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Reversibility and stability are considered as the key indicators for Zn metal anodes in aqueous Zn-ion
batteries, yet they are severely hindered by uncontrolled Zn stripping/plating and side reactions. Herein,
we fabricate a bulk phase ZnlIn alloy anode containing trace indium by a typical smelting—rolling process.
A uniformly dispersed bulk phase of the whole Zn anode is constructed rather than only a protective
layer on the surface. The Zn deposition can be regarded as instantaneous nucleation due to the
adsorption of the evenly dispersed indium, and formation of the exclusion zone for further nucleation
can be prevented at the same time. Owing to the bulk phase structure of ZnlIn alloy, the indium not only
plays a crucial role in Zn deposition, but also improves the Zn stripping. Consequently, the as-designed
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NH,4V4040 battery with 96.44% capacity retention after 1000 cycles at 5 A g~*. This method of regulating
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Introduction

The ever-increasing demand for environmentally friendly
energy consumption stimulates the development of new green
energy storage devices."> Aqueous Zn-based batteries have
received considerable attention due to their abundant resource
of raw materials, eco-friendliness, high theoretical capacity
(820 mA h g " and 5854 mA h em ?) and low Zn**/Zn redox
potential (—0.76 V vs. standard hydrogen electrode).>* However,
they encounter intrinsic limitations for practical application
including dendrite growth and undesired side reactions,®’
which are mainly attributed to the uncontrollable Zn deposition
caused by non-uniform interface electric field distribution at
the anode/electrolyte interfaces,®® presenting a challenge to
realizing high coulombic efficiency (CE) for metallic Zn anodes.
To mitigate these issues, numerous efforts have been made to
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Zn dendrite growth and by-product generation fundamentally.

inhibit dendrite growth and restrain side reactions, such as the
artificial solid electrolyte interphase (SEI) layer,'"*** the 3D
structure of the Zn anode®' and electrolyte modifications."***
However, these studies only focus on changing the environment
of the Zn anode surface to alleviate the dendrite growth and
corrosion. These measures may be ineffective with the plating of
Zn and severe Zn dendrite formation occurs with inhomoge-
neous nucleation and deposition layer formation, leading to the
failure of the battery. Therefore, it is highly desirable to explore
a new Zn anode to regulate the Zn nucleation, thereby funda-
mentally inhibiting dendrite growth and restraining side reac-
tions simultaneously.

The alloying strategy is proved to be effective in addressing
these difficulties by reconstructing the anode itself. Inspired by
this, Zn-based alloys have been applied as the anode of Zn-ion
batteries, which can lower the Zn deposition energy barrier or
provide Zn deposition channels, including ZnCu alloy,"* ZnMn
alloy,'® and ZnSn alloy."” However, only an alloy film on the
surface of the substrate can be constructed rather than
changing the structure and composition of the bulk metallic Zn
anode when using these methods. With the deposition layer
formation, inhomogeneous nucleation always takes place and
causes uncontrollable dendrite growth. Moreover, large-scale
production is difficult due to the complexity of the prepara-
tion process. Smelting-rolling is a typical method to prepare
bulk phase alloys instead of only constructing an alloy film on
the electrode surface, which is economical and suitable for
large-scale production. Unlike surface modification, for this

© 2022 The Author(s). Published by the Royal Society of Chemistry
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bulk phase alloy, the nucleation process of Zn on the anode at
each cycle is the same as for the initial state. Moreover, the
evenly distributed alloying element can be readily controlled,
which is important for the uniform nucleation of the Zn anode.
Among the alloying elements, indium has low resistivity and
high hydrogen evolution overpotential (—0.342 V vs. SHE)'*®
and has been used as a mercury-substitute inhibitor for the Zn
anode in alkaline Zn-Mn batteries to inhibit the corrosion of Zn
metal.”*® Moreover, it has been proved by calculation that
indium has strong adsorption to Zn, and can be used as “seeds”
to adsorb Zn ions, thereby inducing uniform deposition of Zn.

In this work, we report the preparation of a ZnIn bulk phase
alloy anode containing trace indium via a typical smelting—
rolling process. The content of indium is only 0.4%, hence there
is almost no loss of active material in comparison with the re-
ported ZnggAl,, alloy and Zn;Mn alloy.'®*' Moreover, the bulk
phase design can reconstruct the Zn anode rather than just
generating a protective film on the surface. Thus, the ingredient
homogeneity of the bulk phase of ZnIn alloy is maintained
during the plating and stripping of the ZnIn anode. The
nucleation mechanism is regarded as instantaneous nucleation
due to the adsorption of uniform indium and the fast kinetics of
Zn deposition, accelerating the nucleation rate of Zn on the
Znln alloy anode. Therefore, the initial nuclei are distributed
evenly, which alleviates the effect of the electrolyte/anode
interface diffusion zones. After that, the Zn nuclei grow
together in the form of nanoparticles, and the surface of the
anode gradually becomes smooth along with the grain growth.
Meanwhile, formation of the exclusion zone for further nucle-
ation can be prevented compared with pure Zn. As a result, the
ZnIn symmetrical battery can cycle for over 2500 h at a current
density of 4.4 mA cm™? and capacity of 1.1 mA h cm 2 with
a smaller polarization voltage. The outstanding electrochemical
properties also enable the ZnIn//NH,V,0,, full cell to deliver
1000 cycles with 96.44% capacity retention.

Experimental
Preparation of the ZnIn alloy anode

ZnIn alloy was prepared by melting, casting and rolling
processes. Firstly, 4990 g of high-purity zinc (99.99%) and 10 g
of high-purity indium (99.99%) were melted and mixed well in
a smelting furnace and stirred evenly. The melting temperature
was 420 °C, which is close to the melting point of Zn. After that,
the molten alloy was cooled to room temperature in the air, and
the ZnIn alloy ingot was obtained. Then the ZnIn alloy ingot was
cut into alloy plates with a thickness of 2 mm by wire cutting.
After removing the oxide layer and impurities on the surface by
grinding and polishing, the alloy plate was hot-rolled at
a temperature of 200 °C. Ultimately, the ZnIn alloy sheet with
a thickness of 200 pm was obtained and further polished for use
as the anode.

Fabrication of the NH,V,0,, cathode material

NH,V,0,, was synthesized by the hydrothermal method
described in ref. 22. Typically, 1.170 g of NH,VO; was dissolved
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in 50 mL deionized water and heated to 80 °C. Then, 1.891 g of
H,C,0,4-2H,0 powder was added to the NH,VO; solution and
stirred until it became black-green. After that, the solution was
transferred to a Teflon-lined autoclave and heated at 140 °C for
48 h. The products were collected and washed repeatedly with
deionized water after the sample was cooled to room tempera-
ture naturally. The final product was dried at 60 °C for 12 h to
obtain NH,V,04,.

Material characterization

XRD measurements were conducted on an XRD diffractometer
(Rigaku Mini Flex 600 diffractometer) using Cu Ka radiation.
Morphology images were collected on a field-emission scanning
electron microscope (FEI Nova Nano SEM 230, 10 kV). Notably,
to avoid the effect of the separator, the electrodes characterized
by SEM are cycled and plated in 2 M ZnSO, electrolyte without
separator. Electron probe microanalysis (EPMA) was performed
on a JXA-8230 instrument with wavelength-dispersive X-ray
spectroscopy (WDS) characterization. The optical microscope
photo was obtained on a Keyence VHX-5000 instrument. The in
situ optical microscope study was conducted on an LW750L]T
Transflective Optical Microscope. TEM images were collected
on a Tecnai G2 20 S-TWIN Transmission Electron Microscope.

Electrochemical measurements

All electrochemical testing was carried out in a 2025-type coin
cell configuration. For the full cells, the cathode electrodes were
composed of NH,V,0,,, conductive carbon black and poly-
vinylidene fluoride (PVDF) at a mass ratio of 7 : 2 : 1. The pure
Zn and ZnIn alloy were punched into disks (¢ = 15 mm) and
served as the counter electrode. The cathode and anode elec-
trodes were separated by glass fiber separators (¢ = 19 mm,
Whatman). 2 M ZnSO, aqueous solution was used as the typical
liquid electrolyte. And for symmetric cells, the pure Zn and ZnIn
alloy were punched into disks (# = 12 mm). Galvanostatic
charge/discharge cycling measurements were carried out on
a LAND multichannel battery test system (CT2001A, China) at
different current densities at room temperature (25 °C). Cyclic
voltammetry (CV) profiles were recorded on an electrochemical
station (CHI 660E, China) at a scan rate of 0.1 mV with a voltage
range of 0.4-1.4 V. The linear sweep voltammetry (LSV) curves
and chronoamperometry (CA) data at different overpotentials
were also recorded on it. The electrochemical impedance
spectroscopy (EIS) data of the electrodes were acquired at room
temperature using a ZAHNER-IM6ex electrochemical worksta-
tion (ZAHNER Co., Germany) in the frequency range of 100 kHz
to 0.01 Hz on symmetric cells.

Computational methods

We employed the Vienna Ab initio Package (VASP)**** to perform
all the density functional theory (DFT) calculations within the
generalized gradient approximation (GGA) using the PBE
formulation.>® We chose the projector augmented wave (PAW)
potentials®**” to describe the ionic cores and take valence
electrons into account using a plane-wave basis set with
a kinetic energy cutoff of 400 eV. Partial occupancies of the
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Kohn-Sham orbitals were allowed using the Gaussian smearing
method and a width of 0.05 eV. The electronic energy was
considered self-consistent when the energy change is smaller
than 10" eV. Geometry optimization was considered conver-
gent when the force change was smaller than 0.04 ev A™".
Grimme's DFT-D3 methodology*® was used to describe the
dispersion interactions. The Brillouin zone integral used the
surfaces structures of 3 x 3 x 1 Monkhorst-Pack K point
sampling. Finally, the adsorption energies (E,qs) were calculated
as Eags = ad/sub T Eaa — Esub, where Ead/suby Ead and Esup were
the optimized adsorbate/substrate system, the adsorbate in the
structure and the clean substrate respectively.

Finite element method simulations

The modeling of Zn electrodeposition was performed by using
COMSOL Multiphysics 5.6 based on the finite element method.
This simulation includes migration and diffusion under the
interaction exported by the electric field. The electrochemical
deposition process of Zn metal was simulated using the
“secondary current distribution” model interface. The
“Deformable Geometry” interface is coupled to the “secondary
current distribution” interface to track deformability on the
electrode surface. The Butler-Volmer equation was employed to
introduce the reaction of the electrode surface. The flux of each
ion in the electrolyte is calculated by the Nernst-Planck equa-
tion. The initial concentration of Zn>" was set to 2.0 mol L™ ".
The average current density of the electrode is 5 mA cm™> and
the deposition time is 60 s.

Results and discussion

The ZnlIn alloy ingot was synthesized by melting the pure zinc
and pure indium together and casting an ingot from the melt at
420 °C, then the ingot was hot-rolled at 200 °C after wire cutting
to create Znln alloy sheets about 200 pm in thickness. The
schematic diagram visualizes the main strategy to fabricate the
ZnlIn alloy (Fig. 1a). Firstly, the morphologies of the ZnIn alloy
were characterized using an optical microscope (OM). A struc-
ture similar to martensite can be observed due to the incorpo-
ration of foreign elements of indium (Fig. S1t). The martensite
has a high dislocation density, leading to a higher adsorption
energy to Zn atoms®*® and facilitating the rapid deposition of
Zn. The X-ray photoelectron spectroscopy (XPS) of ZnIn alloy
displays a slight shift, which is mainly due to the formation of
Zn-In polar bonds at the surface of ZnIn alloy and the
enhancement of the binding energy (Fig. 1b).***> Meanwhile,
there is no obvious indium peak in the indium fine spectrum
due to the negligible addition of indium (Fig. S21). The XRD
patterns of ZnIn alloy are almost the same as those of the pure
Zn (Fig. S37), indicating the addition of indium does not change
the phase of Zn metal.

Furthermore, a typical bright-field transmission electron
microscope (TEM) image of the ZnIn alloy is shown in Fig. 1c. It
is found that a very small size (about 30 nm) dispersoid is
distributed inside the Zn metal grain. Meanwhile, the EDS
mapping displays the electron excitation intensities of the K
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and L layers of Zn and In elements, indicating that the disper-
soid is indium. The distribution of indium element on the alloy
matrix surface is examined by electron probe microanalysis in
wavelength-dispersive X-ray mode (EPMA-WDS) (Fig. 1d). No
obvious elemental enrichment can be seen, confirming the
homogeneous dispersion of indium that can also be revealed in
the cross-section scan (Fig. 1e). The content of indium in the
surface and cross-section is approximately the same, suggesting
that indium is evenly distributed throughout the bulk of the
alloy. In order to explore whether the ZnIn alloy can be applied
as the anode for the aqueous Zn-ion battery, the cyclic voltam-
metry (CV) curves of both pure Zn//stainless steel (pure Zn//SS)
and ZnlIn alloy//SS half cells were tested (Fig. S4t). There is no
other peak but a pair of redox peaks and their positions are the
same in both cells, further demonstrating that the addition of
trace indium renders unchanged electrochemical reaction of Zn
stripping/plating. In addition, the current density of the redox
peak in ZnIn alloy//SS is higher than that of pure Zn, indicating
that ZnIn alloy has faster reaction kinetics. These results
demonstrated the existence of indium with homogeneous
distribution in the ZnIn bulk phase alloy.

The deposition process of Zn is the key factor that affects the
electrochemical performance of the anode. To explore the
deposition behavior of Zn on the ZnIn alloy surface, chro-
noamperometry (CA) measurements are carried out for both
ZnlIn//ZnIn and Zn//Zn symmetric cells to evaluate the feature of
the Zn plating process (Fig. S51). The Scharifker and Hills model
is employed to illustrate the nucleation and growth process of
three-dimensional multiple nucleates with diffusion-controlled
growth. According to the Scharifker and Hills model, there are
two limiting cases of nuclear forms, which are instantaneous
nucleation and progressive nucleation. Instantaneous nucle-
ation means that nuclei arise in all possible nucleation sites in
the initial potential step at the same time, and then grow
together. In contrast, progressive nucleation refers to the slow
nucleation on the small number of active sites. In the subse-
quent growth process, the number of nucleation sites will be
decreased gradually because of the growing nuclei and exclu-
sion zones for nucleation.®® The instantaneous and progressive
nucleation expressions are displayed as follows:

Instantaneous nucleation:

.2 ¢ -1 ¢ 2
I :1.9542(—) {1 —exp{—1.2564(—)}}
jm lm lm

Progressive nucleation:

2 A\ A2 2
];L - 1.2254(7) {1exp{2.3367<1) H

where j and j,, are the current density and maximum of the
transient current density, and ¢ and ¢, are the deposition time
and the maximum of the deposition time.

The transient current expressions tested in CA measurement
at different potentials are nondimensionalized, which are in
agreement with the instantaneous nucleation shown in Fig. 2a,
reflecting that Zn deposits rapidly on the surface of ZnIn alloy at

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Fabrication and characterization of Znin alloy. (a) Schematic of the fabrication process of Znin alloy. (b) High-resolution XPS spectra of Zn
2p for ZnIn alloy and pure Zn. (c) Bright-field image of ZnIn alloy with the EDS mapping images of the selected area for Zn and indium elements.
(d and e) The surface and cross-section morphologies of Znin alloy with their corresponding EPMA mappings.

all of the nucleation sites. This nucleation mode suggests the
faster nucleation rate of Zn endowed by indium in the ZnIn
alloy.** The voltage profiles of Zn deposition onto ZnIn alloy and
pure Zn were also monitored to confirm the enhanced kinetics
of ZnIn alloy. As shown in Fig. 2b, ZnIn alloy exhibits only
15.8 mV nucleation overpotential at a current density of 0.5 mA
cm 2, which is lower than that of pure Zn (17.7 mV), illustrating
that ZnIn alloy affords a lower nucleation energy barrier and has
a better zincophilicity.***® The same trend is also confirmed at
different current densities of 1.0, 2.0, and 5.0 mA cm 2
(Fig. S67).

Theoretical calculation based on density functional theory
(DFT) is performed to investigate the effect of indium alloying
additive during Zn deposition (Fig. S71). Fig. 2c¢ shows the
adsorption energies of Zn atom on different adsorption sites on
the indium substrate are —1.19 (Top), —0.47 (Hollow), and
—0.59 (Bridge) eV, respectively. They are higher than those on
the Zn substrate (—0.57, —0.22, and —0.39 eV), suggesting the
strong propensity of zincophilicity for ZnIn alloy.*” The finite
element method is also used to verify that indium in ZnIn alloy
is more electrochemically active for the deposition of Zn. As
shown in Fig. S8, the bottom circles are set as indium and the
others are set as Zn. Compared to other areas, the electrolyte
potential near the indium elements is lower, Zn>* from the

© 2022 The Author(s). Published by the Royal Society of Chemistry

electrolyte tends to migrate to indium element. Meanwhile, due
to the good affinity to Zn of the uniformly distributed indium,
the nuclei of Zn depositing on ZnIn alloy are homogeneous. As
a result, the ZnIn alloy anode can not only exhibit excellent
deposition kinetics, but also absorb Zn on the uniform indium
element fast, thus showing the nucleation mode of instanta-
neous nucleation.

Fig. 2d and e show the scheme of the growth process for the
nucleus after initial nucleation. The dotted lines represent the
diffusion zone of the surrounding area. The Zn nuclei depos-
iting on pure Zn are randomly distributed. While the nuclei
grow, as the diffusion zones grow and overlap, replacement of
the material on the electrode surface close to the nucleus is
hindered. As a result, there is an exclusion zone for further
nucleation around an already nucleated center due to local
deformation of the electric field around the growing nuclei,
which can inhibit Zn depositing in these areas.*® Finally, the
nuclei give rise to preferential deposition of Zn at tip-spots. In
contrast, Zn nucleates on the indium seeds and then grows into
Zn particles. These Zn particles are distributed uniformly so
that the ZnlIn alloy can be covered with uniform and smooth Zn
deposits. Therefore, the deposition of Zn on ZnIn alloy has less
effect on the diffusion zone of the anode/electrolyte interface
than deposition on pure Zn and suppresses the “tip effect” by

Chem. Sci., 2022, 13, 1656-11665 | 11659
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Fig. 2 Zn nucleation and growth process. (a) Comparison of the theoretical dimensionless plots for instantaneous nucleation and the experi-

mental nucleation process for ZnlIn alloy at different overpotentials. (b) Nucleation overpotential of Zn on pure Zn and Znln alloy at 0.5 mAcm™=.

2

(c) Adsorption energies of the Zn atom on Zn and indium substrates. (d and e) Schematic diagram of nuclei growth on pure Zn and Znln alloy. (f
and g) Thickness changes after 60 s of Zn plating on the pure Zn and ZnlIn alloy surface by the finite element method. (h and i) The morphologies

of Zn depositing on pure Zn and Znln alloy for 3 min, 6 min, 9 min and 12 min at a current density of 5 mA cm

regulating the local deformation of the electric field. The growth
process of nuclei can also be confirmed by the finite element
method (Fig. 2f and g). After deposition for 60 s at a current
density of 5 mA cm ™2, the maximum value of the deposition
thickness on pure Zn occurs around the tips of the nuclei (0.291
um), which is thicker than that of ZnIn alloy.

To confirm the growth process for deposition as mentioned
above, the morphologies after Zn plating on ZnlIn alloy and pure
Zn were illustrated by SEM characterization. We observed the
status quo of its surface after deposition 3, 6, 9 and 12 min at
the current density of 5 mA cm 2, respectively (Fig. 2h). The
scattered large Zn deposits are observed during the initial

1660 | Chem. Sci, 2022, 13, 11656-11665
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nucleation of pure Zn. As the deposition progresses, these
deposits finally grow into Zn dendrites. In contrast, the
morphology of the initial nucleation on the surface of the ZnIn
alloy anode indicates the even distribution of Zn nuclei (Fig. 2i).
As Zn deposition proceeds, the trenches between the initial
nuclei filled up, compared to the protruding areas in the early
stage. Thus, the separate Zn nuclei aggregate together instead of
growing on the top. Finally, the connected nuclei develop into
a dense layer covering the entire surface of the anode. The same
deposition trend is also reflected at a current density of 1 mA
em 2 (Fig. S971). In order to study the morphology of the bulk
phase alloy during Zn stripping, the electrode with different

© 2022 The Author(s). Published by the Royal Society of Chemistry
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stripping times at 1 mA cm ™2 (Fig. S107) was characterized. The
Znln alloy anode has a relatively flat surface and no obvious
preferential stripping site. Reciprocally, the pure Zn anode has
more uneven stripping holes. And there are large Zn dendrites
on these holes, suggesting that the addition of trace indium can
make the plating and stripping of Zn more uniform. Mean-
while, the in situ OM technology studies clearly show the serious
dendrite growth and hydrogen evolution reaction of the pure Zn
anode. In comparison, the ZnIn alloy anode retains a smooth
surface without dendrite formation and discernible hydrogen
evolution (Fig. S117).

During the electrochemical cycles, the performance of the
anode is a combination of plating and stripping. Therefore, it is
critical to further study the morphology of the anode after
cycling. The schematic diagram of the plating and cycling for
the pure Zn anode is shown in Fig. 3a. For Zn depositing on the
pure Zn anode, it prefers to migrate to the defects such as
scratches, microcracks and dents because of the higher activity
of these defects.* Therefore, the nucleation on pure Zn is
random and dispersed. The random nuclei give rise to the “tip
effect” that triggers the preferential deposition of Zn, while no
new nuclei appear because of the existence of an exclusion zone
for nucleation. After cycling, the surface around the random Zn
dendrite forms micro-voids, and these voids gradually become
larger (Fig. S12t). Then, the Zn clusters on the cavities begin to
fall off and become dead Zn, leading to the risk of short-circuit

Random nucleation

Instantaneous nucleation

View Article Online
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and capacity loss* (Fig. S1371). The detailed SEM images of pure
Zn after cycling are shown in Fig. 3b. The surface of the pure Zn
anode is covered with random Zn flakes after 5 cycles. With the
increase of cycle number, the micro-void appears, and many
random Zn flakes exist around the void. When the cycle number
increases to 100, dendrites form from stacks of deposited Zn
sheets on the anode surface. The directional deposition as Zn
flakes may cause more rapid penetration and an internal short
circuit.”

Conversely, the initial nucleation process is fast so that the
nuclei emerge quickly on the whole surface termed instanta-
neous nucleation for Zn depositing on ZnlIn alloy (Fig. 3c). After
the initial nucleation, the nuclei grow at the same time and then
connect together, tending towards a gradual smooth layer
covering the ZnIn alloy surface. It still remains flat after 5, 50,
and 100 cycles (Fig. S121). Meanwhile, the XRD patterns of the
cycled ZnIn alloy present nearly no change, suggesting the high
reversibility and excellent interface stability (Fig. S14t). The
microstructure of the anode after cycling is also examined. Zn
deposits homogeneously on the surface of the anode substrate
without dendrite formation and maintains a uniform and flat
morphology at the following cycles (Fig. 3d). The atomic force
microscope (AFM) tests exhibit an altitude intercept between
the pure Zn anode (114.70 nm) and ZnIn alloy anode (84.14 nm)
after 100 cycles (Fig. S151). Moreover, the ZnIn alloy surface has
obvious small granular deposition morphology. In addition,

grow

cycling
»v %)

Messy growth Dendrites and voids

0-cycle - 7'~
?/' Y ',f,"\r/

cycling

»>

Grow together Homogeneous surface

Fig. 3 Plating and cycling process for pure Zn and Znin alloy. (a) Schematic diagram of nucleation, growth and cycling for the pure Zn electrode.
(b) Morphologies of the pure Zn surface before cycling and after the 5th, 50th and 100th cycles. (c) Schematic diagram of nucleation, growth and
cycling for the Znln alloy electrode. (d) Morphologies of the Znin alloy surface before cycling and after the 5th, 50th and 100th cycles.
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many uniformly distributed sedimentary particles are found on
the ZnlIn alloy surface, which may be the grown nuclei on
indium sites. To further demonstrate whether the principle of
deposition after cycling is the same as that before cycling,
a more detailed morphology of the ZnIn alloy anode after cycles
are shown in Fig. S16.1 The small particles are found in each
cycle, suggesting the high reversibility of the ZnIn alloy anode.
To analyze the distribution of elements on the anode surface
after the cycle, the distribution of indium element is also
studied by EMPA (Fig. S17t). Indium element is uniformly
distributed as well and the content is the same as the ZnIn alloy
before the cycle, suggesting that indium element does not
participate in the reaction during Zn stripping/plating. Mean-
while, there is no S element detected on the surface, demon-
strating the inhibition of by-product formation for ZnIn alloy
while cycling. Therefore, ZnIn alloy can manipulate the
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nucleation of Zn to instantaneous nucleation, and then domi-
nate the growth of Zn nuclei to form a dense deposition layer.

To confirm the consequence of the observed reversibility of
ZnlIn alloy, we evaluated the stripping/plating efficiency of the
Zn on pure Zn and ZnIn alloy. The coulombic efficiency (CE)
measurements were carried out at a current density of 4.4 mA
cm ? with a capacity of 1.1 mA h em™2 (vs. Cu electrode). The
ZnIn//Cu cell presents a plating/stripping voltage gap of 65 mV,
which is much lower than that of the Zn//Cu cell for 154 mV
(Fig. 4a and b), suggesting the lower energy barrier for the
nucleation/dissolution in the phase transition between Zn>*
and Zn metal.”” The corresponding CE for long-time perfor-
mance is shown in Fig. 4c. The ZnIn//Cu cell exhibits
a remarkably high average CE of 99.5% over 600 cycles
compared with that of the pure Zn//Cu cell (only 280 cycles with
an average CE of 87%), which demonstrates the severe side
reactions occurring along with the Zn stripping/plating for the
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pure Zn anode. To further explore the hydrogen evolution
resistance of the ZnIn alloy anode, the linear sweep voltam-
metry (LSV) curves in 1 M Na,SO, electrolyte are displayed in
Fig. S18,t exhibiting a lower onset potential for the hydrogen
evolution reaction on the ZnIn alloy (—1.75 V vs. Ag/AgCl) than
that on the pure Zn (—1.62 V vs. Ag/AgCl). Nyquist plots of
symmetric cells are also recorded to probe the interfacial side
reactions from the pristine anode to the 200th cycle at 2 mA
cm 2 and 0.5 mA h cm ™2 (Fig. 4d and e). The R¢r of the ZnIn
alloy symmetric cell decreases after the initial cycle, due to the
interface activation of ZnIn alloy. It maintains a consistent value
of around 15 Q during the 10th to 200th cycle process and
retains low polarization.*® In contrast, the Rcr of the pure Zn
symmetric cell possesses a much larger change from 400 Q to
nearly 8000 Q. This can be attributed to the incompact by-
product and the uncontrollable dendrites.**

To further evaluate the stability of the ZnIn alloy anode, the
galvanostatic cycling tests of symmetric cells are carried out at
different current densities. Fig. 4f shows that the ZnIn

View Article Online

Chemical Science

symmetric cell has a much lower polarization (17 mV) in the
first 200 cycles, compared with that of the pure Zn symmetric
cell (50 mV) at a current density of 1.77 mA cm > with 15 min for
each cycle. Meanwhile, the pure Zn symmetric cell has a large
fluctuation and the overpotential decreases gradually. It is
deduced that dendrite formation and the voids on the surface of
the electrode cause the increase of surface area, accordingly
reducing the current density and overpotential. The high
current density of 4.4 mA cm 2 with a capacity of 1.1 mA h cm >
is also measured to evaluate the long-duration cycle perfor-
mance of ZnIn alloy. As shown in Fig. 4g, the ZnIn symmetric
cell can maintain 5000 cycling plating/stripping processes with
a lower polarization of 30 mvV, while pure Zn suffers from
voltage spikes (300 mV) and large fluctuation at 300 h and then
recover, suggesting fast Zn-dendrite growth, dead Zn genera-
tion, and micro-shorting.*> After that, it cycles for 900 h and
then shorts, only one-third of the ZnIn symmetric cell. There-
fore, the ZnIn alloy anode not only displays high reversible
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the first 3 cycles of ZnIin//NH4V4010 and Zn//NH4V404¢ cells. (b) Open-

circuit voltage decay of ZnIn and Zn full cells after rest 10 h. (c) Nyquist plot of Zn//NH4V4O10 and ZnIn//NH4V40;4 cells and the corresponding

Rc values (inset). (d and e) Typical voltage profiles of Zn//NH4V4010 and
discharge current density of 1 A g~ (f) The corresponding cycling perfo

ZnIn//INH4V401, cells after the 5th, 200th and 500th cycles at a charge/
rmance. (g) Rate capability of Zn//NH4V 4010 and Znin//NH4V 404 cells.

(h) Long-term cycling performance of ZnIn//NH4V4O1o and Zn//NH4V4O10 cells at 5 A gL,
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capability by avoiding the side reaction, but also possesses
higher stability compared to pure Zn.

Due to the uniform Zn deposition and high reversibility of
the ZnIn alloy anode, the electrochemical properties of the ZnIn
alloy and pure Zn are verified by full cells in an aqueous elec-
trolyte (2 M ZnSO,) with NH,V,0;, as the cathode. Fig. 5a
records the representative CV curve in the first 3 cycles.
Compared to the Zn//NH,V,04, cell, ZnIn//NH,V,0,, has higher
capacity retention in the first 3 cycles.** In addition, self-
discharge performance is evaluated by monitoring the open-
circuit voltage decay of fully charged full batteries and subse-
quently discharging after 10 h of storage (Fig. 5b). 88.4% of the
original capacity is retained in the cell using the ZnIn anode
while using pure Zn as an anode only exceeded 83.7%. The
capacity retention of the ZnIn//NH,V,0,, cell for discharging
after 30 h and 60 h of storage also exhibits better performance
than that of the Zn//NH,V,O4, cell (Fig. S20t). The excellent
performance of the ZnIn alloy anode can be ascribed to its low
charge-transfer resistance promoting ion diffusion kinetics
(Fig. 5¢). The Rgr of the ZnIn//NH,V,04, cell of about 66 Q is
lower than that of the Zn//NH,4V,O;, cell of about 366 Q (inset of
Fig. 5¢). The ZnIn//NH,V,0,, cell at a low current density of
1 Ag ! shows higher stability than that of the Zn//NH,V,04, cell
within 500 cycles (Fig. 5f). The fast-deteriorating electro-
chemical performance in cells with the pure Zn anode is most
likely due to the loss of Zn metal through “dead Zn” formation
during cycling, as can be inferred from the increase of polari-
zation of the cell after cycles (Fig. 5d). On the other hand, the
overpotential of ZnIn//NH,V,04, cells remained unchanged
after 500 cycles, confirming the effectiveness of the indium
element in preventing the irreversible reactions* (Fig. 5e).
Moreover, the ZnIn//NH,V,0,, cell outperforms the Zn//
NH,V,0,, cell at various charge/discharge rates (Fig. 5g).
Finally, the comparison of pure Zn//NH,V,0;, and Znln//
NH,V,0;, cells for long-term cycling performance was further
conducted at a current density of 5 A g~* (Fig. 5h). The ZnIn//
NH,V,0, cell can provide a better capacity retention after 1000
cycles. Consequently, the full cell using the ZnIn alloy anode
remarkably outperforms pure Zn in terms of capacity fading.

Conclusions

In summary, a Znln alloy anode with a well-distributed trace
indium element is prepared by a typical smelting-rolling
method. Because of the higher adsorption energy to the Zn
atom on the indium substrate and the lower nucleation over-
potential, the Zn nucleation process will be regarded as
instantaneous nucleation. In such a scenario, the effect of the
electrolyte/anode interface diffusion zones during deposition
can be significantly alleviated and Zn can be deposited
uniformly on the Znln alloy anode. The dense nuclei may
regulate the local deformation of the electric field to suppress
Zn deposition on the top of the nuclei. By virtue of this nucle-
ation mode, the ZnIn alloy anode will restrain dendrite growth
and reduce side reactions during depositing and cycling. As
a result, the ZnIn alloy anode exhibits a high CE of 99.5% at
a current density of 44 mA cm > and a capacity of
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1.1 mA h cm ™2 for more than 600 cycles. In addition, ZnIn
symmetric cells exhibit superior Zn stripping and plating
performance for over 2500 h at 4.4 mA cm >and 1.1 mAh em ™.
Owing to the high stability and reversibility of ZnIn alloy, the
ZnIn//NH4V,404, cell also shows higher capacity retention than
that of the Zn//NH,V,0,, cell. It is anticipated that the current
strategy of regulating nucleation by preparing Zn alloy, thereby
fundamentally solving the problems of dendrite growth and by-
product generation, can pave an effective avenue for the highly
reversible metal anode.
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