better than Pt on two
different perspectives. Pt–Bi shows no hysteresis and is active at
higher overpotential as compared to Pt. The absence of
a hysteresis in the CV indicates that Pt–Bi somehow circumvent
the disproportionation reaction, potentially by blocking the
surface for *H at low potential as onset for Pt–Bi is higher than
on Pt. Pt–Hg on the other hand is more active in the negative
sweep, particular at lower potential, but does show clear
hysteresis. Further we hypothesize that the Pt single-sites in Pt–
Hg destabilizes *H shiing the onset to lower potentials and
increasing the activity at low potential, simply due to a limited
disproportionation reaction.

To gauge how the FAOR is affected in the potentials regions
above HUPD we conducted pulsed voltammetry inspired by
Clavilier et al.59 In this type of pulsed voltammetry experiments,
each potential investigated is separated by a surface re-
initialization (at 1.05 VRHE) cleaning the surface for all
poisons through surface oxidation. The impact from dissolu-
tion at this oxidizing potential should be minimal.60,61

Fig. 5 shows pulsed voltammograms and corresponding CVs
for Pt/C and Pd/C samples. Interestingly Pt/C becomes more
active when pulsing, which is in contrast to Pd/C that does not
show any changes from the pulsing. This experiment challenges
*OOCH species as site-blocking species. Since Pd has stronger
relative *OOCH to *COOH binding than Pt, and it should hence
be on Pd where activity was affected by blocking of *OOCH
species. One view for this observation could be given in the recent
work by Koper and coworkers,8 who noted that formate adsorp-
tion is important for formic acid oxidation, not as an active
intermediate, but more as a self-protector against CO poisoning.

Beyond Pd and Pt catalyst, in Fig. 6, we tested Cu, Ni and Ag
wires as FAOR catalyst. The experiments revealed that Ni indeed
seems very active to oxidize either HCOOH or Ni. However,
going to potentials above 0.2 VRHE tended to bring out
a yellowish tinge in the electrolyte, and by looking into Ni's
Pourbaix diagrams62 it appears to readily dissolve as Ni2+ at 0.15
VRHE at pH 1, consequently making it a poor FAOR catalyst
(unless there is some very narrow window that Ni is stable
enough to oxidize HCOOH without dissolving). Similarly, Cu
shows no FAOR activity only the well-known Cu oxidation
current at potentials larger than 0.2 VRHE is observable. Ag is
perhaps active towards FAOR but again this occur close to Ag
13414 | Chem. Sci., 2022, 13, 13409–13417
dissolution potentials suggesting it to be a rather poor FAOR
catalyst.

Most interesting when combining the observation of similar
intermediate binding energetics in Fig. 3, we identied that Ag
has similar binding energetics of formate as Pd and Pt, whereas
Cu and Ni do not follow the energetic of Pd and Pt. Hence Cu
and Ni can be used as test catalysts far from known working
catalysts. However, as tested here in Fig. 6 there appears no
signicant FAOR on Ag, Cu and Ni.
Conclusion

In conclusion we have correlated the FAOR activity with simu-
lated DFT binding energies of *COOH, *OOCH and *H across
multiple metal catalysts. We have observed that for an ideal
catalyst, the FAOR equilibrium potential should be above its
corresponding HUPD potential in order to avoid the dispropor-
tionation. We found that *COOH and *H binding scale on both
metal and single-site catalysts. This creates the fundamental
limiting potential due to HUPD mediated disproportionation on
the surface. The carbon–hydrogen scaling is indeed a funda-
mental limitation, analog to the *OH and *OOH scaling for
oxygen evolution and reduction. Experimentally, we show that
a good performing FAOR catalyst should have the attributes of:
(i) an onset close to the fundamental derived onset, (ii) no
hysteresis between anodic- and cathodic CV scans and (iii) high
and stable FAOR CA currents above the derived onsets funda-
mental limits. Interestingly, this works concludes on the direct
relation between FAOR and CO2RR; *H in combination with
*COOH forming CO in both FAOR and CO2RR.
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