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Engineering hydrogen bonding to align molecular
dipoles in organic solids for efficient second
harmonic generationt
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Considering nearly infinite design possibilities, organic second harmonic generation (SHG) molecules are
believed to have long-term promise. However, because of the tendency to form dipole-antiparallel
crystals that lead to zero macroscopic polarization, it is difficult to design a nonlinear optical (NLO)
material based on organic molecules. In this manuscript, we report a new molecule motif that can form
asymmetric organic solids by controlling the degree of hydrogen bonding through protonation. A
conjugated polar organic molecule was prepared with a triple bond connecting an electron-withdrawing
pyridine ring and an electron-donating thiophene ring. By controlling the degree of hydrogen bonding
through protonation, two different crystal packing motifs are achieved. One crystallizes into the
common dipole-antiparallel nonpolar P1 space group. The second crystallizes into the uncommon
dipole-parallel polar P1 space group, in which the molecular dipoles are aligned along a single axis and
thus exhibit a high macroscopic polarization in its solid-state form. Due to the Pl polar packing, the
sample can generate second harmonic light efficiently, about three times the intensity of the benchmark
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Introduction

Second harmonic generation (SHG) active materials are non-
centrosymmetric, and play an indispensable role in modern
laser-related sciences and technologies because they enable
nonlinear optical (NLO) processes that lead to the conversion of
an optical input wave into an output wave with twice the input
frequency."> Compared to the inorganic SHG crystals, such as
LiNbO;, AgGaS,, GaP, ZnTe, and GaAs, organic molecules have
more long-term promise due to their high second-order
nonlinear optical coefficients, ultrafast response times, and
nearly infinite design possibilities.>®

Efficient SHG organic molecules are usually designed based
on T-conjugated systems, due to their high polarizability and
delocalized electronic structure.’*> Among them, m-conjugated
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a single molecular backbone can be used for controlling the macroscopic NLO properties.

molecules with electron-rich rings and electron-deficient rings
connected through conjugated bridges can yield large molec-
ular dipole moments that induce high hyperpolarizability (8),
which is an important figure-of-merit related to the magnitude
of the second-order nonlinear susceptibility (x*). Unfortunately,
these molecules tend to exhibit zero macroscopic polarization
in the solid-state because they tend to form energetically
favourable dipole-antiparallel assemblies by dipole-dipole
interactions. Thus, it is a great challenge to design an NLO-
active organic molecule that exhibits a large nonlinearity on
the molecular level as well as on the macroscopic level.**°
Crystal engineering through inductive intermolecular inter-
actions to stabilize the dipole-parallel packing paves the way
towards achieving a non-centrosymmetric molecular assembly.
Several methods have been utilized to stabilize the dipole-
parallel molecular alignment, such as using asymmetric
porous host structures to trap molecules inside the channels,*®
utilizing Langmuir-Blodgett (LB) film with asymmetry
surfaces,'” and applying an external field to pole the material
from symmetric to asymmetric.'® Ionic crystals consisting of
molecular cations and anions have also been used to create
stable non-centrosymmetric crystals utilizing the formation of
strong electrostatic coulombic interactions and various w-m
interactions between cation and anion layers.”> However, the
introduction of multiple intermolecular and intramolecular

© 2022 The Author(s). Published by the Royal Society of Chemistry
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interactions will increase the molecular and synthetic
complexity towards achieving the targeted ordering in the
crystalline state.

In this work, we designed and synthesized a polar organic
molecule, which exhibit macroscopic polarization by control-
ling the degree of hydrogen bonding between the molecules.
Our molecule contains a large dipole from an electron-deficient
pyridine ring and electron-rich thiophene ring connected by
a carbon-carbon triple bond. The hydrogen bonding acceptor
nitrogen atom in the pyridine ring and the hydrogen bonding
donor nitrogen atom in the amine group are deliberately
installed at the two ends of the molecule (Fig. 1a). By enlarging
the charge separation distance through the triple bond, a large
molecular dipole of 4.465 Debye can be realized (Fig. 1b).
Significantly, different crystal packing motifs are observed when
controlling the hydrogen bonding numbers and strength.
Specifically, the version that only forms hydrogen bonds
between the nitrogen atom in the amine group and the Br ion
adopts a P1 non-centrosymmetric packing in the solid-state and
exhibits a large SHG response. Further protonation leads to
hydrogen bonds on both nitrogen atoms and pyridine, resulting
in a packing order with inversion of symmetry that does not
exhibit SHG.

Results and discussion
Molecular design

The electron-density distribution of the neutral molecule was
simulated by plotting its electrostatic potential (ESPs) map
(Fig. 1a). The end nitrogen in the pyridine ring has the strongest
electron-withdrawing ability that is rendered in “red”. Mean-
while, the end nitrogen in the amine group has the strongest
electron-donating ability that is rendered in “blue”. Because of
the separation of the positive and negative charge center, the
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Fig. 1 (a) Electrostatic potential (ESPs) map of neutral TM1. (b) Illus-
tration of the molecular dipole moment of neutral TM1 (basis set:
b3lyp/6-311G(d,p)). (c) Synthesis of TM1 and TM2. (i) Pd(PPh3),Cl,, Cul,
DIPA, THF, r.t., 12 h, 90%; (ii) TBAF in THF (L M), THF : H,LO =5:1,r.t,
1 h, 98%; (iii) Pd(PPhs),Cl,, Cul, DIPA, THF, r.t, 12 h, 83%; (iv) tri-
fluoroacetic acid, DCM, r.t, 1.5 h, 86%; (v) 1 M HBr, methanol, 0 °C,
1.5h, 92%.
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molecule exhibits a large dipole moment. HOMO and LUMO
orbitals delocalized well on the whole backbone due to the good
planarity of the molecule (Fig. S57).

Molecular synthesis

TM1 was synthesized with an overall yield of 57% through a 5-
step synthesis process (Fig. 1c). The core framework was fur-
nished by Sonogashira coupling between tert-butyl((5-ethy-
nylthiophene-2-yl)methyl)carbamate = 4 and  3-fluoro-4-
iodopyridine 5. After purification, the -NH, group was recov-
ered by cleaving the -Boc group, followed by protonation using
dilute HBr acid to produce the final salt, TM1. Adding more HBr
will lead to further protonation of pyridine, which can be
observed by an obvious color change from white (TM1) to yellow
(TM2). The structure of TM1 and TM2 was characterized using
PXRD, NMR ('H, '*C), and Fourier transform infrared (FTIR)
measurements. Compared with the neutral compound 7, the
chemical shift of the protons of -CH, adjacent to the end
nitrogen atom in TM1 and TM2 downfield, from 4.07 ppm to
4.31 ppm. The protons of residue water in DMSO are also
shifted downfield (3.3 ppm in TM1 to 3.7 ppm in TM2) due to
protonation to H;O" by the residual free acid in TM2.

Structure characterization

Powder X-ray diffraction (pXRD) patterns of the as-synthesized
powder samples of TM1 and TM2 are in good accordance with
the simulated ones, suggesting the phase purity of the as-
synthesized powder samples (Fig. 2a and b). FTIR was utilized
to further characterize the presence of various functional
groups in the as-synthesized powder of TM1 and TM2 (Fig. S17).
The stretching vibration of N-H in -NH;" group becomes broad
and moves to lower wavenumbers (3000 cm ') compared with
reported non-protonated -NH, (>3400 cm™ '), making those
vibrations indistinguishable and overlapping with the stretch-
ing vibration of C-H bond at both pyridine and thiophene rings.
The strong and sharp peak at 2206 cm ™ refers to the stretching
vibration of C=C. The asymmetric and symmetric bending
vibration absorbing peaks of N-H in -NH;" groups in TM1 are
observed at 1608 cm ' and 1494 cm™', respectively. The
stretching vibrational frequency peaks of non-saturated double
bonds (C=N, C=C) are also observable in the range of 1610-
1500 cm™". Peaks in the figure print region (1350-400 cm ™)
correspond to both in-plane (1320-1027 cm™ ') and out-of-plane
(817 ecm™') bending vibrations of unsaturated C-H and the
stretching vibration of C-F. Hydrogen bonding is much
stronger in TM2 than in TM1, thus the stretching vibration of
N-H in -NH;" group moves to low wavenumbers with increased
intensity and band broadening. Meanwhile, the peaks of
bending vibration of N-H in TM2 move to high wavelength
numbers to 1634 cm~ ' (asymmetric bending) and 1508 cm ™"
(symmetric bending).**** Hydrogen bonding plays an important
role in determining the final crystal stacking, where suitable
hydrogen bonding numbers and strength will lead to a stable
energetically-unfavourable polar packing.

Single crystals of TM1 and TM2 were obtained by the anti-
solvent method. TM1 adopts a triclinic crystal system with
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(a and b) pXRD patterns of as-synthesized powder of TM1 and TM2 and simulated from the CIF file. Crystal packing structure and the

illustration of the supramolecular interactions of (c) TM1 and (d) TM2. Yellow dashed lines indicate the hydrogen bonding and the numbers
indicate the distance in unit of A. Red arrows indicate the direction of molecular dipoles.

a non-centrosymmetric space group of P1 (Fig. 2c¢), in which
molecular dipoles are aligned in one direction. TM1 and TM2
crystals show a similar short 7w stacking distance of ca. 3.4 A,
indicating the - interactions do not account for the packing
transformation (Fig. S4}). Multiple supramolecular interac-
tions, present in TM1, are essential to stabilize the dipole-
parallel configuration. Moreover, the three hydrogen atoms on
the end amine group form a hydrogen bonding network with
the neighboring bromine and nitrogen atoms. Especially the
formation of hydrogen bonds between the N1 (in amine group)
and N (in pyridine ring) helps to create a dipole-parallel
configuration that induces a macroscopic dipole. The molec-
ular ordering changes when more hydrogen bonding is intro-
duced by adding more HBr acid to protonate pyridine to
pyridinium. The crystals of TM2 exhibit inversion symmetry
with a non-polar space group of P1 (Fig. 2d). In TM2 crystals, the
N-H group of the pyridinium cannot form hydrogen bonding
with N1 (in amine group)-H group, and instead forms hydrogen
bonding with the surrounding Br, thus transforming the polar
stacking to nonpolar stacking.

Nonlinear properties

SHG measurements further confirm the different crystal
packing of TM1 and TM2. SHG measurements were performed
by directing 1350 nm incident laser light to the powder samples
that were created by grinding the single crystals. Because of
lacking inversion symmetry, TM1 exhibits an SHG response at
the wavelength of 675 nm which is half the input wavelength.
Meanwhile, TM2 shows a negligible SHG signal (Fig. 3a).
Moreover, the SHG intensity of TM1 increases with increasing
average particle size under 200 um, and then tends to remain
unchanged when the particle size is over 200 um, indicating its

12146 | Chem. Sci, 2022, 13, 12144-12148

good phase matching ability based on the Kurtz-Perry
method.”** To gain further insight into the SHG intensity of
TM1, we compared it with potassium dihydrogen phosphate
(KDP) crystal, a standard inorganic SHG crystal, with the same
particle size (about 100-150 pm). We found that the SHG
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Fig.3 (a) SHG signal from TM1 and TM2 single crystal powder. (b) SHG
intensity of TM1 and KDP at the same particle size of 100-150 pm at
1350 nm.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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intensity of TM1 is about three times higher compared to that of
KDP (Fig. 3b), making our SHG active organic molecules among
the best reported.>*1%>32¢

Optical transparency and stability are two critically impor-
tant properties for the application of any NLO material.
Considering its optical transparency and high thermal stability,
TM1 is among the best SHG active molecules when compared
with other representative ones (Fig. S8a, b and Table S17). The
optical transparency of the TM1 was investigated by measuring
UV-vis spectra in transmittance mode (Fig. S21). The sample
was prepared by sandwiching TM1 powder between two glass
slides. TM1 is transparent to the light with a wavelength higher
than 364 nm. According to the onset absorption wavelength
(347 nm), the bandgap of TM1 was calculated to be 3.57 eV,
which agrees well with the simulated bandgap of 3.07 eV
(Fig. S9t). Thermogravimetry analysis (TGA) was carried out
from 30 °C to 800 °C at a heating speed of 10 K min~* under the
protection of nitrogen (Fig. S31). TM1 is stable up to 243 °C.
After heating to 800 °C, 51% of the original mass remained in
the crucible, corresponding to the carbon content in TM1.

The single crystal XRD analysis was insufficient to resolve the
positions of the fluorine atoms as they are not fixed in a single
position. There is a small amount of disorder of the F atom
about the two ortho sites. As shown in the potential scan plots
(Fig. S61), the energy difference between the two configurations
is 0.97 kJ mol ", which is smaller than the thermal energy at
room temperature (kT = 2.51 k] mol™'). The position of the
fluorine atom has an influence on the overall stacking of the
molecules inside the crystal, and correspondingly will influence
the macroscopic polarization.

View Article Online
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DFT simulation

We used Density Function Theory (DFT) simulations to eluci-
date this phenomenon. We used a 2 x 2 X 1 supercell to
explore the position effects of fluorine atoms on the macro-
scopic packing and polarizations. All the sixteen possible
alignments of TM1 crystals (Fig. S9T) are considered in this
work. Compared to the very small deviation of the total energies
(largest difference around 0.046 eV per formula) from different
alignments, the bandgap/Berry phase polarization shows a large
deviation around 0.15 eV/6.62 Debye, within a linear depen-
dence of the -cis and -trans conformations of the units in the
supercell (Fig. S91). The smallest polarization of TM1 crystals is
17.7 Debye, which is about twice that of KDP (9.6 D). We found
that with more -cis conformations in the supercell, the macro-
scopic polarization increases and the bandgap decreases.
Furthermore, by looking through the detailed crystal packing
(Fig. 4), we found that the large increase of the macroscopic
polarization from more -cis conformations is a result of the
successful separation of the layered packing of fluorine atoms
and sulfur atoms.

Conclusions

In conclusion, we have synthesized an organic molecule TM1
with a large molecular dipole moment by connecting a highly
electron-withdrawing pyridine ring and the strongly electron-
donating thiophene ring through a triple bond. Hydrogen
bonding allows the molecule to align molecular dipoles in
a single direction resulting in NLO activity. As a result, this
material exhibits a strong second harmonic generation signal,
about three times the intensity of the benchmark KDP, showing
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Fig. 4 DFT calculated relative macroscopic polarization for (a) KDP and (b) all 16 possible alignments of TM1 crystals based ona 2 x 2 x 1
supercell. All the sixteen possible alignments are separated into five different groups according to the number of -cis conformations (C for -cis
conformations and T for -trans conformations) within the absolute calculated Berry phase polarizations values labelled on top of them. For each
group, one represented crystal structure is shown, and the average S atoms layer is represented in yellow and the average F atoms layer is

represented in cyan.
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that this material is amongst the best of SHG organic mole-
cules. This is in contrast to the crystals made with the control
molecule TM2, which exhibited an inversion symmetry and
correspondingly no second harmonic generation signal. Our
findings not only provide a useful NLO material with efficient
SHG response, high optical transparency, and excellent thermal
stability, but also shed light on crystal engineering using
hydrogen bonding to obtain NLO materials. The results are
expected to be general to other molecules that undergo
hydrogen bonding and therefore expand the scope of NLO
organic materials.

Data availability

Experimental details, synthesis and NMR spectra, stability
measurements, and DFT simulation details. Crystallographic
information files of TM1 (CCDC 2180022) and TM2 (CCDC
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