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of Chemistry The value of uncertainty quantification on predictions for trained neural networks (NNs) on quantum
chemical reference data is quantitatively explored. For this, the architecture of the PhysNet NN was
suitably modified and the resulting model (PhysNet-DER) was evaluated with different metrics to quantify
its calibration, the quality of its predictions, and whether prediction error and the predicted uncertainty
can be correlated. Training on the QM9 database and evaluating data in the test set within and outside
the distribution indicate that error and uncertainty are not linearly related. However, the observed
variance provides insight into the quality of the data used for training. Additionally, the influence of the
chemical space covered by the training data set was studied by using a biased database. The results
clarify that noise and redundancy complicate property prediction for molecules even in cases for which
changes - such as double bond migration in two otherwise identical molecules — are small. The model
was also applied to a real database of tautomerization reactions. Analysis of the distance between
members in feature space in combination with other parameters shows that redundant information in
the training dataset can lead to large variances and small errors whereas the presence of similar but
unspecific information returns large errors but small variances. This was, e.g., observed for nitro-
containing aliphatic chains for which predictions were difficult although the training set contained
several examples for nitro groups bound to aromatic molecules. The finding underlines the importance
of the composition of the training data and provides chemical insight into how this affects the prediction
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extrapolation from applications in computer science. Therefore,
it is believed that more significant amounts of data will beat the

1 Introduction

Undoubtedly machine learning (ML) models are becoming part
of the standard computational/theoretical chemistry toolbox.
This is because it is possible to develop highly accurate trained
models in an efficient manner. In chemistry, such ML models
are used in various branches ranging from the study of reactive
processes,"* sampling equilibrium states,® the generation of
accurate force fields,*® to the generation and exploration of
chemical space.®™* Nowadays, an extensive range of robust and
complex models can be found."*™® The quality of these models
is only limited by the quality and quantity of the data used for
training.”"” For the most part, however, the focus was on
obtaining more extensive and complex databases as an
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best algorithms.®

On the other hand, it has been found that even the best
model can be tricked by poor data quality.’>* For example, in
malware detection it was found that ML-based models can fail if
the training data does not contain the event the model had been
designed for.*** The notion of underperforming models
trained on low-quality data (“garbage in-garbage out”) can be
traced back to Charles Babbage.”* The ML community is start-
ing to notice the importance of data quality used for training
and the relevance to balance amount of data (“big data”) versus
quality of data. From other fields in Science, it is known that
using biased and low-quality data in ML can result in cata-
strophic outcomes* such as discrimination towards minori-
ties,” reduction in patient survival, and the loss of billions of
dollars.”® As a result of these findings, the concept of “smart
data” emerged® > which describes data sets that contain vali-
dated, well-defined and meaningful information that can be
processed.”® However, specifically for chemical applications, an
important additional consideration concerns the type of data
that is required for predicting a particular target property.
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Considering that data generation for training quantum ML
models implies the use of considerable amounts of computa-
tional power**?** which increases the carbon footprint and
makes the use of ML difficult for researchers without sufficient
resources, it is essential to optimize the full workflow from
conception to a trained model. With this in mind, the concept
of smart data is of paramount importance for conceiving future
ML models in chemistry. This necessity has been considered in
previous reviews about ML in chemistry;”'” however, it is still
poorly understood how the choice of training data influences
the prediction quality of a trained machine-learned model. One
such effort quantitatively assessed the impact of different
commonly used quantum chemical databases on predicting
specific chemical properties.*® The results showed that the
predictions from the ML model are heavily affected by data
redundancy and noise implicit in the generation of the training
dataset.

Identifying missing/redundant information in chemical
databases is a challenging but necessary step to ensure the best
performance of ML models. In transfer learning from a lower
level of quantum chemical treatment (e.g. Mgller-Plesset
second order theory — MP2) to the higher coupled cluster with
singles, doubles and perturbative triples (CCSD(T)) it has been
found for the H-transfer barrier height in malonaldehyde (MA)
that it is the selection of geometries included in TL rather than
the number of additional points that leads to a quantitatively
correct model.* This has been further confirmed by computing
tunneling splittings for MA from quantum instanton calcula-
tions.* It is also likely that depending on the chemical target
quantity of interest the best database differs from the content of
a more generic chemical database. Under such circumstances,
uncertainty quantification (UQ) on the prediction provides
valuable information on how prediction quality depends on the
underlying database used for training the statistical model.

For chemical applications, ensemble methods which involve
the training and evaluation of several independently trained
statistical models to obtain the quantities of interest (average
and variance for an observation) have been used.***” Despite
their widespread use their disadvantage is the high computa-
tional cost they incur. An alternative to this are methods based
on Gaussian process regression.’®* However, these are limited
by the size of the database that can be used. As ML models
become more prevalent in different fields, new and efficient
techniques for UQ have emerged which are potentially useful in
chemical applications as well. These include Bayesian NNs*
and single deterministic networks*' with good prospects to be
used in chemistry. One challenge for Bayesian NN is that they
need to be able to predict probability distributions over network
parameters. This can become computationally intractable for
NNs with a large number of parameters and data.*® On the other
hand, single deterministic networks are of particular interest
because they are computationally cheaper given that these
models need to train and evaluate only one model allowing to
predict the variance for forecasting using a single deterministic
model.

Some methods for UQ based on single deterministic
networks have been proposed, among them regression prior
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networks,”” mean variance estimation,” or Deep Evidential
Regression (DER).* This last method has been recently applied
in molecular discovery and inference for virtual screening.** In
a recent benchmark study*® four different UQ approaches were
tested on a range of datasets. However, none of the methods
tested performed best on all tasks. Part of this finding may be
related to the notion that 2D networks were applied to the 3D
problem of molecular structure which implies that such
methods do not describe the system adequately and are not
suitable to for uncertainty prediction.*® Finally, it was
concluded that UQ is a challenging task which can be highly
specific for the problem at hand. However, high dimensional
NNs together with random forest or mean variance estimation
(which is a type of single deterministic networks) were among
the best-performing approaches.

The aim of the present study is twofold. First a model for
uncertainty prediction and quantification rooted in deep
evidential regression is implemented as a final layer in
a message passing NN based on the PhysNet architecture. This
model is referred to as PhysNet-DER. Starting from the QM9
dataset a variety of metrics for hyperparameter optimization are
tested quantitatively. Secondly, the trained model is used to
address two concrete chemical questions at a molecular level to
highlight the value of UQ in practical applications. They include
characterization of a biased database and the prediction of
tautomerization energies. Both applications pose different
challenges to the trained model and associated uncertainty
quantification in that details of chemical bonding encoded in
the data set used for training directly impacts the quality of the
predictions. Finally, the results are discussed in a broader
context.

2 Methods

As a regression model, PhysNet*® was selected for the present
purpose. PhysNet was implemented within the PyTorch frame-
work?” to make it compatible with modern GPU architectures
and in line with community developments. The original archi-
tecture of PhysNet was modified to output the energy and three
extra parameters required for the representation of the uncer-
tainty (Fig. 1). Following earlier work,* it is assumed that the
targets to predict (here energies E_i for samples i) are drawn
from an independent and identically distributed (i. i. d)
Gaussian distribution with unknown mean (u) and variance (¢%)
for which probabilistic estimates are desired:

(Ei,...,EN) z,/l’(,u, 02)

For modeling the unknown energy distribution, a prior
distribution is placed on the unknown mean (u) and variance
(6®). Following the assumption that the values are drawn from
a Gaussian distribution, the mean can be represented by
a Gaussian distribution and the variance as an inverse-gamma

distribution
p~ Ay, o), o~ T, )

where I'(-) is the gamma function, yeR, » > 0, « > 1 and § > 0.
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Fig.1 Modified PhysNet for uncertainty quantification. (A) Schematic 3D representation of the negative inverse gamma distribution as a function
of the mean (1) and the variance (¢2) (See eqgn (1)). (B) The modified architecture of PhysNet for the addition of the ‘evidential’ layer. The input layer
receives atomic positions, atomic numbers, charges, and energies. In the next step, those values are passed to the regular architecture of
PhysNet. The final layer is modified to output five values (E,, Q,, a, 8, and v) per each atom in a molecule. In the next step, the values of the outputs
are summed by each molecule. Then, the three extra parameters are passed to a SoftPlus activation function (See eqn (3)). The final output of the
model are the values that characterize the normal inverse gamma distribution. The mean value for the prediction (eqgn (4)) corresponds to the
energy of the predicted molecule, and the parameters to determine the variance of the predicted energy which can be obtained using egn (5) and
(6).

The desired posterior distribution has the form:
2 _ 2
q(,LL, g ) 71’(“:0‘ |E1a"-aEN)'

N

where p indicates a generic distribution. Following the chosen B =log (1 +exp ( Z 5,')) (3)
representations for mean and variance, it is assumed that the

posterior distribution can be factorized as q(u, ¢°) = q(u)q(c?).
Consequently, the joint higher-order, evidential distribution is
represented as a normal-inverse gamma distribution (Fig. 1)
with four parameters (m = {y, v, a, 8}) that represent a distri-
bution over the mean and the variance.

e (1)

Finally, the expected mean (eqn (4)), and the aleatory (eqn
(5)) and epistemic (eqn (6)) uncertainty of predictions can be

P, a®|y, v, 8) = calculated as:

I'(a)V2ma? o
Elu] = v (4)
28+ v(y — )’
Exp| - ——5—— 1
< 202 @ E[o’] = af i (5)
The four parameters that represent the normal-inverse Var[u] = % (6)
v —

gamma distribution are the output of the final layer of the
trained PhysNet model (Fig. 1) and the total predicted energy for
a molecule composed of N atoms is obtained by summation of
the atomic energy contributions E;:

Including the new parameters in the output of the neural
network changes the loss function of the model. The new loss
N function consists of a dual-objective loss #(x) with two terms:
E= E E; (2) the first term maximizes model fitting and the second penalizes
i=i incorrect predictions according to
o ) Z(x) = PN (x) + A(LR (x) —¢) (7)
In a similar fashion, the values for the three parameters (v, «,
and @) that describe the distribution of the variance for

a molecule composed of N atoms are obtained by summation of In eqn (7), the first term corresponds to the negative log-

the atomic contributions and are then passed to a softplus
activation function to fulfill the conditions given for the distri-
bution (yeR and v, «, § > 0)

13070 | Chem. Sci, 2022, 13, 13068-13084

likelihood (NLL) of the model evidence that can be repre-
sented as a Student-¢ distribution (eqn (8))
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where @ = 26(1 + ») and x is the value predicted by the neural
network.* The second term in eqn (7), #®(x), corresponds to
a regularizer that minimizes the evidence for incorrect predic-
tions (eqn (9)).

) = [x—y]- (v +a) (9)

The hyperparameter A controls the influence of uncertainty
inflation on the model fit and can be calibrated to obtain more
confident predictions. For A = 0, the model is overconfident. i.e.
results are less likely to be correct. Alternatively, for A > 0, the
variance is inflated, resulting in underconfident predictions.

The neural network architecture was that of standard Phys-
Net, with 5 modules consisting of 2 residual atomic modules
and 3 residual interaction modules. Finally, the result is pooled
into one residual output module. The number of radial basis
functions was kept at 64, and the dimensionality of the feature
space was 128. Electrostatic and dispersion corrections were not
used for the training to keep the model as simple as possible. All
other parameters were identical to the standard version of
PhysNet,*® unless mentioned otherwise.

For training, a batch size of 32 and a learning rate of 0.001
were used. An exponential learning rate scheduler with a decay
factor of 0.1 every 1000 steps and the ADAM optimizer*® with
a weight decay of 0.1 were employed. An exponential moving
average for all the parameters was used to prevent overfitting. A
validation step was performed every five epochs.

2.1 Hyperparameter optimization

The hyperparameter 2 in eqn (7) was optimized by training
a range of models with different values of 4, using a portion of
the QM9 dataset consisting of 31250 structures: 25 000 struc-
tures for training, 3125 for validation and the remaining 3125
for testing. The splitting of the selected molecules of QM9 was
performed randomly. The top panel of Fig. S7{ shows that the
energy distributions from the training and test sets overlap
closely which demonstrates that the dataset used for training is
representative of the overall distribution of energies. Models
were trained for 1000 epochs and the values for A were 0.01, 0.1,
0.2, 0.4, 0.5, 0.75, 1.0, 1.5, and 2.0. The calibration of the NN
models is required to assure that the computed uncertainties
can be related with the obtained errors on the prediction. It
should be mentioned that although this procedure is compu-
tationally expensive, it only needs to be done once.

2.2 Metrics for model assessment and classification

In order to compare the performance/quality of the trained
models, suitable metrics are required. These metrics are used to

© 2022 The Author(s). Published by the Royal Society of Chemistry
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select the best value for the hyperparameter A. Different metrics
that have been reported in the literature*** were evaluated.
The first metric considered is the Root Mean Variance (RMV)

defined as:
N e
RMV(j) = |Bj}§m

Here, o7 is the variance in the j - th bin B;. For the construction
of the bins B; the data is first ranked with respect to the variance
and then split into bins {B}}’, of size N which is adjustable and
the effect of changing it on RMV is assessed when discussing
the results.

The next metric was the empirical Root Mean Squared Error
(RMSE):

(10)

RMSE(j) = (11)

1 A
B Z(yi -
‘ /" 1€ B;

where y; is the i-th prediction and y, is the average value of the
prediction in a bin B;. Using eqn (10) and (11), the Expected
Normalized Calibration Error (ENCE):

1 L RMV(j) — RMSE())|
ENCE = — " RMV()

(12)
=1
can be obtained. Additionally, it is possible to quantify the

dispersion of the predicted uncertainties for which the coeffi-
cient of variation (C,) is

1

€=\ o (o) (13)

2 i=1

In eqn (13), u, is the mean predicted standard deviation and
o, is the predicted standard deviation for M samples.

The last metric used for the characterization of the predicted
variance of the tested models is the ‘sharpness’

| &
sha = v ; Var(F,) (14)

In eqn (14), the value Var(F,) corresponds to the variance of
the random variable with cumulative distribution function F at
point n.*° The purpose of this metric is to measure how close the
predicted values of the uncertainty are to a single value.>

In addition to the above metrics, calibration diagrams were
constructed with the help of the uncertainty toolbox suite.*
Calibration diagrams report the frequency of correctly predicted
values in each interval relative to the predicted fraction of
points in that interval.®>** Another interpretation of the cali-
bration diagram is to quantify the “honesty” of a model by
displaying the true probability in which a random variable is
observed below a given quantile; if a model is calibrated this
probability should be equal to the expected probability in that
quantile.*

The results obtained for the test dataset were then classified
into four different categories following the procedure described

Chem. Sci., 2022, 13, 13068-13084 | 13071
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in Kahle and Zipoli.*® For the present purpose, ¢* = MSE (mean
squared error) and ¢* = MV (mean variance), and the following
classes were distinguished:

e True Positive (TP): ¢; > ¢* and o; > ¢* The NN identifies
a molecule with a large error through a large variance. In this
case, it is possible to add training samples with relevant
chemical information to improve the prediction of the identi-
fied TP. Alternatively, additional samples from perturbed
structures for a particular molecule could be added to the
increase chemical diversity.

e False Positive (FP): ¢; < ¢* and o; > ¢* in which case the NN
identifies a molecule as a high-error point but the prediction is
correct. In this case, the model is underconfident about its
prediction.

e True Negative (TN): ¢; < ¢* and o; < ¢*. Here the model
recognizes that a correct prediction is made with a small value
for variance. For such molecules the model has sufficient
information to predict them adequately by assigning a small
variance. Therefore, the model does not require extra chemical
information for an adequate prediction.

e False Negative (FN): ¢; > ¢* and o; < ¢*. The model is
confident about its prediction for this molecule but it actually
performs poorly on it. One possible explanation for this
behaviour is that molecules in this category are rare®*® in the
training set. The model recognizes them with a small variance
but because there is not sufficient information the target
property (here energy) cannot be predicted correctly.

In the above classifications, i refers to a particular molecule
considered for the evaluation. The classification relies on the
important assumption that the MSE and the MV are compa-
rable in magnitude which implies that the variance predicted by
the model is a meaningful approximation to the error in the
prediction. A second desired requirement is to assure the val-
idity of the classification procedure and that the obtained
variance is meaningful is that MSE > MV. This requirement is
a consequence of the bias-variance decomposition of the
squared error®”

x:x0:|

= 0 +[Eulx) —y(x0)]" +E[u(x0) — Ep(xo)]’

E(MSE) = E|(»(x) - 4(x))’

(15)

Irreducible Error Variance

Bias®

Eqn (15) states that the expected value (E) of the MSE
consists of three terms: the irreducible error, the bias, and the
variance. Therefore, the MSE will always be smaller than the
variance except for the case that u(x) = y for which those
quantities are equal.”®

As a measure of the overall performance of the model, the
accuracy is determined as:*®

N1p + NN
N1p + Nen + Nin + Nep

ACC = (16)

In eqn (16), Nyp, Nrn, Nep, and Ngy refers to the number of
true positive, true negative, false positive, and false negative

13072 | Chem. Sci., 2022, 13, 13068-13084
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samples, respectively. Additionally, it is possible to compute the
true positive rate (Ryp) or sensitivity as:

NTP

Rp= 1"
™ N1p + NN

(17)

As a complement to eqn (17), the true positive predictive
value (Pyp) or precision is

NTP

Pop= — 1P
R Ntp + Npp

(18)

2.3 Model performance for tautomerization

As a final test, the performance of the evidential model was
evaluated using a subset of the Tautobase,* a public database
containing 1680 pairs. Previously, those molecules were calcu-
lated at the level of theory of the QM9 database.**** For the
purpose of the present work, only molecules that contain less
than nine heavy atoms were included. Three neural networks
with A values of 0.2, 0.4, and 0.75 were trained with the QM9
database. The QM9 database was filtered to remove molecules
containing fluorine and those that did not pass the geometry
consistency check. The size of final database size was 110 426
molecules. That number was split on 80% for training, 10% for
validation and 10% for testing. The three models were trained
for 500 epochs with the same parameters as for the hyper-
parameter optimization.

3 Results

In this section the calibration of the network is analyzed and its
performance for different choices of the hyperparameter is
assessed. Then, an artificial bias experiment is carried out and
finally, the model is applied to the tautomerization data set.
Before detailing these results, a typical learning curve for the
model is shown in Fig. S1.7 As expected, the root mean squared
error obtained for the test set decreases with increasing number
of samples. For the mean variance, see Fig. S2,t it is found that
its magnitude reduces up to a certain size of the training set
after which it increases again. This observation is further dis-
cussed in “Discussion and conclusions”.

3.1 Calibration of the neural network

The selection of the best value for the hyperparameter A can be
related to the calibration of the neural network model. Ideally,
a calibrated regression model should fulfill the condition*® that

Vo B[ (a(x) )’ 2

17(,\')2:02} =0

where E is the expected value for the squared difference of the
predicted mean evaluated at x minus the observed value y. In
other words: the squared error for a prediction can be directly
related to the variance predicted by the model.*

Fig. 2 compares the root mean squared error with the root
mean variance for a number of bins (N = 100) and shows that
the correlation between RMSE and RMV can change between

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc04056e

Open Access Article. Published on 17 October 2022. Downloaded on 10/16/2025 8:38:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

different intervals. Analyses were also carried out for different
numbers N of bins and the effect on RMV was found to be
negligible, see Fig. S3.1 Additionally, the slope of the data can
be used as an indicator as to whether the model over- or
underestimates the error in the prediction. A slope closer to 1
indicates that the model is well-calibrated. Consequently, the
predicted variance can be used as an indicator of the error with
respect to the value to be predicted. The results in Fig. 2 also
show that smaller values of A = (0.01, 0.2, 0.4) result in
increased slopes of the RMSE vs. RMV curve, i.e. leads to less
well-calibrated models, resulting in a model that is over-
confident in its predictions. Results that are more consistent
with a slope of 1 are obtained for A = 1. However, for all trained
models it is apparent that RMSE and RMV are not related by
a “simple” linear relationship as is sometimes assumed in
statistical modeling.

In previous studies,* the dispersion of the predicted stan-
dard deviation was considered as a measure of the quality of
a regression model. Hence a wider distribution of the predicted
standard deviation by the model is desired. To remove the
influence of pronounced outliers, Fig. 3A shows the distribu-
tions up to 99% of the predicted variance. It is clear that the
center of the distribution, and its width, depend on A. Larger
values of the hyperparameter lead to wider distributions.
However, the displacement of the center of mass of the distri-
bution indicates that the standard deviation will be consistently
overestimated. Also, p(c) is not Gaussian but rather resembles
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Fig. 2 Empirical root mean squared error compared with the root
mean variance of the evidential model trained on 25000 structures
from the QM9 database. The values were divided in 100 bins ranked
with respect to the predicted variance, 25 bins with 32 samples and 75
with 31 samples were considered. The value of A together with the

slope (m) from a linear regression analysis and the Pearson correlation
coefficient (r%) are given in the legend.
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the inverse gamma distribution that was used as prior for the
variance.

Predicted standard deviations from machine learned models
must follow some characteristics that help to assess the quality
of model predictions.”® Among those characteristics, it is ex-
pected that the distribution of the predicted variance is narrow,
i.e. will be ‘sharp’. This has two objectives, the first is that the
model returns uncertainties that are as tight as possible to
a specific value.* With this property the model gains confidence
on its prediction. The second goal of a ‘sharp’ model is that it is
able to capture the ‘trueness’,*” i.e. the distance between the
true value and the mean of the predictions, on the forecast.
Another desired characteristic is that p(o) is disperse and does
not return a constant value for the uncertainty which would
make the model likely to fail for predictions on molecules
outside the training data and compromise its generalizability.

The previously described characteristics of the distribution
of uncertainties are related to the value of the hyperparameter A
in the loss function (eqn (7)) because, as can be seen in Fig. S6,
the MSE by percentile is independent on the choice of A.
Therefore, the model should be calibrated by selecting a value
of the hyperparameter that fulfills the desired characteristics for
the distribution of uncertainties.

Fig. 3A shows that the spread of the distribution of standard
deviations increases with increasing A. However, the second
desired feature for those distribution - sharpness - decreases
with increasing A to become almost constant for 4 = 0.75. In
consequence of this contradictory behaviour, it is necessary to
find a value of A that yields an accurate estimation of the
uncertainty but it does not return a distribution of uncertainties
but rather a constant value for each case. It is important to
notice that both characteristics, sharpness and width of the
distribution, are equally important and one of them should not
be sacrificed in favour of the other.® In other words: a cali-
brated model is characterized by uncertainty distributions with
a certain sharpness and a certain width.

A deeper understanding of the difference between the error
of a predicted value and the predicted variance can be obtained
through the ENCE (eqn (12)) as described in the Methods
section. This metric is similar to the expected calibration error
used in classification.®® The ENCE quantifies the probability
that the model incorrectly predicts the uncertainty of the
prediction made. Fig. 3B reports the values of ENCE (blue line)
and shows that, typically, smaller values for ENCE are expected
for increasing hyperparameter A. For A = 0.4, the value of ENCE
increases as opposite of the expected trend because the pre-
dicted value of the RMSE is larger than the value for RMV for
most of the considered bins. However, it is clear that for A = 0.5,
the ENCE is almost constant — which indicates that, on average,
the model has a low probability to make incorrect predictions.

As a complement to the ENCE metric, the coefficient of
variation (C,) was also computed (red trace in Fig. 3B). This
metric is considered to be less informative because the disper-
sion of the prediction depends on the validation/test data
distribution.*>** However, it is useful to characterize the spread
of standard deviations because it is desired that the predicted
uncertainties are spread and therefore cover systems outside
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the training data which help to generalize the model and make
it transferable to molecules outside the training set. Comparing
the results from Fig. 3A and the values for C, in Fig. 3B, it is
found that the largest dispersion is obtained for small values of
A. This indicates that the standard deviations for all predictions
are concentrated in a small range of values for values in the 95th
percentile of the distribution. For A = 0.75 both ENCE and C,
values do not show pronounced variation. It should be noted
that the distributions in Fig. 3A are restricted to the 99%
quantile of the data; on the other hand, the values for C, covered
the whole range of data. If the complete range of data is
analyzed, it is possible to arrive at wrong conclusions. Fig. 3B
shows that for 1 = 0.5, the C, value is large which suggests a flat
distribution (Fig. S41), however it should be noticed that this
behaviour arises primarily due to pronounced outliers that
impact the averages used for the calculation. However, 95% of
the distribution is concentrated around a small range of vari-
ances as shown in Fig. 3A. Nevertheless, if only 95% of the data
is studied, it is found that A = 0.5 yields increased Cy (see Fig.
S51).

As shown in Fig. 3A, the center of mass of P(q) displaces to
larger ¢ with increasing A. A more detailed analysis of the
difference between MSE and MV for different percentiles of the
variance was performed (Fig. S61). Following the bias-variance
decomposition of the squared error (eqn (15)), the bias of the
model can be quantified as a function of the different values of
A. Fig. S67 shows that the MSE is constant regardless of the
value of the hyperparameter A or the percentile of the variance.
On the other hand, the variance increases as a function of A but
it is constant regarding the value of the percentile with the

13074 | Chem. Sci., 2022, 13, 13068-13084

exception of 1 = 1. Thus, the MV is larger than the MSE which is
counter-intuitive in view of the bias-variance decomposition of
the squared error. Finally, it is clear that the difference between
MSE and MV decreases as the value of A increases. This indi-
cates that the assumed posterior distribution does not correctly
describe the data and, as a consequence, it cannot adequately
capture the variance of a prediction. In other words, a better
“guess” of the posterior will improve the predicted variance.

A common method to judge whether a model is well-
calibrated is by considering the calibration curves described
in the Methods section. The results in Fig. 4 show that, as A
increases, the model is closer to the diagonal which indicates
perfect calibration. The best calibrated models are obtained for
small values of A (A = 0.1 and A = 0.2). Calibration curves help to
evaluate the ‘honesty’ of the model predictions. Previously,*
calibration curves were employed to select a suitable value for A
using the SchNet architecture® for QM9. These results largely
agree with what is found here with 1 = 0.1 and A = 0.2 as the
best values. Although calibration curves are extensively used in
the literature to assess the quality of uncertainty predictions by
ML models, they also have weaknesses that complicate their
use. For example, it was reported* that perfect calibration is
possible for a model even if the output values are independent
of the observed error. Furthermore, it was noticed*® that cali-
bration curves work adequately when the uncertainty prediction
is degenerate (i.e. all the output distributions have the same
variance) which is not the desired behavior. In addition to this,
it was found that the shape of these curves can be misleading
because there are percentiles for which the model under- or
overestimates the uncertainty. Then the calibration curves need

© 2022 The Author(s). Published by the Royal Society of Chemistry
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to be complemented with additional metrics for putting their
interpretation in perspective. Here, the analysis of calibration
curves was complemented by using the miscalibration area (the
area between the calibration curve and the diagonal repre-
senting perfect calibration). Using this metric, it is clear that 2
values of 0.75 have a performance as good as A = 0.1 and A = 0.2.

3.2 Classification of predictions

The effect of bias in the training set for PhysNet-type models
was previously found to negatively impact prediction capabil-
ities across chemical space.*® In the context of uncertainty
quantification, it is also of interest to understand how the
predicted variance can be related to the error in the prediction
for an individual prediction. For this, the relationship between
the predicted variance and the error of prediction was studied
following a classification scheme, see Methods section. To this
end, the subset of QM9 used for hyperparameter optimization
was considered. Then the molecules in the test set were evalu-
ated with the models trained with different values of the
hyperparameter A.

For all the tested models, the largest percentage of molecules
(=80%) was found to be True Negatives (TN), see Fig. 5A. This
indicates that the model recognizes for most of the samples that
there is sufficient information for a correct prediction. On the
other hand, molecules classified as True Positives (TP) corre-
spond to samples for which predictions are difficult. Hence,
these molecules lie outside the training distribution because
they are associated with large prediction errors and the model is

© 2022 The Author(s). Published by the Royal Society of Chemistry
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‘aware’ of this. As expected, the number of TP and FP increases
with increasing A. This is a consequence of the inflation of
uncertainty by making the model less confident about its
prediction which results in misclassification of molecules
because - as described before - the error in the prediction is
independent on the value of 4, see Fig. S6.T Finally, the number
of False Negative (FN) samples in the data is approximately
independent on A. As described before, the molecules in this
category contain information on the boundary of the training
distribution which compromises the model's prediction capa-
bility. The constant number of FN is indicative of a systematic
problem that can only be corrected by providing additional
samples of similar molecules. The distribution of FP and FN
was further analyzed in Fig. S7.1 The results indicate that the
categories distribute uniformly over the energies sampled. It is
also observed that false negatives (i.e. “underconfident”) tend to
be more present at smaller total energy (= —65 eV) whereas false
positives (“overconfident”) are more common for larger total
energy (=—80 eV). Furthermore, the number of FPs decreases
rapidly with decreasing value of the hyperparameter A, whereas
for FNs this number is rather insensitive to A, see also Fig. 5A.

A summary of the relationship between the four classifica-
tions in term of model accuracy, sensitivity, and precision is
given in Fig. 5B. In all cases the accuracy of the model is
appropriate, since the largest part (=90%) of the studied
samples are correctly predicted (i.e. TN) and the variance
reflects the prediction error. On the other hand, the precision of
the model is also high (=80%) but starts to decrease as A
increases. In the present context, precision is a measure for the
model's capability to recognize ‘problematic’ cases which also
correspond to a real deficiency in the model which can be
assessed by comparing the prediction with the true value and
the predicted variance. It is expected that as the model becomes
more underconfident, the precision decreases as there are more
molecules misclassified due to inflation of the uncertainty.
Conversely, sensitivity describes how many of the molecules
that present a problem in the prediction are identified by the
model. Here, the sensitivity increases for A > 0.5: as the model
becomes less confident, the probability to detect samples that
are truly problematic increases. It should, however, also be
pointed out that the numerical values for (¢*, o¥) to define the
different categories will impact on how the classifications
impact model characteristics such as “precision” or
“sensitivity”.

The MV and MSE for the complete set of samples as a func-
tion of A are provided in Fig. 5C. It is found that with the
exception of A = 0.01 and A = 0.5, MV and MSE are comparable,
which is a desired characteristic of the model. However, since it
is additionally desirable that MV < MSE the variance obtained
by the model accounts for the variance term in eqn (15).
Therefore, the difference between MSE and MV is a constant
value that corresponds to the combination of the bias of the
model and the irreducible error. The advantage of this defini-
tion is that the variance can be mainly attributed to the data
used for training. This provides a rational basis for further
improvement of the training data. It is noted that the condition
MV < MSE is only fulfilled for A = 0.75 and A > 1.5. A summary
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with the values of all the metrics tested for calibration is given
in Table S1.7¥

Fig. 5D and S8 to S117 present concrete molecules from each
of the four categories. Although the molecules used in the
training, validation and test sets were kept constant for the
different models, the molecules identified as outliers differed
for each value of 1. However, it is instructive to identify mole-
cules that appear more frequently in the various tests. These
chemical structures are studied in more detail on the following
sections with the aim to identify systematic errors and sampling
problems and how they can be corrected.

3.3 Artificial bias experiment

To provide a more chemically motivated analysis of predicted
energies and associated variances, a model was trained using

13076 | Chem. Sci, 2022, 13, 13068-13084

the first 25k molecules of QM9. The question addressed is
whether predicted energies and variances for molecules not
used in the training of the model are more likely to be true
positives than for molecules with little coverage in the training
set. Since the structures in QM9 were derived from graph
enumeration, the order of the molecules in the database already
biases certain chemical motifs, such as rings, chains, branched
molecules and other features.

Fig. 6A reports the Tree MAP (TMAP) projection® of the
entire QM9 database (pink) and the first 25k molecules (blue).
TMAP is a dimensionality reduction technique with good
locality-preserving properties for high dimensional data such as
molecular fingerprints. Analysis of the projection suggests that,
as a general structural bias, the first 25k molecules over-
represent aromatic heterocyclic, 5- and 6- membered rings,

© 2022 The Author(s). Published by the Royal Society of Chemistry
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variance.

and structures with multiple substituted heteroatoms with
regards to the relative probability of other structures also
present in QMO9.

For training the NN, as described in the Methods section, 31
500 structures were randomly split (train/validation/test of 0.8/
0.1/0.1) and a model with A = 0.4 was trained to make predic-
tions on the test set. A TMAP projection of the test and train
compounds is shown in Fig. 6C. The connectivity of the
different tree branches on the TMAP provides information
about the local similarity of the molecules where dense regions
of the map correspond to clusters of high similarity. The
average degree i.e. number of edges between one molecule and
its neighbors, for the TNs in the test set - which was the
majority class (=90% of the test samples) — was 2.0 compared
with classes FN (169 molecules), TP (25 molecules), and FP (1
molecule) which had average degrees of 1.7, 1.3, 1.0. The lower
connectivity for FP compared with TN indicates that “good
predictions for the right reason” are more likely if coverage of
particular structural and/or chemical motifs is better. Further-
more, it is observed that FPs have a low connectivity which

© 2022 The Author(s). Published by the Royal Society of Chemistry

indicates that these molecules are “rare” in the training set. On
the other hand, the different sample sizes of the four classes
need to be kept in mind when generalizing such conclusions.

The TMAP projection of the test set in Fig. 6B shows the
chemical similarity between specific molecules seen during
training or testing. In general, molecules identified as TPs
contained common scaffolds seen during training in combi-
nation with unusual substituents. For example, the moiety of
imidazole (a five-membered 1,3-C3;N, ring) was a common
fragment in the training set and lies in the biased region of
chemical space depicted in Fig. 6A. Common true positives
contained this imidazole scaffold inside uncommon fused three
ring systems. When the model makes predictions for
compounds close in chemical space to molecules of which it has
seen diverse examples in the training set, the estimates of
variance appear to be more reliable.

Fig. 6D reports three examples of false positives (i.e. mole-
cules with high error and low predicted variance) in the test set.
The molecules in the training set are labelled as (i), (iii) and (v),
whereas those used for prediction from the test set were (ii), (iv)
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http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc04056e

Open Access Article. Published on 17 October 2022. Downloaded on 10/16/2025 8:38:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

and (vi). The pair (i/ii) consists of a diazepane core that goes
through a double bond migration. Although the rest of the
structure is conserved for (i) and (ii), the error in the prediction
for molecule (ii) (test) is =0.1 eV, but the predicted variance is
the same for molecules (i) and (ii). A possible explanation is that
the model recognizes that (i) and (ii) are similar which leads to
assigning a small variance to (ii). However, this contrasts with
the energy difference between molecules i and ii which is
=0.5 eV.

Pair (iii/iv) involves an oxepane ring with a carbonyl (iii)
which is in the training set and the prediction is for an oxabi-
cycloheptane (iv). In this case the model predicts the energy
with an error of 0.015 eV. Hence, for pair (iii/iv) the information
that the model has from molecule (iii), in addition to the
significant presence of bicycles in the training set, makes it
easier to predict the energy for molecule iv. Finally, pair (v/vi) is
opposite to (iii/iv): training on an Oxa-azabicycloheptane for
predicting an Oxazepane. The error for this prediction is
considerably higher (=0.06 eV). This shows that it is easier for
the NN to predict bicycles than seven-membered rings and
reflects the fact that there are more bicycles in the training set
than seven-membered rings. An intriguing aspect of the totality
of molecules shown in Fig. 6D is that they all have the same
number of heavy atoms, and that they share multiple structural
and bonding motifs. This may be the reason why the model
assigns a small variance to all of them because the NN is primed
to make best use of structural information at the training stage.
However, additional tests are required to further generalize this.

Similarly, cases where a ring was expanded or contracted by
a single atom between molecules in the training and test set
commonly resulted in similar failure modes due to over-
confidence. This observation is particularly interesting
because it suggests that the model might be overconfident when
predicting compounds it has seen sparse but highly similar
examples of during training. Uncertainty quantification, in this
conception, is effective at predicting in-distribution errors,
however, out-of-distribution errors are not as easily quantified
by this model.

3.4 Tautomerization set

As a concrete chemical application of how uncertainty quanti-
fication can be used, the prediction of energy of tautomer pairs
was considered. Tautomerization is a form of reversible isom-
erization involving the rearrangement of a charged leaving
group within a molecule.®® The structures of the molecules
involved in a tautomeric pair (A/B) only differ little which makes
this an ideal application for the present developments. For the
study of tautomeric pairs, three NN models with different values
of A = 0.2, 0.4, 0.75 were trained with QM9 database as
described on the Methods section. The test molecules consid-
ered come from the Tautobase database.®® For the purpose of
this work, only molecules with less than nine heavy atoms (C, N
and O) were tested. A total of 442 pairs (884 molecules) was
evaluated.

The training of PhysNet involves learning of the Atomic
Embeddings (AtE) and the centers and widths of the Radial

13078 | Chem. Sci,, 2022, 13, 13068-13084

View Article Online

Edge Article

Basis Functions (RBF). These features encode the chemical
environment around each atom and therefore contain the
“chemical information” about a molecule. This opens the
possibility to further analyze the potential relationship con-
tained in the learned parameters to the information about the
chemical space contained in the training dataset and how it
compares with the chemical space of the test molecules that are
the target for prediction. Hence, for the following the mean
distances between each of the tested molecules and the mole-
cules in the training set of the database for (AtE) and (RBF)
were determined according to the procedure described in
Section 1 of the ESL.T Fig. 7 shows the results for the relation-
ship between the mean distance of the AtE and RBF, the error,
variance and number of atoms for the molecules in the
tautobase.

The bottom row of Fig. 7A (panels i to v) report (AtE) and
(RBF), the prediction errors and associated variances sorted by
the number of heavy atoms N = 3 to 9 together with the
distribution P(N). The dependence of (AtE) and (RBF) on N
shows that with decreasing number of heavy atoms the mean
distance with respect to the molecules with the same number of
atoms increases (Fig. 7A(i and ii)). Additionally, the violin plots
in Fig. 7A(i and ii) show that the mean distance values are more
spread as the number of atoms increases. One explanation for
these results is that the available chemical space to explore
increases with N which is also reflected in the number of
samples with a given number of heavy atoms in the training
dataset; consequently, the distance between the molecules with
a low number of atoms increases. In other words, a larger
molecule explores chemical space more extensively in terms of
chemical environments, atom types, bonding patterns and
other characteristics of chemical space. The relationship
between error and the number of atoms illustrates how the
smaller mean distance in RBF and AtE leads to a smaller error.
Furthermore, the number of outliers also scales with the size of
the molecules. Comparing error and variance by the number of
heavy atoms, it is clear that for up to 5 atoms they behave
similarly (Fig. 7A(iii and iv)). From Fig. 7A(iii), it is clear that the
error distribution shifts with increasing number of atoms in the
molecule. The center of mass of the predicted variance distri-
bution, (see Fig. 7A(iv)) is initially at a high value and progres-
sively decreases until 5 heavy atoms and then to increase again.
It should be noted that the number of outliers for error and
variance increases with the number of heavy atoms which
affects the displacement on the center of mass. Finally, the
spread of error and variance by the number of atoms (Fig. 7A(iii
and iv)) presents similar shapes up to 8 heavy atoms. For
molecules with 8 and 9 atoms, the variance is more spread out
whereas the error distribution is more compact.

Panels vi, vii, X, and xi in Fig. 7A show that variance and error
are similarly distributed depending on (AtE) and (RBF),
respectively. For the entire range of (AtE) and (RBF) low vari-
ance (<0.0002 eV) and low prediction errors (<0.25 eV) are
found. Increased variance (=0.0005 eV) is associated with both,
larger (AtE) and (RBF) whereas larger prediction errors (>1.0 eV)
are found for intermediate to large 1.0 = (RBF) =< 1.5. This

© 2022 The Author(s). Published by the Royal Society of Chemistry
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the largest predicted variance and the largest distance in RBF space. (D) Examples of molecules with large predicted variance and small error.
Enlarged views of panels (B) and (C) are provided in Fig. S14 and S16+.

similarity is also reflected in a near-linear relationship between
(AtE) and (RBF) reported in panel (xiii) of Fig. 7A.

Prediction error and variance are less well correlated for the
evaluated molecules from tautobase, see panel (viii) of Fig. 7A.
This can already be anticipated when comparing panels (i) and
(ii). With increasing N, the position of the maximum error shifts
monotonously to larger values whereas the variance is higher

© 2022 The Author(s). Published by the Royal Society of Chemistry

for N = 3, decreases until N = 6, after which it increases again.
Hence, for tautobase and QM9 as the reference data, base error
and variance are not necessarily correlated.

To gain a better understanding of the prediction perfor-
mance of QM9 for molecules in the Tautobase from the point of
view of feature space, polar plots considering extreme cases
were constructed, see ESIT for technical details. Fig. 7B shows
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the case for the molecule (center) with the largest average
distance in RBF and AtE for molecules with the same number of
atoms used for training for this representation; only the ten
closest neighbours are shown. Although the molecule is rela-
tively simple, no structure in the training set contains sufficient
and appropriate information for a correct prediction. Despite
abundant information about similar chemical environments
but with different spatial arrangements, combination with
different functional groups or different bonding arrangements,
potentially conflicting information in the training set leads to
uncertainties in the prediction. A second example, that of the
molecule with largest variance and largest distance in RBF, is
shown in Fig. 7C. As for molecule ii in Fig. 6D this case also
highlights how seemingly small changes in bonding pattern,
functional groups and atom arrangements can lead to large
errors. However, in this case the abundant and similar struc-
tural information in the training set leads to a large predicted
variance. In other words, “redundancy” in the training set can
lead to vulnerabilities in the trained model as was previously
found for predictions based on training with the ANI-1 database
compared with the much smaller ANI-1E set: despite its larger
size, predictions based on ANI-1 were less accurate than those
based on ANI-1E.*

As a final example of the relationship between error and
variance, the chemical structures for a set of molecules with low
error but high variance is highlighted in Fig. 7D and shows that
heterocyclic rings and bicycles are well covered in the training
set. An interesting aspect is that molecules with a nitro-group
(-NO,) appear with high variance and low error. This effect
can be rationalized by considering the design of the GDB-17
Database® which is the source of the QM9 set: for GDB-17
aliphatic nitro groups were excluded, but aromatic nitro
groups were retained. Therefore, the trained model will have
similar information based on structural considerations but the
quality of the data in view of a molecules’ energetics is low
which leads to significant variance.

Finally, it is of interest to analyze tautomer pairs (A/B) for
which the difference in the predicted variance is particularly
large. Fig. 8A reports the distribution p(si — o%) for trained
models with different values of the hyperparameter A. First, it is
found that the distribution of variance differences depends on
the value of A. Therefore, particularly prominent outliers can be
avoided by careful evaluation of the predictions. Secondly, large
differences (star in Fig. 8A) in the variances can occur and
indicate that the trained models are particularly uncertain in
their prediction. To illustrate this, three tautomer pairs were
identified and are analyzed in more detail in the following. For
molecules B1 to B3 it is found that their functional groups are
not present or are poorly represented in QM9. These include the
N=0O0 nitro group in an aliphatic chain (B3), vinyl alcohol (B1),
and hydroxyl imine (B2, only one representative in QMO9).
Furthermore, the pair (A3/B3) is zwitterionic.

As is shown in Fig. 8B the chemical motifs and functional
groups in Al to A3 are covered by QM9 whereas those in their
tautomeric twins (B1 to B3) are not. For molecule B1 (vinyl
alcohol) examples are entirely absent in QM9 and the presence
of hydroxyl groups bound to sp> (aromatic) carbons is not
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sufficient for a reliable prediction for B1. It is also noted that the
difference A between the target energy (Epgr) and the predic-
tions (Exy) are largely independent on A for Al but differ by
a factor of two for B1. This is also observed for the pair (A2/B2)
for which the uncertainties are more comparable than for (A1/
B1).

Finally, the pair (A3/B3) poses additional challenges. First,
the variance for one value of A for B3 is very large and for A3 one
of the variances is also unusually large, given that similar
examples to A3 are part of the training set. Secondly, although
A3 is better represented in the training set, the difference
between target value and prediction is larger than 1 eV for all
models. These observations are explained by the fact that (A3/
B3) are both zwitterionic and the uncertainty associated with
B3 may in part be related to the fact that QM9 only contains few
examples of sp> NO bonds except for a small number of
heterocyclic rings which are chemically dissimilar compounds
compared with B3. Furthermore, for B3 some of the atom-atom
separations (“bond lengths”) are poorly covered by QM9. For the
N-N distance, the QM9 database contains the range from 1.2 A
to 1.4 A (see Fig. S17f) whereas N-N in B3 is 1.383 A which is
a low probability region for p(rnn). This is also the case for
compound A3 although p(rny) has a local maximum at the
corresponding N-N separation. In conclusion, the majority of
prediction problems in Fig. 8B can be related to origins in the
underlying chemistry. Interestingly, even a careful analysis of
the performance of a trained model on the training set (see
compound A3) may provide insight into coverage and potential
limitations when making predictions from the trained model.

4 Discussion and conclusions

The present work introduces uncertainty quantification for the
prediction of total energies and variances for molecules based
on a trained atomistic neural network. The approach is generic
and it is expected that it can be generalized to other NN-
architectures and observables.

With respect to computational effort it is noted that the
current approach requires training of several independent
models for a range of values for the hyperparameter A. However,
the uncertainty on a prediction can be obtained from evaluating
a single model. This is an advantage compared to ensemble
models which require the evaluation of all trained models to
obtain an estimate of the uncertainty. For ensemble-based
approaches the statistical error of a prediction ~ 1/v/N
whereas for DER considered here this is not the case. Rather,
a number of models needs to be trained for calibration but as
demonstrated here, N = 10 is a meaningful estimate for this. On
the other hand, Bayesian methods rapidly become impractical
for larger data sets as already mentioned in the Introduction.
One possible way to avoid training for a range of 1 - values is to
use recalibration methods.?**® However, such methods are
quite new and still need to be validated by different metrics.
Finally, the results obtained here can be used as a starting point
for model training on other databases but it remains to be seen
if the calibration results are transferable to other databases.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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pairs (A/B) containing chemical groups, nitro and vinyl alcohols, outside the training set (B1-3) are easily identified. The imine group in B2 was
present in only one molecule in the training set. Numerical values for energies and variances are summarized in Table 1.

Data completeness and quality directly impact the fore-
casting capabilities of statistical models. Although quantum
chemical models are trained, for example, on total energies of
a set of molecules, it is not evident how to select the best suit-
able training set for most accurately predicting energy differ-
ences between related compounds, such as structural isomers
as demonstrated in this work. PhysNet-DER is a step towards
the design of validated, well-defined databases containing
meaningful information (“smart data”).?”° In this process one
also anticipates that targeted databases will become available
for specific applications in chemistry, such as tautomerization
energies, hydration energies, or HOMO-LUMO gaps, to name
a few. Also, the findings from the present work will be useful to
be employed together with established methods like Gaussian

A large part of the present work was concerned with the
impact of redundant/missing information in the databases
used to train a model on the prediction of specific properties in
chemical space. The results confirm that redundancies can
impact heavily the prediction of a property and its variance.
However, it is still necessary to systematically identify and
remove conflicting information while retaining training quality.
In this regard, the combination of unsupervised machine
learning methods®"> with the approach introduced here will
hopefully allow to design workflows to broadly explore chemical
space at low computational cost. Another point that requires
attention is the underlying assumption in many similar appli-
cations that the predicted property can be represented as
a normal (Gaussian) distribution. The present and earlier

process approximation.* studies”™ indicate that this assumption is only valid
approximately.

Table 1 Reference energy (Eper), predicted energy (Exn) and variance (¢2) for selected molecules in Fig. 8. All values are in eV

Molecule Eppr Enn a?

A 0.2000 0.4000 0.7500 0.2000 0.4000 0.7500

Al —79.8900 —79.6800 —79.6900 —79.6800 0.0018 0.0002 0.0002

A 0.2100 0.2000 0.2100

B1 —79.5900 —79.2800 —79.4400 —79.3600 0.0249 0.0002 0.0002

A 0.3100 0.1500 0.2300

A2 —23.5900 —23.5200 —23.5200 —23.5200 0.0016 0.0012 0.0002

A 0.0700 0.0700 0.0700

B2 —23.0200 —22.7500 —22.8800 —22.9100 0.0019 0.0011 0.0007

A 0.2700 0.1400 0.1100

A3 —30.8600 —32.6700 —32.5800 —32.2000 0.0046 0.0004 0.2243

A 1.8100 1.7200 1.3400

B3 —31.6300 —32.0200 —32.0800 —32.6900 229.6200 0.0035 0.0033

A 0.3900 0.4500 1.0600

© 2022 The Author(s). Published by the Royal Society of Chemistry
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It was noted in Fig. S2t that the average predicted variance
for a hold-out set of molecules decreased with increasing
training set size until a certain point. Beyond that, models
trained on the most extensive training corpus predicted higher
variance. This is consistent with the expectation that as new
molecules are introduced to the training set, the probability of
adding previously unseen information is initially large, but
decreases as the training set grows. This is indicative of the law
of diminishing returns.” The artificial bias experiment carried
out here suggests that the model may become sensitive to
redundant information which leads to overconfident estimates
of variance for over-represented chemical motifs at the expense
of being under-confident for motifs with fewer training exam-
ples. The observation that larger training sets can introduce
higher uncertainties is compelling and highlights the need for
a deeper understanding of the role of bias when evaluating
atomistic neural networks for predictions made across chem-
ical space.

Distances in the embedding space (AtE/RBF) of the neural
network were studied to visualize and analyze the proximity
between molecules in the training and test set, see Fig. S14 and
S16.1 This allowed to assess how similar molecules can influ-
ence the prediction by making the model less confident. On the
other hand, it was also possible to recognize molecules for
which insufficient information was available in the database for
a prediction. In other words, analysis of the embedding space
also hinted towards the role of similar information on model
degradation. It is of interest to note that analysis of the
embedding space was previously done for uncertainty deter-
mination.*** As used in the present work, distances in
embedding space provide a qualitative picture for what infor-
mation influences a prediction. This can be used in a more
targeted fashion for model improvement but more systematic
studies for this natural next step are required.

Some of the essential findings of the present work concern
the notion that single metrics are not particularly meaningful to
judge the calibration of a trained model. Exploration and
development of meaningful metrics will benefit evidence-based
inference.” Also, it is not always true that error and variance are
directly related which is counter typical expectations in statis-
tical learning. It is also demonstrated that mean variance and
mean squared error can behave in counter-intuitive ways which
points towards deficiencies in the assumed posterior
distribution.

As found here, uncertainty quantification is essential and
reveals that the nature and coverage of the training set used for
model construction plays an important role when applied to
specific chemical tasks. For example, it is demonstrated for
tautomerization energies that classification of predictions can
be used to identify problematic cases at the prediction stage.
Furthermore, it was found that similar information in low
quantity returns low uncertainties but high errors, whereas
similar information in large quantities results in small errors
but high predicted uncertainties. A notable example of this is
the nitro group in the training database, which is not present
for aliphatic chains but for aromatic rings. Thus, for a balanced
ML-based model for chemical exploration an equilibrium
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between the quantity and the quality of data in the database is
required. The information from UQ can be used in the future to
build targeted and evidence-based datasets for a broad range of
chemical observables based on active learning strategies and for
constructing robust high-dimensional potential energy surfaces
of molecules.
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