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Multipronged diagnhostic and therapeutic strategies
for Alzheimer's disease

Madhu Ramesh @ and Thimmaiah Govindaraju@*

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and a major contributor to dementia
cases worldwide. AD is clinically characterized by learning, memory, and cognitive deficits. The
accumulation of extracellular amyloid B (AB) plaques and neurofibrillary tangles (NFTs) of tau are the
pathological hallmarks of AD and are explored as targets for clinical diagnosis and therapy. AD pathology
is poorly understood and there are no fully approved diagnosis and treatments. Notwithstanding the gap,
decades of research in understanding disease mechanisms have revealed the multifactorial nature of AD.
As a result, multipronged and holistic approaches are pertinent to targeting multiple biomarkers and
targets for developing effective diagnosis and therapeutics. In this perspective, recent developments in
AB and tau targeted diagnostic and therapeutic tools are discussed. Novel indirect, combination, and
circulating biomarkers as potential diagnostic targets are highlighted. We underline the importance of
multiplexing and multimodal detection of multiple biomarkers to generate biomarker fingerprints as
a reliable diagnostic strategy. The classical therapeutics targeting Ap and tau aggregation pathways are
described with bottlenecks in the strategy. Drug discovery efforts targeting multifaceted toxicity involving
protein aggregation, metal toxicity, oxidative stress, mitochondrial damage, and neuroinflammation are
highlighted. Recent efforts focused on multipronged strategies to rationally design multifunctional
modulators targeting multiple pathological factors are presented as future drug development strategies
to discover potential therapeutics for AD.
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1. Introduction

Dementia is a major cause of death globally and 70-80% of all
cases are linked to AD.* There are more than 55 million people
suffering from dementia worldwide, which are expected to grow
to 139 million by 2050.> Over the decades, the number of deaths
by leading diseases show a decreasing trend owing to the
availability of reliable diagnostic and therapeutic interventions,
while the deaths from AD increased by more than 145%.“*
Clinically AD patients show learning and memory impairment,
language problems, and cognitive deficits leading to fatality
within 5 to 12 years of disease diagnosis based on behavioural
and cognitive symptoms.® Pathologically, AD is characterized by
the extracellular AB senile plaques and NFTs of hyper-
phosphorylated tau protein, associated neurodegeneration, and
brain atrophy.* AD etiopathology has been described by the
cholinergic hypothesis, amyloid hypothesis, and tau hypothesis
over the last three decades. Recent discoveries have uncovered
the complex pathobiology and showed the multifactorial nature
of AD (Fig. 1).*® The accumulating evidence demonstrates the
role of metal ion dyshomeostasis, reactive oxygen species (ROS),
oxidative stress, mitochondrial damage, and neuro-
inflammation in the pathology of AD."

AP and tau aggregation species are the hallmarks of AD and
targeted for diagnosis over the last two decades using different
chemical tools with positron emission tomography (PET),
magnetic resonance imaging (MRI), and fluorescence imaging
techniques. The advancements in PET probes and the tech-
nique allow the clinical detection of AB and tau biomarkers.*
AP and tau PET imaging suffer from a few limitations like the
requirement of clinical experts, cost, sophisticated instrumen-
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provide definite disease diagnosis at the early stage. Recently,
the National Institute on Aging and Alzheimer's Association
(NIA-AA) has set a framework, wherein the use of definitive core
biomarkers like AB (A), tau (T), and neurodegeneration (N) is
advocated for AD diagnosis.'” The proposed biomarker list is
left open-ended to allow the addition of newly validated
biomarkers. The multiple pathological pathways of AD
emphasise the potential of considering novel and multiple
biomarkers associated with disease pathology for early and
accurate diagnosis. The disease-associated markers circulating
in the fluids like cerebrospinal fluid (CSF), blood, saliva, and
urine hold potential for disease diagnosis. Thus, circulating
biomarkers have been explored in recent years owing to
numerous advantages over imaging techniques.’ Recently,
many multicentric clinical studies have identified promising
circulating biomarkers in CSF and blood for their utility in
routine screening in large clinical cases. We proposed multi-
plexed detection of multiple biomarkers using multimodal
imaging and detection techniques to generate a signature
fingerprint of biomarkers. The signature fingerprint aids early
diagnosis and categorises different clinical stages with high
accuracy for personalised medication and effective therapeutic
intervention."*

AD drug developments have been revolving around cholin-
ergic and amyloid hypothesis over the last three decades.”
Currently, drugs available to treat AD provide only symptomatic
relief and do not directly target the underlying disease mecha-
nisms. The therapeutic targeting of AR met with failures due to
intervention at advanced stages and the multifactorial nature of
AD. Aducanumab, a monoclonal antibody (mAb), has been
conditionally approved for therapeutic targeting of Ap in AD
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Fig. 1 Schematic representation of multiple aetiologies and multifaceted toxicity of AD, which emphasize the need to adopt multipronged
approaches for the management of diagnosis and treatment (created with BioRender.com).
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Table 1 Diagnostic tools and techniques targeting core and indirect biomarkers for AD*
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SL Diagnostic markers and ~ Chemical probe/
no. techniques techniques Characteristic features Model tested Ref.
1 AP targeted diagnostics
NIRF imaging Aex Aem ] Fold Ky
Oligomers BD-Oligo 530 — — 6 0.48 pM Tg M 20
F-SLOH — 650 — — 1.13 uM Tg M 21
PTO-29 570 680 60 0.25 uM Tg M 22
Soluble aggregates/ DCM-AN 500 661 0.015 — 0.85 uM Tg M 26
protofibrils CRANAD102 580 700 0.018 68 7.5 nM Tg M 28
Fibrils TC 537 638 0.4 30 58.4 nM In vitro 23
CQb 516 664 0.36 100 84 nM Human 24
PHC4 — 741 0.78 62.2 14.1 nM Tg M/human 27
QM-FN-SO; 500 720 — — 170 nM Tg M 30
ADlumin1 — 540 — 100 2.1 uyM Tg M 31
18 — 618 0.31 223 43.1 nM Tg M 32
Different alloforms QAD1 Binds to monomers, oligomers, and fibrils Tg M 25
Combinatorial Differentiate different alloforms like monomer, oligomer, In vitro 29
molecular sensor LMW, and HMW aggregates
PET imaging
Fibrils "c-piB ThT based PET probe, approved for clinical use and agold ~ Human 33
standard test
18p-flutemetamol Fluorine-labelled analogue of PiB, approved for clinical Human 34
use
'8F-florbetaben Stilbene-polyethylene glycol conjugate, selective labelling, = Human 35
approved for clinical use
8p-florbetapir Highly selective, low background, good pharmacokinetics =~ Human 36
and correlates with post-mortem AB deposition
'8F-FIBT Imidabenzothiazole-based, high contrast and better than ~ Tg M 37
the reported probes
**Cu-HYR17 Benzothiazole-based, Cu chelating probe with a better TgM 38
half-life
MRI
Fibrils USPIO-AB1-42 AP conjugated to iron oxide NPs, micron-scale resolution, = Tg M 39
and map AP deposition
HMON-abAB40 AP antibody conjugated with manganese NPs, image and Tg M 40
monitor AB load
2 Tau targeted diagnostics
NIRF imaging Aex Aem ) Fold Ky
Fibrils PBB3 405 520 — — 2.55 nM Tg M/human 42
2e 550 660 — 310 0.77 pM Tg M 43
BD-tau 525 590 0.3 3.2 0.89 UM Tg M 44
Tau 1 633 742 0.92° 6.4 2.77 p\M Tg M 45
Tau 2 607 723 0.84° 9.3 6.18 UM Tg M
2¢ 502 632 0.82 44 6.06 nM Tg M 46
Q-tau 4 424 630 0.01 3.82 16.6 nM Human 47
18 — 711 0.019 50.2 33.2 nM Tg M 32
Soluble aggregates pTP-TFE 450 520 0.27 — 66 nM Tg M 48
PET imaging
Fibrils 18 F-THK5117 Arylquinoline based probe, good pharmacokinetics Human 49
8p-flortaucipir Indole based probe, selective labelling and approved for Human 50
(Tauvid) clinical use
18p-JNJ64349311 Performs better than *®F-flortaucipir Tg M 51
8F-GTP1 Highly selective with no MAO binding Human 52
18p-P1-2620 High contrast, signal to noise ratio, accurately distinguish =~ Human 53
AD from healthy
MRI
Tau tangles and tau Shiga-X35 'SF-MRI agent targeting tau tangles Tg M 54
positive cells Tau-X Aptamer based nanoformulation targeting Tg M 56
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Table 1 (Contd.)
SL Diagnostic markers and ~ Chemical probe/
no. techniques techniques Characteristic features Model tested Ref.
3 Neurodegeneration
PET imaging FDG-PET Imaging metabolic activity of the brain Human 59
MRI SMRI Assessment of brain atrophy Human 61
fMRI Mapping functional connectivity of the brain Human 64
4 Indirect biomarker targeted diagnostics
TSPO PET imaging "C-PK11195 First in vivo clinical TSPO PET imaging Human 67
1C-PBR28 Correlates with Ap and tau accumulation Human 68
SV2A PET imaging C-UCBJ First in vivo PET probe with biocompatibility Human 69
8p-UCB-H Correlates with cognitive decline and AP load Human 70
8p-SynVesT-1 Better pharmacokinetics and binding Human 71
'8F-SynVesT-2 High brain uptake, fast kinetics, and better binding Human 72
HOCI fluorescence CM2 Fluorescent probe detects selectively HOCI], demonstrates ~ Tg M 73
imaging elevated levels and proximal localisation of HOCI with AR
in the AD brain
Metal ion MRI Intrinsic Fe Elevated Fe levels in the AD brain serve as a MRI contrast ~ Human 76

agent and its quantification

% Tg M - transgenic mouse model. ” Antibody like selectivity and sensitivity to AP plaques with potential for differential diagnosis of AD from other
tauopathies and neurodegenerative diseases as in the case of mixed dementia.

aggregation, modifications and clearance have drawn the
attention of therapeutics development. Many of the tau-targeted
therapeutic candidates are in clinical trials and their success is
yet to be revealed.® Recent discoveries on AD etiopathology
uncovered many tangible drug targets, which are anticipated to
drive drug development in a faster mode. The lesson learned
from the failures of Ap and tau-targeted drug developments are
a guide to developing multifunctional molecules to tackle
multiple AD pathologies.**"""® We propose rational develop-
ment of multifunctional modulators targeting multiple disease
mechanisms as a future therapeutics strategy to tackle multi-
factorial AD. In this perspective, we present multipronged
diagnostic and therapeutic approaches, multiplexed and
multimodal diagnosis, and rational design of multifunctional
modulators of AD with a future outlook.

2. Diagnostic strategies
2.1 Clinical diagnosis of AD

Over the past two decades, there have been notable develop-
ments in identifying and validating reliable diagnostic methods
and biomarkers for AD. The international working group (IWG)
established a clinical-biological definition of AD, wherein the
clinical phenotypes of cognitive impairment and biological
biomarkers detected through in vivo imaging augment the
diagnosis of AD. The clinical assessment of progressive decline
in memory, impaired episodic memory, and cognitive changes
along with support from biomarker positivity (ATN) has been
employed for AD diagnosis.®> The clinical symptoms are
assessed using memory and cognitive tests like Montreal
Cognitive Assessment (MoCA), Mini-Mental State Exam (MMSE)
and Mini Cog by clinical experts. Various chemical probes and
techniques like near infrared-fluorescence (NIRF), PET, and MR

13660 | Chem. Sci., 2022, 13, 13657-13689

imaging are being utilised for ATN biomarker imaging (Tables 1
and 2).

2.2 AP (A) targeted diagnosis

NIR fluorescent (NIRF) probes for AB imaging. The accumu-
lation of AP aggregates is prominently evident in the AD brain
and various NIRF probes are developed for the detection and
imaging of different alloforms of AB aggregates (Fig. 2A). Most
of the probes target AP fibrils and few are designed as A
oligomer-targeting probes, as these oligomers play a critical role
in AD pathology. The design of small molecule probes targeting
oligomers is challenging due to poor structural information,
and heterogenous and transient species. A Bodipy-based small
molecule probe BD-Oligo was identified by the diversity-
oriented fluorescence library approach and high content
imaging screening to selectively target AP oligomers.”® The
probe was selective to oligomers (K4 = 0.48 uM) and stain AP
oligomer species in the APP/PSEN1 mouse model. Fluoro-
substituted cyanine dye F-SLOH selectively binds and detects
AP oligomers as revealed by ex vivo immunofluorescence in the
Tg AD brain tissue with various antibodies (AB-Oligo, 6E10, 4G8,
PAB, and MC6) and the AB oligomer level was quantified by
NIRF imaging.”* Based on the 3D structure of AB oligomers, V-
shaped NIRF probes PTO-9, 18, 26, and 29 were designed to
fit in a unique triangular cavity made of Phe19/Val36.>> Among
all, PTO-29 successfully labels oligomers in a 4 month old APP/
PSEN1 Tg mouse model. AP fibril targeting fluorescent probes
have been developed as a diagnostic agent for AD (Fig. 2A).
Donor-acceptor modality in molecular design has been exten-
sively used for the development of fluorescent probes for the
detection of AB aggregates. In this direction, we have developed
a hemicyanine-based benzothiazole-coumarin (TC) probe as an

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Circulating biomarkers for the diagnosis of AD*
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SL Biomarker Specificity Sensitivity Sample
no. class Target biomarkers Remarks (%) (%) size Ref.
1 CSF and blood
AB AB42/40 Decreased significantly, correlates with 100 84 45 91
AB positivity
Composite model Model from AP42, 40 and ratio diagnose 81 96.7 N =121 92
disease with 90% accuracy and N =
252
Tau t-tau and p-tau Increased 80 80 97 94
p-tau-181 Increased, discriminate MCI and AD. 87 92 N1 =182 95
Correlates with tau PET positivity, N2 =344
atrophy, and CSF biomarkers
p-tau-217 Increased 6-fold in AD correlates with AR 91 91 194 + 32 96
and tau positivity, early diagnosis of AD
p-tau-231 Increased in the early stage, outperforms — — 38 +313 99
p-tau-181, correlates with AB and tau
deposition
Protein Neurogranin Increased in CSF and correlates with CSF 60 79 302 100
biomarkers biomarkers, atrophy and brain AB load
Synaptotagmin Increased, discriminate MCI and AD — — 39+78 102
STREM Increased, correlates with CSF AB and tau — — 155 + 93 103
biomarkers, atrophy and brain AB load
YKL-40 Increased, correlates with AB deposition 85 85 318 104
and memory deficits
Nf-L Increased, correlates with CSF t-tau and CSF-187 106
p-tau, cortical atrophy, A deposition and Ser-405
brain metabolism. Discriminate MCI and N =196
AD cases
RNA BACE1 lcnRNA Increased in plasma 61.3 87.5 134 109
biomarkers miRNA panels Exosome 7 miRNA panel diagnoses with — — 70 110
89% accuracy (miR-185-5p, miR-342-3p,
miR-141-3p, miR342-5p, miR-23b-3p,
miR-338-3p and miR-3613-3p)
Plasma 6 miRNA panel (miR-185-5p, 78 75 50 111
miR-342-3p, miR-141-3p, miR342-5p,
miR-23b-3p, miR-338-3p and miR-3613-
3p)
CSF 6-7 miRNA panel, correlates with — — 118 112
CSF biomarkers and the cognitive score
Protein and Multiple protein 18 biomolecule alteration was identified 93 85 N1 =961 113
metabolite panel in blood (2 cohorts) 85 80 N2 =170
panel 3 protein panel Plasma AB42/40, pTau-217 and Nf-L — — 435 114
diagnose AD and correlates with
cognitive changes
4 protein panel Blood exosomal GAP43, neurogranin, — — 320 116
SNAP25 and synaptotagmin-1 are early
diagnosis biomarkers
Spingomyelin 26 metabolites, diagnose AD with an 80 86.67 N1 =44 117
metabolites accuracy of 83.33% N2 =767
N3 = 207
2 Saliva
AB AB42 Increased and specific to AD over PD — — 22 118
Tau p-tau/t-tau Increased — — 59 119
p-tau-396/t-tau Increased, no correlation with other 50 73 148 120
biomarkers
Lf Full length Lf Decreased, outperforms CSF biomarkers. 100 100 N1 =274 121
Other studies contradict and changes are 98.6 100 N2 =127
inconsistent
3 Urine
Protein SPP1, GSN and Increased, MS techniques were used to — — 40 125

IGFBP7

screen and confirmed by ELISA

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 (Contd.)
SL Biomarker Specificity Sensitivity Sample
no. class Target biomarkers Remarks (%) (%) size Ref.
4 Tear
Protein Lipocalin-1, Proteins are significantly altered in AD 77 81 23 124

dermcidin, over healthy individuals
lysozyme-C and Significant increase in the tear total
lacritin protein and flow rate

¢ p-tau: phosphorylated tau and t-tau: total tau.

AB selective and sensitive NIRF probe (Fig. 2A).>* Upon binding
to AP fibrillar aggregates, TC displays high fluorescence
enhancement and shift in the absorbance, which provided dual
responsive properties with colorimetric and fluorescence read-
outs. TC exhibits selectivity and high binding affinity (K4 =
58.43 nM) with 30-fold fluorescence enhancement to A fibrillar
aggregates compared to other protein aggregates. TC displayed
a red shift in the absorbance spectrum (117 nm) with a visible
colour change from pale pink to purple. A detailed computa-
tional study and competitive binding assay revealed that the
probe binds to the thioflavin T (ThT) binding pocket and a shift
in the local hydrophilic to hydrophobic microenvironment
results in a red shift of absorbance and fluorescence enhance-
ment. In silico analysis of molecular interactions revealed that
TC exhibits hydrophobic interaction with the Leu17 and Vval39
residues of fibrils and engage in -7 stacking with the phenyl
ring of Phe19 in the fibrils. Furthermore, we developed
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a coumarin-quinoline (CQ) based NIR turn-on fluorescent
probe with antibody-like selectivity and sensitivity to AP aggre-
gates (Fig. 2A and B).** In vitro studies showed selective fluo-
rescence enhancement of the CQ probe in the presence of AP
aggregates compared to other biomolecules and protein
aggregates (bovine serum albumin, calf thymus DNA, tau, o-
synuclein and islet amyloid polypeptide) (Fig. 2B). The sensi-
tivity of CQ was revealed by its high affinity binding to AP
aggregates with K4 = 86 nM and 100-fold fluorescence
enhancement. The nonselective dye ThT is a commonly used
green fluorescent probe to stain and image AP and other
amyloid aggregates in vitro and the tissue sections. The probe
CQ exhibits 10-fold higher selectivity over ThT and binds in the
proximity of the ThT binding pocket as evidenced by the
displacement assay and computational study. A molecular
docking study revealed possible CQ binding to multiple sites,
and among them binding to the entry cleft site was strong and

B)

PHC4

o\
NN 9 o y & ©
flio & S 6‘
NSOV d‘ d‘Qo o&@o“d
SNy \J g W &S "Q\ w‘g
H \7\‘1 /\N od(
ADLuminl 18
Congo Red

18F-FIBT

Fig. 2 Molecular probe targeting AB. (A) NIR fluorescent probes targeting AB fibrils (blue and red represent donor and acceptor moieties,
respectively). (B) Selective fluorescence response of the CQ probe to AB aggregates in comparison with BSA and other amyloid protein
aggregates. (C) Fluorescence staining of human brain tissue with CQ and ThT shows selective AB aggregate staining by CQ. (D) Immunofluo-
rescence staining of human AD brain tissue shows the selective binding of CQ with AB aggregates over tau aggregates as reflected by poor
colocalisation with PHF1 tau antibody staining. (E) CQ stain congophilic angiopathy similar to Congo red staining. (B)- (E) Reproduced from ref.
24 with permission from Elsevier, copyright 2017. (F) NIRF imaging of amyloid aggregates in the Tg AD mice model using CRANAD102 at different
time interval (min) distinguish AD from WT. Reproduced from ref. 28 with permission from the Royal Society of Chemistry, copyright 2017. (G) AB
fibril targeting PET probes. (H) PiB PET images of human healthy and AD brains. Reproduced from ref. 33 with permission from the American
Neurological Association, copyright 2003.
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stable. The binding of the probe was largely driven by van der
Waals interactions for AB fibril:CQ complex formation. CQ is
non-toxic to cells and crosses BBB which underscores its in vivo
utility for non-invasive NIR imaging. The co-staining of human
AD brain samples (ex vivo) with CQ and ThT demonstrated the
selective labelling of AB plaques by CQ over other aggregates
with a significantly minimal background signal compared to
the latter (Fig. 2C). The probe showed poor localisation with
NFT antibodies, which demonstrates its ability to differentiate
AD from other tauopathies (Fig. 2D). The probe neatly stains the
congophilic aggregates and vascular amyloids (Fig. 2E). CQ has
the potential to be used for differential diagnosis of AD over
tauopathies and other neurodegenerative disorders as in the
case of mixed dementia.

A photoinduced electron transfer (PIET) quenched NIRF
probe QAD1 was designed with Bodipy as the fluorophore and
tetrahydroxyquinoxaline as the quenching moiety.”® The probe
exhibits turn-on fluorescence upon interaction with different AR
alloforms, which was used to detect and monitor AB load in a 6-
month-old APP/PSEN1 Tg mouse model. Recently, DCM-AN was
designed by combining the dicyanomethylene (DCM) skeleton
with an AP targeting aminonaphthalene (AN) moiety, which
showed selectivity towards protofibrils.>® Molecular dynamics
(MD) simulation of the probe with trimer (oligomers), dodeca-
mer (protofibrils) and fibrillar structures revealed strong
binding towards the dodecamer, which suggests selectivity
towards protofibrils. Upon binding to protofibrils, the rotation
of both ethylene and piperidine groups of the probe is
restrained, which results in fluorescence enhancement. The
probe detects protofibrils in the ex vivo brain sections at
different stages in the Tg AD mouse model. The donor-acceptor
(D-A) architecture was expanded by playing around with the -
bridge, donor aromatic moieties, and dicyano moiety as the
acceptor.” Among them, PHC4 exhibits favourable properties
with in vivo NIRF imaging to distinguish between WT and Tg AD
mice. Ran et al. tuned the steriohindrance of curcumin at the
phenoxy alkyl chain to make the probes selective to soluble AB
aggregates.”® Among them, CRANAD102 exhibited selectivity
(68-fold over insoluble aggregates) to soluble aggregates with
a strong binding affinity (K4 = 7.5 nM). The probe was
successfully utilised for in vivo NIRF imaging of the soluble
aggregates in the early stage (4 months) of the Tg AD mouse
model, which allowed monitoring of the changes over 4 to 12
months (Fig. 2F).

Margulies et al. have reported a combinatorial sensor for the
detection of various AP alloforms.>® The sensor was constructed
by conjugating three fluorescent probes ThT, sulforhodamine
B, and sulfo Cy5 onto a proline scaffold with a KLVFF moiety.
The sensor was employed to detect different alloforms viz.,
monomers, low molecular weight (LMW) and higher molecular
weight (HMW) oligomers, and aggregates, based on differential
fluorescence response due to varied intramolecular FRET
among fluorophores. Recently, an aggregation-induced emis-
sion (AIE) based probe QM-FN-SO; was developed by connect-
ing DCM-N with dimethylaminobenzene through a -
conjugated thiophene bridge and introduced a sulphonate
moiety as a substitution that keeps the probe in the off state.*®

© 2022 The Author(s). Published by the Royal Society of Chemistry
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The thiophene bridge with m-conjugation retains the lip-
ophilicity to enhance the BBB permeability and NIR emission of
the probe. QM-FN-SO; aggregates on the hydrophobic surface of
AP aggregates and exhibits a turn-on fluorescence response. The
AIE probe was BBB permeable and mapped AP aggregates with
high fidelity in the Tg AD mouse model. A novel turn-on
chemiluminescent probe ADlumin1 was designed to target AB
aggregates.®' The discrimination of AD from WT was improved
by dually amplifying the signal via chemiluminescence reso-
nance energy transfer (DUS-CRET) between CRANAD-3 and ADlu-
minl in a 5-month-old 5XFAD mouse model. The simultaneous
detection of both AB and tau aggregates would enhance the
accuracy of AD diagnosis. D-A based probe 18 with environ-
mental sensitivity can differentially emit fluorescence in the
presence of brain-derived AR and tau aggregates.*” Probe 18
successfully discriminates AP and tau aggregates in Tg mouse
models and measure the load in vivo through NIRF imaging.

AP PET imaging. PET imaging of AB deposits has been
pursued for the last two decades and currently, there are a few
probes approved for clinical diagnosis (Fig. 2G). The first known
AP PET tracer PiB with a "'C isotope (half-life = 20.34 min) was
developed by Klunck et al., at the University of Pittsburgh.* In
2013, PiB received FDA approval for the clinical diagnosis of AD
and to date, it has been considered as a gold standard for AB
PET imaging that correlates with post-mortem AP deposits
(Fig. 2H). Fluorine (**F) labelled radiotracers flutemetamol (**F-
GE-067), florbetaben (BAY-94-9172), and florbetapir (**F-AV-45)
with a better half-life (109.8 min) and the least background
noise have been developed for AB plaques (Fig. 2G). Fluteme-
tamol was successful in labelling AB plaques in AD patients and
diagnosed with high sensitivity and specificity in an advanced
stage of disease and approved for clinical use.*® Florbetaben,
a stilbene-based probe conjugated with polyethylene glycol,
shows selectivity for AR plaques over other aggregates, which
received FDA approval owing to its safety and diagnostic
potential.*® The benzene ring in the stilbene moiety was
replaced with a pyridine ring to derive florbetapir, which
exhibits a low background signal and high diagnostic accu-
racy.*® An imidazobenzothiazole based '®F-labelled PET probe
"E-FIBT performed better than reported probes.’” Clinical
studies reveal the safety and the diagnostic utility of **F-FIBT as
a next-generation AB PET probe. Recently, copper (**Cu) based
PET probes have been designed for AB aggregates due to its high
half-life (12.8 h). Benzothiazole based Cu chelating ligands bind
to AP aggregates and strongly chelate Cu that acts as a PET
probe.*® The probes were constructed by conjugating a metal
(Cu) chelating group, triazacyclononane (tacn), with Ap target-
ing, substituted benzothiazole moiety. Among them, HYR17
showed good brain uptake and labelled AR aggregates to
distinguish Tg AD mice from WT.

AP MR imaging. MR imaging was carried out to analyse the
brain connectivity and atrophy that are signatures of neuro-
degeneration. Structural and functional MRI was adopted to
assess atrophy and brain activity, respectively. MR imaging
agents targeting AB are minimal unlike NIRF and PET probes
for the diagnosis of AD. Ultrasmall superparamagnetic iron
oxide (USPIO) nanoparticles were conjugated with the AP42
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peptide to make a USPIO-AB1-42 MRI probe that targets AB
aggregates.* USPIO-AB1-42 with mannitol as a contrast agent
was used to image at micron resolution in an APP/PSEN1 Tg
mouse model. In another study, an MRI agent was prepared by
conjugating an antibody for AR (HMON-abAB40) with manga-
nese nanoparticles. The novel MRI agent was successfully used
for imaging and monitoring AB load in the Tg AD mouse
model.** A gadolinium-based contrast agent has been used as
a non-targeted contrast and utilised for MR imaging of the Tg
AD mouse brain.* This probe was able to enhance the contrast
for AP aggregates. The clinical utility of MRI agents targeting A
is yet to be evaluated and adapted for AD diagnosis.

2.3 Tau (T) targeted diagnosis

NIRF probes for tau imaging. Tau is an intrinsically disor-
dered protein aggregate to form different alloforms. Several NIR
fluorescent probes were developed targeting tau for the detec-
tion and diagnosis of AD (Fig. 3A). Inspired from ThT, a set of
phenyl/pyridinyl-butadienyl-benzothiazoles/benzothiazolium
probes (PBBs) were designed by introducing two 7t-chain bridge
between aniline and benzothiazole moieties.”> Among all, PBB3
with optimal properties was BBB permeable and successfully
utilised to label the tau aggregates in the Tg mouse model.
Radiolabelled ''C-PBB3 was successful in the Tg AD mouse
model and clinical human subjects to discriminate between AD
and healthy subjects. A series of fluorescent probes were syn-
thesised by conjugating distinctly substituted difluoroboron -
ketonate with N,N-dimethylaniline.”* Among them, 2e showed

p-Tau Q-tau 4 2 Colors 3 Colors

2 Colors

3 Colors
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310-fold fluorescence enhancement with tau aggregates. The
cellular imaging with SH-SY5Y cells expressing GFP-tau and
immunofluorescence in human AD brain samples shows
colocalisation with phosphorylated tau (p-tau) antibodies
reflecting its selective tau staining. A Bodipy-based live cell
imaging probe BD-tau was evolved through a diversity-oriented
fluorescence library approach (DOFLA).** BD-tau showed fluo-
rescence enhancement (3.2 fold) selectively to tau aggregates
and successfully stains tau tangles in the brain sections of the
Tg mouse model. BAP1, an AP probe was modified with
extended conjugation to develop two probes tau 1 and tau 2 to
target tau aggregates.”” Tau 1 is biocompatible, crosses BBB,
and selectively stains p-tau aggregates in a tau mouse model
(Fig. 3B). Molecular docking studies with the VQIVYK crystal
structure revealed that the probe tightly fits in the tunnel
architecture along the fibril axis. In vivo NIRF imaging showed
that the probe could distinguish the Tg tau mouse model from
age-matched WT animals (Fig. 3C). A series of Bodipy-based
probes were designed using N,N-dimethylaminobenzene as
a donor and the BF, benzamide group as the acceptor bridged
with the m-chain.*®* Probe 2c¢ showed good fluorescence
enhancement with nanomolar binding affinity with AR and tau
aggregates. In vivo NIRF imaging with 2c discriminates 22-
month-old WT and AD Tg mouse models. Inspired by THK
family PET tracers, push-pull fluorescent probes composed of
dimethylaminophenyl/pyridinyl as the donor and the quinoline
moiety as the acceptor group with a m-bridge were designed.*”
Among them, Q-tau 4 exhibits strong intramolecular charge
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Fig. 3 Molecular probes targeting tau. (A) NIR fluorescent probes targeting tau fibrils (blue and red represent donor and acceptor moieties,
respectively). (B) Immunofluorescence imaging in a 3xTg mice brain with antibodies targeting tau aggregates, Ap, and APP protein shows the
selective tau labelling by tau 1 (scale bar 200 um). (C) NIRF imaging of tau aggregates by tau 1 in a Tg mouse after 30 min of injection. (B) and (C)
Reproduced from ref. 45 with permission from the American Chemical Society, copyright 2017. (D) Ex vivo immunofluorescence imaging of
normal heathy and AD human brain tissues with Q-tau 4 and its colocalisation with the p-tau antibody (scale bar 20 pm). (E) Ex vivo fluorescence
imaging of normal healthy and AD human brain tissues with Q-tau 4 and AB antibodies. Quantification shows the poor colocalisation indicating
the selective tau labelling by the probe (scale bar 20 um). (D) and (E) Reproduced from ref. 47 with permission from the American Chemical
Society, copyright 2021. (F) Tau targeting PET probes. (G) PET images of control, AD, and PSP human subjects obtained by using the *¥F-AV-1451
probe. Reproduced from ref. 50 with permission from Oxford University Press, copyright 2017. (H) PET images of an AD human brain acquired
with *8F-PI-2620 exhibit a high contrast and signal-to-noise ratio. Reproduced from ref. 53 with permission from SNMMI, copyright 2020.
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transfer and marked fluorescence response selectively in the
presence of tau aggregates over AB. Molecular docking with
VQIVYK revealed that Q-tau-4 interacts with the hydrophobic
surface of GIn307 along the fibril axis. Further ex vivo staining of
the AD brain tissue with Q-tau 4 reveals its selective colocali-
sation with tau protein antibodies over Af (Fig. 3D and E). Most
of the probes developed target tau aggregates and there are
limited probes targeting tau oligomers and soluble tau aggre-
gates, which are believed to have more disease relevance. A
thiophene-based ligand pTP-TFE shows turn-on fluorescence
upon interaction with soluble tau aggregates, and strongly
binds to tau oligomers with a K4 of 66 nM.** The probe is
biocompatible, cell-permeable, and successfully stains early tau
aggregates in the AD and PSP human brain sections.

Tau PET and MR imaging. Arylquinoline based PET probes
BE-THK5117 and "®F-THK5351 have emerged with superior in
vivo imaging characteristics with "*F-THK5117 being better
than "®F-THK5351 (Fig. 3F).* A novel PET probe flortaucipir
(*®F-AV-1451, Tauvid) from an indole moiety was developed for
imaging tau aggregates (Fig. 3F).° Clinical investigations
demonstrated the good brain uptake, selective labelling of tau
aggregates, and safety of flortaucipir, which received FDA
approval for clinical use for AD diagnosis (Fig. 3G). In
a preclinical evaluation, another probe '®F-JNJ64349311 was
superior to Tauvid.** Genentech has developed a PET probe *°F-
GTP1 that overcomes the off-target interactions with AB and
monoamine oxidase (MAO).*> Another probe "®F-PI-2620 in the
human clinical trial has shown excellent imaging features with
a high contrast, signal-to-noise ratio, and selectivity that accu-
rately distinguish AD from healthy controls (Fig. 3H).>* The tau
deposition pattern with **F-PI-2620 also correlates with cogni-
tive performance and possesses high diagnostic potential.

The availability of MRI probes targeting tau pathology are
limited, and recently few probes are developed and evaluated in
Tg mouse models. A novel buta-1,3-diene derived '°F-MRI probe
Shiga-X35 was developed targeting tau tangles for MR
imaging.®* Ex vivo immunofluorescence and in vivo F-MR
imaging in a rTg4510 mouse model revealed that Shiga-X35
colocalises with tau tangles and accumulates in the forebrain
of the Tg AD mouse. The in vivo "’F-MRI signal from the AD
mouse brain was significantly higher which distinguishes AD
from the WT mouse. The accumulation of hyperphosphorylated
tau inside the neuronal cells is an early event of tau pathology in
AD that possibly changes the cell surface markers. In this
context, an aptamer-based nanoparticle MRI contrast agent tau-
X targeting the neurons with hyperphosphorylated tau was
developed for evaluating tau pathology by MRI.** An aptamer
that selectively binds to the neuronal cells with intracellular
hyperphosphorylated tau was evolved by systematic evolution of
ligands by the exponential enrichment (SELEX) method. A lipid
nanoformulation tau-X was prepared using the aptamer and
Gd-DOTA contrast agent. The developed tau-X MRI agent was
evaluated in a 2 month old P301S Tg mouse model and age
matched control, which showed a higher MRI signal in the AD
mouse that developed tau accumulation compared to WT.
Recently, improved aptamers were evolved and prepared tau-X
nanoformulation, and evaluated for their MRI in a Tg mouse
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model.*® The results showed that tau-X based MRI successfully
detects tau pathology in an early stage (2 months) in the Tg
mouse model and may have implications for early detection of
tau pathology in clinical cases.

2.4 Neurodegeneration (N)

The correlation of neurodegeneration with cognitive decline,
AB, and tau made it one of the reliable biomarkers in the ATN
framework. The assessment of brain metabolism and atrophy is
performed by PET and MR imaging. In a multicentric study,
fluorodeoxyglucose-PET  (**FDG-PET) was employed to
measure brain metabolism as a biomarker in AD and other
dementia cases.”” The standardised signal pattern for each
disease was developed and the PET scans diagnosed AD with
95% accuracy and differentiate from mild cognitive impairment
(MCI) and other dementia cases viz., dementia with Lewy bodies
(DLB), frontotemporal dementia (FTD) and normal individuals.
Meta-analysis has suggested that FDG-PET can diagnose AD
with 91% sensitivity and 78% specificity.”® Recently, in a large
clinical study FDG-PET imaging was employed on amyloid and
tau positive (A+T+) patients to evaluate the ability of FDG-PET
for AD diagnosis.* Study revealed that FDG-PET (F+) has
differentiated AD from dementia and suggests F+ as an inde-
pendent biomarker for AD. FDG-PET was considered for
differential diagnosis of AD from other forms of dementia and
the output is inconsistent and needs to be revisited before
recommending it for AD diagnosis.®* There is a need for
developing robust artificial intelligence (AI) and machine
learning approaches for defining the patterns of brain hypo-
metabolism for differential diagnosis of dementia.

Structural MR imaging assesses brain tissue damage and
atrophy evident in AD. Brain regiospecific volume measure-
ments by MRI scans revealed volume reduction in various
regions of the AD brain compared to healthy controls and the
changes track the progression of AD.®* The brain volumetric
measurements carried out using MRI of MCI in a longitudinal
study demonstrate that MCI cases converted to AD had lower
volumes compared to controls.®” The analysis of atrophy in the
brains of DLB, AD, and controls by MRI demonstrates the
bilateral damage of cornu ammonis and subiculum in AD,
whereas it was intact in DBL.* The study showed the ability of
structural MRI for differential diagnosis and its potential
application in other neurodegenerative disorders. Loss in
neuronal function and degeneration was expected to affect the
functional connectivity within the AD brain. The character-
isation of brain network alterations by functional MRI in MCI
and AD with disease progression in the longitudinal study
suggests a gradual decline in the functional networks of AD
compared to healthy controls.®* Studies have found that the
connectivity alterations are specific to the disease and need to
be characterized for accurate discrimination. A recent study by
resting-state functional magnetic resonance imaging (rs-fMRI)
revealed a decline in the connectivity between the posterior
cingulate cortex to the whole brain for AD subjects.®® The
functional connectivity changes need detailed characterization
in the AD brain to use as a diagnostic marker.
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2.5 Indirect biomarkers associated biomolecules and biomolecular events that indi-
rectly influence AD pathology, which are considered potential
indirect biomarkers for AD diagnosis. These indirect
biomarkers are promising, and their identification and valida-
tion may find a place in the NIA-AA framework along with ATN
as additional biomarkers for early and accurate diagnosis.

Complex etiopathologies associated with AD were unrevealed in
the last decade and many pathological events occur in preclin-
ical stages. Oxidative stress, neuroinflammation, and synaptic
damage are among the major early events and there are many

o D

(9
P
EE'
\_/

(0] q‘cH3
og J
11C-PK1195 11C-PBR28

o
Amyloid and st . Tau and

microglial  [ESs7 3 1 microglial
activation o A7 activation

i
[ ’
§ p _Ose\ectwe Conyg, rs; .
< : i >
:% side to ttham/de
.';.fl‘ S (o)
NN
B
2 oF @ 0
O SN o N0 PO “N 0”0
=]
© /‘ Non-fluorescent ) Fluorescent

CMm2 CM1
HOCI

7 vitro and in viVO

Fig. 4 Targeting indirect biomarkers of potential diagnostic importance. (A) PET probes targeting TSPO and SV2A. (B) PET imaging of microglial
activation in the AD human brain using the PBR28 probe. The accumulation of the probe in the brain correlates with A and tau deposition as
revealed by PET imaging. Reproduced from ref. 68 with permission from Oxford University Press, copyright 2018. (C) PET imaging of synaptic
density in the AD brain targeting SV2A protein using F-SynVesT-1 and 'C-UCB-J. Reproduced from ref. 71 with permission from SNMMI,
copyright 2020. (D) Regioselective conversion of a non-fluorescent CM2 probe to fluorescent CM1 in the presence of HOCl under in vitro and in
vivo conditions. Elevated levels of HOCL proximally localised with AB aggregates (OC) detected by the CM2 probe in the cortex (E) and
hippocampus (F) of the APP/PSEN1 Tg AD mice brain (scale bar 20 um). Reproduced from ref. 73 with permission from the American Chemical
Society, copyright 2019.
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Microglial activation. Microglial cells are activated in the AD
brain and translocator protein 18 kDa (TSPO), a small mito-
chondrion protein, is an indicator of microglial activation. The
TSPO levels increased significantly in AD and many probes are
developed to image TSPO in vitro and in vivo due to its potential
implication as a biomarker for AD and other CNS disorders
(Fig. 4A).* In a clinical study, AD and MCI subjects (42) were
assessed for TSPO using ''C-PK11195 and found evidence of
microglial activation as an early event in MCI and a strong
correlation with AB load (PiB).*” In an attempt to understand the
correlation of microglial activation with A and tau aggregate
accumulation, PET imaging was performed for three markers in
52 MCI subjects.®® The results showed that TSPO imaged with
" (C-PBR28 has a good correlation with AB and tau accumulation
in both MCI and AD cases with TSPO mapping overlapping with
AB deposition (Fig. 4B).

Synaptic density measurement. In AD, there is synaptic
damage and a decline in the synaptic density, and two relevant
markers of synaptic integrity are synaptophysin and synaptic
vesicle glycoprotein (SV2A) and serve as potential diagnostic
biomarkers. SV2A is a vesicular glycoprotein specifically
expressed in synapse and used as a measure of synaptic density.
It is involved in neurotransmission and other biomolecular
transportation. PET probes binding to SV2A protein effectively
measured the synaptic density and distinguish AD subjects
from healthy individuals. Levetiracetam is a drug developed for
epilepsy and bind to SV2A, which was further subjected to
structural modification and radiolabelling to generate PET
probes (UCB-A, UCB-H, and UCB-]) with enhanced target
affinity. The first in vivo synaptic density was imaged in human
subjects targeting SV2A using ''C-UCB-J (Fig. 4A).” SV2A
imaging using '"C-UCB-J was successful in the quantification of
synaptic loss in patients of temporal lobe epilepsy. The synaptic
loss in AD was probed with another probe '°F-UCB-H targeting
SV2A (Fig. 4A).”° The imaging data suggest the reduction of
synaptic density in the hippocampus and a few areas of the
cortex in AD compared to age-matched healthy individuals,
which correlates with cognitive impairment and Ap load. "'C-
UCB-] has been modified into a difluoro analogue '°F-
SynVesT-1 and used in primate studies and human trials,
which revealed favourable kinetics and binding properties with
the ability to measure the synaptic density (Fig. 4C).”* Another
PET probe '®F-SynVesT-2 was also assessed in humans and
showed high brain uptake, fast kinetics, and specific binding to
Sv2S.”” These two PET probes are promising for clinical use,
and need to be evaluated for their practical utility for AD
diagnosis.

Combination biomarkers. An elevated level of ROS and
oxidative stress is evident in the AD brain.® Myeloperoxidase
converts H,O, into HOCI in the presence of chloride and
possibly in AD the HOCI level is altered. We have developed
a coumarin-morpholine (CM2) conjugate probe as a turn-on
fluorescent probe for HOCI detection.” The designed non-
fluorescent thioamide probe (CM2) undergoes regioselective
transformation to a fluorescent amide (CM1) by HOCI (Fig. 4D).
The probe is highly selective among different ROSs and shows

© 2022 The Author(s). Published by the Royal Society of Chemistry
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a turn-on response with 90-fold fluorescence enhancement
(quantum yield from null to 0.32) with a limit of detection (LOD)
of 0.17 uM. The probe is biocompatible, crosses BBB, and
detects HOCI in cells and mouse brain tissue. The probe has
unambiguously detected elevated levels of HOCI in the Tg APP/
PSEN1 mouse model and immunostaining with A antibodies
(OC) revealed that HOCI is produced and proximally localised
with AP plaques (Fig. 4E and F). This molecular probing
suggests that HOCI is associated with AP plaques and serves as
a potential combination biomarker for AD diagnosis.

Metal ion detection. Post-mortem AD brain studies have
revealed an abnormal increase in the levels of biometals copper
(Cu), zinc (Zn) and iron (Fe) (5.7, 3.1 and 2.8 fold, respectively,
compare to healthy controls) and significant levels of
aluminium (Al) in the AD brain compared to healthy
controls.””® The accumulation and dyshomeostasis of these
metal ions in the brain have diagnostic implications. Fe is
a good contrast agent for MRI and elevated levels serve as
a diagnostic marker. A recent study demonstrated MRI scan-
ning of regiospecific accumulation of Fe for AD diagnosis.” The
Fe level was higher in the gray matter and neocortical region of
the AD brains compared to healthy controls reflecting its diag-
nostic value. Studies by PET imaging have demonstrated altered
copper trafficking in the Tg AD mouse model highlighting the
possible role of copper levels in AD diagnosis.””””® Higher levels
of Zn and Al in the brain influence the disease pathology and
their measurements in the brain are a potential
biomarker.”*#** There are many chemical tools developed to
selectively detect and image metal ions that could be exploited
to assess the metal ion levels in the AD brain for diagnosis.”**
We have developed selective fluorescence sensors for the
detection of copper and iron, and evaluated in vitro and cell
models.”®”*#>%* A dual response colorimetric and fluorescence
sensor for the differential detection of Zn and Al and fluores-
cence sensors for Zn and Al were developed.***** Kim and co-
workers developed a selective and sensitive fluorescent off-on
sensor for Zn and evaluated in vitro and in vivo cell and
animal models.***” They recently developed a colorimetric and
fluorescent dual responsive chemical probe for bioimaging of
Fe in cells.®® The reported chemical probes are demonstrated for
in vitro and in vivo applications. These probes need to be
explored for their utility in the diagnosis of AD by the detection
and imaging of biometals in the clinical context.

2.6 Circulating biomarkers

Imaging the pathological lesions in the brain encounters limi-
tations of exposure to radiation, complicated procedures,
instrumentations, and the need for clinical experts. Disease
associated alterations in the brain are expected to be reflected in
the circulating fluids like CSF and blood. These circulating
biomarkers have the advantage of being minimally invasive or
non-invasive, simple, and cost-effective. In recent years, circu-
lating biomarkers have been explored and potential biomarkers
are identified for early and accurate diagnosis of AD (Fig. 5 and
Table 2).%°° Many biomarkers associated with AD pathology are
altered in CSF and blood in the early stage, and correlate with
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Fig. 5 Circulating biomarkers in CSF, blood, saliva, and urine for the diagnosis of AD (created with BioRender.com).

ATN and cognitive decline. Due to non-invasiveness saliva and
urine are also explored and their potential is yet to be proven.

AB and tau biomarkers in CSF and blood. In a clinical study,
decreased plasma AB42 and AB42/AB40 were evident in A PET
(PiB) confirmed AD subjects.”* The decreased AB42/AB40 ratio
well correlates with disease and diagnoses with 84% sensitivity
and 100% specificity. A multicentric clinical study of a large
sample size was conducted in Japan and Australia to assess AB
peptides in plasma by a sensitive immunoprecipitation coupled
with mass spectrometry (MS) technique in AB PET confirmed
cases.” They have developed a mathematical model based on
AB42, AP40, and ratio changes and the model successfully
discriminates MCI, AD, and healthy controls and diagnoses AD
with 90% accuracy, 96.7% sensitivity, and 81% specificity. In
another study, the diagnostic utility of the plasma AP ratio
complemented with FDG-PET was evaluated in PiB confirmed
AD cases.”® The results revealed that the AB42/AB40 ratio inde-
pendently discriminates AD from healthy controls. Further
attention and efforts are necessary to improve the sensitivity
with advanced methods and techniques.

The pathological phosphorylation of tau (p-tau) is evident in
AD and p-tau variants are anticipated to serve as biomarkers for
diagnosis. A recent study has shown significantly elevated levels
of CSF tau, CSF pTau, and plasma tau in AD compared to
healthy controls.®* A large cohort study of p-tau-181 in CSF and
plasma demonstrated high levels in preclinical dementia cases,
which further increased in MCI and AD.*® The plasma level of p-
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tau-181 was correlated with CSF levels and tau PET positivity,
and accurately differentiate dementia cases of non-AD subjects,
MCI, and AD. A recent cohort study to analyse p-tau isoforms in
CSF by the sensitive MS technique demonstrated that the CSF p-
tau-217 isoform outperforms p-tau-181 for the diagnosis of PET
confirmed AD cases.” It was supported by another cohort and
longitudinal study and demonstrated that p-tau-217 levels
strongly correlate with tau and AB PET results and accurately
diagnose AD and distinguish it from other dementia. The
analysis of plasma p-tau levels in the cohorts of AB and tau PET
confirmed preclinical and prodromal AD cases, and there was
an association of plasma p-tau-217 with CSF p-tau-217 levels
and tau PET positivity.”” Plasma and CSF p-tau-217 have
increased significantly in the early stage of disease, wherein tau
and AP deposition was not significant. These observations
suggest p-tau-217 as one of the potential biomarkers for early
diagnosis. In a retrospective study, plasma p-tau-181 and p-tau-
217 showed excellent diagnostic performance and distinguish
AD from other disease conditions.”® Recently p-tau-231 has
emerged as a potential blood biomarker for early and accurate
diagnosis of AD.” The increased p-tau-231 distinguishes MCI
and AD from healthy individuals outperforming p-tau-181 and
correlates with AB and tau deposition. These circulating p-tau
isoforms hold high diagnostic potential that needs to be
established by multicentric longitudinal and cross-sectional
clinical studies with large cohorts.
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Synaptic damage, neuroinflammation and neuronal injury
biomarkers in CSF and blood. The synaptic damage in neurons
was evident in AD and an altered level of postsynaptic protein
neurogranin was observed in synaptic damage and loss. The
diagnostic potential of CSF neurogranin was assessed in a cross-
sectional and longitudinal study, which revealed elevated levels
in AD compared to healthy controls.® The increased CSF
neurogranin levels correlate with other CSF markers (AB and
tau), brain atrophy, A load, and cognitive decline that serve as
an early preclinical AD biomarker. Recently, a study contra-
dicting the previous studies of neurogranin as a diagnostic
marker reported that neurogranin fails to differentially diag-
nose AD.' The analysis of CSF synaptotagmin, another
synaptic marker, by the MS-based approach showed signifi-
cantly increased levels in MCI and AD cases, which demon-
strates the ability to discriminate both these clinical
conditions.'” In a longitudinal clinical study, the analysis of
a soluble triggering receptor expressed on myeloid cells 2
(STREM2, a microglial marker) changes in CSF and its associ-
ation with other biomarkers demonstrates its diagnostic ability
in autosomal dominant AD cases.'® Increased STREM2 levels in
CSF correlate with decreased AB42 in CSF, AB deposition in the
brain and atrophy. YKL-40 is known to be altered in the AD
brain, which is expected to be reflected in circulating fluids and
possibly serve as a biomarker. The analysis of plasma YKL-40
levels with other AD biomarkers revealed a negative and posi-
tive correlation with AB deposition and memory performance,
respectively.'® Increased YKL-40 levels in serum effectively
differentiate dementia cases from healthy cases with 85%
specificity and sensitivity outperforming total tau (t-tau).'®
Neurofilament light chain (Nf-L) is a protein marker for
neuronal injury in CNS disorders. The longitudinal assessment
of Nf-L levels showed a peak level at the stage of conversion
from non-symptomatic to symptomatic AD and correlates
strongly with brain atrophy, and moderately with AR deposition
and glucose metabolism, which suggests Nf-L as a biomarker to
assess the progression of neurodegeneration.’® In another
multicentric study, it was evident that plasma Nf-L levels were
significantly elevated and distinguished dementia cases from
healthy controls.’®” Nf-L fails to differentially diagnose different
disease conditions while relatively higher levels are observed in
Parkinson's disease (PD). The CSF levels of visinin-like protein 1
(VILIP-1), a calcium sensor protein, and other AD biomarkers
were analysed and compared.® VILIP-1 measurement
successfully diagnoses MCI and AD from healthy controls and
correlates with other standard biomarkers. Thus, VILIP-1 with
other biomarkers can serve as a diagnostic and prognostic
marker, as evident from the correlation with cognitive decline.

Circulating RNA biomarkers. Non-coding RNAs (ncRNAs)
have a potential role in the pathogenesis of AD and there is
limited evidence of ncRNAs as a diagnostic marker. In the last
decade, circulating RNAs were explored as diagnostic
biomarkers. The analysis of four long noncoding RNAs
(IncRNAs) associated with AD in plasma revealed that BACE1
IncRNA levels significantly increased in AD compared to control
and change was specific to AD.'* Exosomes are the carriers of
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microRNA (miRNA) from the brain to peripheral circulation.
The miRNA in the exosome enriched plasma was assessed in AD
and healthy controls and significant alteration of 20 miRNA
levels was found.'*® A machine learning model was developed
considering seven altered miRNAs that diagnose AD with 89%
accuracy. The analysis of 179 miRNA levels in the plasma of
MCI, AD and control plasma samples by commercially available
RT-PCR assays found that 26 miRNA levels are altered that
regulate the mRNA of proteins associated with different path-
ological pathways of AD."" Further analysis of 15 promising
miRNAs linked to AD revealed 6 miRNAs that diagnose AD from
control individuals suggesting their diagnostic potential. The
assessment of 37 miRNAs associated with AD in CSF for the
validation of their diagnostic potential revealed that 26 miRNAs
hold potential."** The altered levels of miRNA correlate with CSF
markers (AP42 and t-tau) and cognitive scores (MMES). Among
them, a 7 miRNA panel identified the AD subjects from the
control and these miRNA panels along with CSF biomarkers
significantly enhance the diagnostic performance.

Protein and metabolite panel biomarkers. Protein analysis
in plasma samples of AD cases identified a panel of proteins
dysregulated that distinguish MCI from AD and diagnose with
high sensitivity and specificity.'** A recent study showed that the
plasma AB42/40 ratio, p-tau-217, and Nf-L together can accu-
rately predict the progression of AD and correlates with cogni-
tive decline.”* The analysis of CSF proteins revealed the
association of synaptic marker neurogranin, growth-associated
protein-43  (GAP-43), synaptosomal-associated protein-25
(SNAP-25), and synaptotagmin-1 with increased deposition of
AB and the changes in synaptic markers were evident in the
early stage.'” The identified synaptic markers in CSF are
promising in early diagnosis of AD and monitoring disease
progression. Blood exosomal protein was analysed to develop
synaptic markers and it was found that growth associated
protein43 (GAP43), neurogranin, synaptosome associated
protein 25 (SNAP25), and synaptotagmin-1 levels were reduced
in AD compared to controls.”® Similarly, blood metabolite
analysis revealed a panel of sphingomyelin metabolites associ-
ated with AD, which are used as biomarkers for the diagnosis
and prognosis of AD."” Thus, the panel of proteins and
metabolites may aid in early and accurate diagnosis of AD in the
near future.

Biomarkers in other fluids: saliva, urine and tears. Saliva is
a composite biofluid that contains several proteins and
metabolites that reflect the physiological conditions of the body
and its composition can be potentially disturbed under disease
conditions. In a clinical study, Ap biomarker analysis showed
significantly higher salivary AP42 levels in AD subjects.'*®
Similarly, the analysis of tau biomarkers in saliva showed an
increased p-tau/t-tau ratio in AD compared to control subjects,
which emphasise its diagnostic potential.™*® A recent analysis of
different isoforms of tau demonstrated increased levels of
a specific isoform p-tau-396/t-tau in AD."*° However, there was
a large variation in the levels and did not correlate with CSF
biomarkers and brain atrophy. In a cross-sectional study, the
lactoferrin (Lf) level was significantly decreased in MCI and AD
cases compared to control individuals and discriminate MCI
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and AD."”"*** This finding was contradicted by a recent study,
which showed no significant difference in the CSF and salivary
Lf levels between mixed dementia cases and the control
group.'”® The diagnostic ability of Lf has to be further evaluated
and proven to establish it as a reliable circulating biomarker.
Global protein composition analysis of tears from AD cases
shows increased total protein concentration and combinations
of four proteins (lipocalin-1, dermcidin, lysozyme-C and lac-
ritin) identify AD with 81% sensitivity and 77% specificity."**
The analysis of urine using a MS-based technique identified
exclusively high levels of 15 proteins in urine samples of AD
compared to healthy controls."*® Further validation with
enzyme-linked immunosorbent assay (ELISA) showed differen-
tial expression of secreted phosphoprotein 1 (SPP1), gelsolin
(GSN), and insulin-like growth factor-binding protein 7
(IGFBP7), which may have diagnostic potential.

2.7 Multiplexing and multimodal diagnosis - a future
approach for AD diagnosis

Chemical tools for NIRF, PET, and MR imaging targeting
different core and indirect biomarkers have been established
for the diagnosis of AD. Each of these tools and techniques
holds merits and limitations. Developing chemical probes for
multimodal imaging overcomes the limitations and enhances
the sensitivity, specificity, and resolution of imaging that aids
the accurate diagnosis of AD. Simultaneous detection of
multiple diagnostic biomarkers by multiplexing is another
approach to improve the accuracy and reliability of diagnosis.
Multiplexed detection of AP, tau, and neurodegeneration by
multimodal imaging using different probes targeting multiple
biomarkers or with a single probe targeting different
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biomarkers is anticipated to gain utmost importance soon
(Fig. 6)."**>¢ Multiplexed detection of multiple circulating
biomarkers using multiple assays or integrated microarrays can
be considered as the future direction for research on AD diag-
nostics. Protein, RNA, and metabolite biomarkers in circulating
fluids can be detected by multiplexing with different modes of
detection like MS, ELISA, microarrays, and paper-based
sensors. In general, the detection of multiple biomarkers with
multiplexed and multimodal approaches to develop the signa-
ture fingerprint is the future of AD diagnostics (Fig. 6).**'*° Such
characteristic fingerprints hold potential for early diagnosis and
accurate categorisation of clinical stages for better management
and personalised detection and medication for AD patients.

3. Therapeutic strategies

3.1 AChE and N-methyl-p-aspartate (NMDA) receptor
targeted therapies

AD drug discovery initially focused on the amyloid pathway and
cholinergic deficiency as therapeutic targets. The efforts were
made to target acetylcholine esterase (AChE) to improve the
acetylcholine (ACh) levels and restore neuronal function. NMDA
receptor signalling is involved in brain activity and abnormal
brain activity is evident in AD. NMDA receptor antagonists were
developed to overcome the abnormal brain activity that restores
learning and memory functions. AChE acts in the synapse to
cleave ACh into acetate and choline, and inhibition of the
enzyme was expected to increase ACh levels in synapse and
improve memory deficits (Fig. 7A). In this direction many AChE
inhibitors have been developed and assessed in preclinical and
clinical trials for therapeutic effects.”” Among the approved
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AP aggregation (blue: quinoline moiety from clioquinol and red: phenolic moiety from EGCG in TGR86). (D) Peptides and peptidomimetics for A
aggregation (blue: sarcosine moiety and red: thymine in P5; blue: hybrid peptoid and red: GHK tripeptide in P6; blue: cyclic dipeptide kd in
Akd"MS)_ (E) Chemical structure of TGR63. (F) Dot blot assay of AB oligomer and fibril inhibition by TGR63 and its quantification in the absence (L1)
and presence of TGR63 at two different molar ratios 1: 1 (L2) and 1: 5 (L3). (G) Binding of TGR63 with AB42 by MD simulation. (H) Reduction of the
membrane toxicity of AB fibrils by TGR63 revealed by immunofluorescence with fibril antibodies. (I) Immunofluorescence images show the
amelioration of amyloid load in the APP/PSEN1 Tg mice model with the treatment of TGR63 and its quantification. (J) Tracing of control and
TGR63 treated mice in an open field test and (K) quantification of the total distance travelled by subjects. (L) Novel object recognition by control
and treated animals as a measure of the discrimination index (DI). (M) TGR63 treatment rescue learning and memory deficits as revealed by
improvement in the latency period, exploration and target crossing from the MWM test. (N) Schematic representation of fragments for AB
vaccines, the target site of mAb and mechanism of action of mAb in Ap reduction. (O) Therapeutics targeting metal ion toxicity (blue: metal
binding moiety). (F)-(M) Reproduced from ref. 150 with permission from Wiley-VCH, copyright 2021.

candidates for AD treatment mostly they are AChE inhibitors to treat with cholinergic precursors like choline or choline
like tacrine, donepezil, rivastigmine, and galantamine.’” alphoscerate that stimulate the cholinergic system. The asso-
Another approach of counteracting the cholinergic deficiency is  ciation between the cholinergic precursors and AChE inhibitors
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results in effective combination treatment. The treatment of
rats with rivastigmine in association with choline or choline
alphoscerate increased ACh levels, inhibited AChE and restored
cholinergic transmission.” In a double blinded clinical trial,
donepezil and choline alphoscerate treated AD patients with
ischemia showed improvements in behavioural and cognitive
functions compared to control and donepezil treated
patients.” In a recent clinical study, AD patients treated with
donepezil and choline alphoscerate showed improvement of
depression symptoms.™** Cholinergic stimulation with done-
pezil along with a cholinergic precursor choline alphoscerate
was effective in mild to moderate AD cases. Many NMDA
receptor antagonists were developed and among them mem-
antine was beneficial and approved for clinical use. They all are
proven to improve the clinical conditions of AD but fail to
address the root cause and cure the disease. They were tried in
combination with many other drugs and analogues are in
assessment for therapeutic benefits.

3.2 AP targeted therapies

AR peptide is generated from amyloid precursor protein (APP)
by enzymatic cleavage of B- and y-secretase through the amy-
loidogenic pathway. The action of a-secretase and y-secretase
follows the non-amyloidogenic pathway that generates physio-
logically non-toxic peptides. Amyloidogenic processing results
in the generation of AP peptides that misfold and aggregate to
form toxic oligomers, protofibrils, and fibrils. Amyloid-targeted
drugs were developed to modulate secretase enzymes and AR
aggregation (Fig. 7A).

Secretase modulators. The inhibition of B-secretase (BACE1)
was directly targeted to inhibit the production of AP peptide
(Fig. 7B). Several small molecule inhibitors have been developed
over the last two decades and many reached clinical trials with
limited success. Verubecestat (MK-8931), lanabecestat (sub-
nanomolar ICs,), and atabecestat were developed as BACE1
inhibitors and they displayed therapeutic benefits in preclinical
and phase 1/2 clinical trials."®* They failed to exhibit therapeutic
efficacy in phase 2/3 clinical trials and terminated due to side
effects. Umibecestat (CNP520) was recently developed as
a selective BACE1 inhibitor that was long-acting and reduced AB
in CSF and the brain of rats.’** Clinical studies showed that the
compound was safe and exhibits a dose-dependent effect. y-
secretase is another counterpart that processes APP and also
possesses other physiological importance (notch protein sig-
nalling). There were attempts to develop y-secretase inhibitors
that were tested in various clinical stages, which mostly
encountered toxicity issues and were discontinued.™* Attempts
need to be directed towards the development of drug candidates
with high potency and selectivity towards y-secretase and avoid
the off-targets like notch to evolve better therapeutics. Failures
of BACE1 and vy-secretase inhibitors emphasise the need for an
alternate approach that could improve the AP targeting thera-
pies (Fig. 7B). Etazolate (EHT-0202) is one of the compounds
developed to activate the a-secretase and the gamma-
aminobutyric acid (GABA) receptor.*® The compound was safe
to treat in AD cases but there was no significant improvement in
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the memory score. Acitretin is a synthetic vitamin-A derivative
that activates a-secretase and enhances the non-amyloidogenic
APP processing. An initial clinical study revealed the safety and
activation effect as evident in the elevated CSF sAPP levels and
reduction in the A levels.”*® A potent a-secretase activator APH-
1105 in nanoparticle formulation was developed as an intra-
nasal treatment and is in a clinical trial. The safety and effi-
cacy assessed in the phase 2 clinical trial would infer the
potential of the drug candidate in the near future
(NCT03806478).""

AP aggregation modulators. A, an amyloidogenic peptide
aggregate to form toxic species, results in disease pathology.
The molecules that interact with A and inhibit the aggregation
have been explored as a potential therapeutic strategy (Fig. 7C).
In this context, polyphenolic and other natural compounds
such as epigallocatechin gallate (EGCG), curcumin, gallic acid,
quercetin, resveratrol, and myricetin among others have been
assessed for their AB aggregation inhibition ability and found
effective. Polyphenols owing to their antioxidant activity and
other beneficial effects exhibit therapeutic benefits in preclin-
ical and early clinical studies but failed in later stages. Sodium
oligomannate derived from marine algae has been shown to
inhibit the AR aggregation and restore healthy gut micro-
biota.’*® It has been approved to treat AD cases in China and is
under clinical trial to further evaluate safety and efficacy
(NCT02293915). Gut microbial dysbiosis has pathological
implications through the gut-brain axis and is considered
a potential therapeutic target.”*® Multifunctional molecules
were designed by conjugating a clioquinol (Clq) moiety for
metal chelation and a polyphenolic moiety from EGCG as an
antioxidant module to develop an AP aggregation modulator
TGC86 that effectively inhibits amyloid aggregation and mito-
chondrial damage (Fig. 7C)."** Peptide-based molecules were
designed for anti-aggregation properties and inhibit the fibril-
logenesis (Fig. 7D). Soto et al. designed and evaluated 5 residues
iAB5 peptide that inhibited AR aggregation and dissolved fibrils
in vitro and in vivo.*** The core recognition sequence of AB
inspired the development of peptide-based inhibitors of its
fibrillogenesis.**** Alanine substitution studies demonstrated
that Lys16, Leu17 and Phe20 residues are essential for binding
to AP peptide. We have rationally designed peptidomimetics
(hybrid peptoids) derived from the KLVFF peptide to overcome
the limitations like serum stability and enhanced AB42 inter-
action by incorporating moieties with multiple hydrogen
bonding donor-acceptors (thymine/barbiturate) and sarcosine
at alternative positions."® Among designed peptidomimetics,
P4 and P5 inhibit AP aggregation and dissolve preformed
aggregates (Fig. 7D). The studies in an AP expressing Saccha-
romyces cerevisiae yeast model demonstrated the ability of
hybrid peptoids to rescue cells from A toxicity through the
activation of autophagy. The cellular imaging data showed the
dissolution of AB-GFP aggregates and redistribution of the
dissolved monomeric species to the vacuole, which is an indi-
cation of aggrephagy to clear AB and rescuing of cells.
Furthermore, we have designed multifunctional peptidomi-
metic P6 with antioxidant properties by conjugating natural
tripeptide GHK of human origin for metal chelation with
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a hybrid peptoid that modulated metal-dependent and inde-
pendent AP aggregation and rescue neuronal cells from amyloid
toxicity (Fig. 7D)."** Ongeri and co-workers reported B-hairpin
peptidomimetics containing piperidine-pyrrolidine moieties
for the inhibition of AP aggregation.'** Recently structure-based
inhibitors of AB peptide aggregation were designed based on an
AB16-26 core unit and found to be effective inhibitors.**® We
have designed peptidomimetics derived from AB14-23 (I) by
incorporating a cyclo(Lys-Asp)-based CDP (kd) molecule at
various positions to develop potent aggregation modulators
with biocompatibility and stability.**”~*** The incorporation of
rigid, proteolytically stable unnatural CDP amino acid (kd) with
exceptional intermolecular hydrogen bonding ability overcomes
the limitations of large linear and cyclic peptides. Peptides II
to V were designed by incorporating Kd at the middle (Akd™/I1),
C-terminal (Akd“/IlT), N-terminal (Akd"/IV), and at all three
positions (Akd™™¢/V), respectively (Fig. 7D). Designer peptido-
mimetics II, III and V inhibit AB aggregation, whereas peptide
IV enhanced aggregation. The lead peptidomimetic V effectively
reduces ROS generation and membrane toxicity and rescues
neuronal cells from AP toxicity. Furthermore, advanced Peak-
Force Quantitative NanoMechanics-Atomic Force Microscopy
(PF QNM-AFM) studies using Bio-AFM have shown that
peptidomimetic V effectively reduced the membrane stiffness as
revealed by the decrease in abnormal stress fibers and Young's
modulus. The molecular docking results revealed that incor-
poration of kd in the middle region close to FF residues results
in strong interaction and stabilise AR in the monomeric state.
The kd at the C-terminal and middle positions makes
peptidomimetic V suitable for maximum interaction with AB
and inhibits aggregation. This work demonstrated the utility of
AP14-23 derived peptidomimetics for understanding and
modulation of amyloid toxicity and adverse cellular mechanics,
ROS and oxidative cellular stress.

Recently, we have designed a set of small molecules based on
a naphthalene monoimide (NMI) core functionalised with
N,N,N-trimethylethylenediamine as the imide substituent and
electron rich N,N-dimethylamine, ethynylbenzene, and 4-
ethynyl-N,N-dimethylaniline moieties to fine-tune the hydro-
phobicity and target AB."° In vitro studies demonstrated that
the lead compound TGR63 has the potential to modulate AB
aggregation and dissolve preformed aggregates (Fig. 7E and F).
Further in silico studies to understand the mode of interaction
showed TGR63 binding to surface and core binding sites mostly
driven by electrostatic and van der Waals interactions. TGR63
also binds to the cryptic sites with a reduction of total hydrogen
bonding and salt bridge interactions. AB42 fibrils consist of 81
intermolecular hydrogen bonds and 48 salt bridges that
reduced to 75 and 41, respectively, in the presence of TGR63.
There are two modes of binding with fibrils, core binding and
surface binding. The ligand and AB42 fibril interaction is largely
driven by electrostatic and van der Waals interactions with the
latter being superior due to fact that electrostatic interactions
are largely suppressed by polar solvation free energies. The
interaction of TGR63 and AB42 monomer is mediated by three
low energy binding modes (Fig. 7G). In the presence of TGR63,
the a-helix content of AB42 effectively was reduced resulting in
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the formation of nontoxic globular structures. Further nuclear
magnetic resonance (NMR) studies revealed the interaction of
NMI and aniline aromatic protons with AB and the strong
interaction of ethylene protons. Cellular studies showed that
TGR63 rescues cells from AP toxicity and ameliorates
membrane toxicity (Fig. 7H). Further in vivo studies showed that
TGR63 is non-toxic (LD50 of 157.9 mg Kg ' BW), stable in
serum (24 h), and crosses BBB. TGR63 has effectively reduced
AB load in the AD phenotypic mice brain (APP/PSEN1 Tg mouse
model) as revealed by immunofluorescence data (Fig. 7I).
TGR63 rescues AD phenotypic mice from learning, memory,
and cognitive deficits as revealed by different behavioural tests
(Fig. 7J-M). The memory processing and explorative behav-
ioural rescue was demonstrated by the novel object identifica-
tion (NOI) test. The learning and memory improvement in
TGR63 treated AD mice was observed as evident from decreased
latency time and increased exploration in the target platform
quadrant in the Morris water maze (MWM) test (Fig. 7M). These
in vivo results confirmed the significant improvement in
cognitive and memory deficits by TGR63 that underscore its
clinical implications and is currently under consideration for
further clinical studies.

Immunotherapeutics. Immunotherapeutics are composed
of active immunisation by vaccines developed based on the
peptide antigen to elicit an immune response against the target
antigen and passive immunization with mAbs target pathogenic
proteins. Passive immunotherapeutics with mAbs clear target
proteins and aggregates by different mechanisms like dissolu-
tion, microglia-mediated removal, and clearance from the brain
through circulation (Fig. 7N). AN-1972 is the first vaccine
developed using AB42 with the QS-21 adjuvant. Immunisation
in AD patients reduced AP load significantly without any
cognitive benefits, and side effects like meningitis halted
further trials."** Vanutide was developed by conjugating
multiple short AP1-7 peptide sequences and was tested in
a clinical trial for safety and benefits and found no therapeutic
benefits."”> CAD106 is another vaccine constructed by conju-
gating multiple copies of the AP1-6 fragment to a QP virus-like
particle carrier. The results are promising with a safety profile
with multiple doses, reduction in AP load and improvement in
the cognitive scores.'>

Bapineuzumab was the first mAb developed against the N-
terminal of AB42 that selectively binds to oligomers and
fibrils. A phase 3 clinical trial showed poor therapeutic effects
indicating the limited success of the antibody and there is
a need to look for better immunotherapeutics.’®* Solanezumab
was developed targeting the AB13-28 segment that was safe and
efficient in clearing AP from the brain in preclinical studies.
Clinical studies revealed that antibody treatment is safe and
shows dose-dependent reduction of AP load but failed to rescue
from memory deficits."*® Gantenerumab is another mAb devel-
oped targeting the N-terminal and central region of AB. The
clinical trials gave mixed output with therapeutic benefits and
safety concerns."”® Clinical studies with a larger sample size are
underway. Crenezumab is an immunoglobulin G (IgG) mAb that
binds to oligomers, fibrils, and plaques to inhibit the Ap aggre-
gation and dissemble fibrils. The clinical studies revealed that the
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mADb is safe at a lower dose and induces microhemorrhages at
higher doses.”™ Aducanumab is a potent mAb that targets
conformational epitope of AR and binds to fibrillar aggregates,
which has received conditional FDA approval for AD treatment.
The approval was controversial with mixed opinions attributed to
its moderate clinical benefits and side effects. Clinical studies
demonstrated a beneficial effect with an improvement of cogni-
tive score and change in biomarkers."® The therapeutic
efficacy and safety profile need to be established by advanced
clinical trials.

3.3 Metal targeted therapeutics

Metal homeostasis is disturbed in the AD brain with increased
metal levels (Cu, Zn, Fe and Al) that strongly bind to AB peptide
and result in elevated toxicity. These metal ions are known to
enhance the aggregation and formation of toxic species. The AB-
metal ion complex results in oxidative stress and membrane
damage, and among them AB-copper complexes exacerbate the
production of ROS and induce biomolecular damage. The
molecules possessing strong metal chelation properties and AB
interacting ability were explored as AD therapeutics (Fig. 70)."*°
Initially, clioquinol (Clq) was utilised that chelates copper and
zinc and exhibit in vitro and in vivo beneficial effects. Further
clinical studies revealed toxic effects and no improvement in the
disease condition that results in the failure of the drug.**® A Clq
derivative, PBT2, was developed as a metal-protein attenuator
drug candidate for AD. PBT2 inhibits AB-metal interaction and
reduces AP deposition and improves the cognitive performance
in a Tg AD mice model.* The clinical trial results were
ambiguous with safety issues and insignificant therapeutic
benefits reported. EGCG is a polyphenolic compound with AB
aggregation inhibition, antioxidant and anti-inflammatory
properties. The EGCG was also found to interact with metal-
AB species and form unstructured aggregates and reduce
toxicity."®> DP-109 is a lipophilic metal chelator that strongly
binds to metal ions and reduces the AR burden in the Tg mouse
model.'®® The treatment with DP-109 has reduced insoluble AB
aggregates and supports that the AR aggregation is driven by
metal ions. Lim and co-workers have developed small molecules
based on Clq and stilbene that target metals and AP, respec-
tively.’** The molecules were designed by introducing nitrogen
and/or oxygen donor atoms into AB interacting molecules to
generate effective bifunctional molecules. Molecules 1 and 2
were potent copper chelators, inhibit A aggregation and
ameliorate Cu-AB mediated neuronal toxicity. A series of
compounds were designed based on a selegiline core to target
MAO and metal chelation.’®® Among them, compound 8a
displays good MAO inhibition, antioxidant activity, and chela-
tion of biometals (Cu, Zn and Fe). Peptidomimetic P6 developed
with GHK tripeptide has displayed good Cu chelation and Af
aggregation inhibition."* P6 sequesters Cu from AP peptide and
maintains it in a redox dormant state to prevent ROS generation
providing an antioxidant effect and protecting biomolecules
from oxidative damage. A novel concept of the multipronged
drug design strategy was introduced, wherein structural and
functional components of known or failed drugs and natural
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products were integrated to develop hybrid multifunctional
modulators (HMMs) to tackle the multifaceted toxicity of AD.
TGR86 integrated with structural and functional components of
Clq (modulate metal and Af toxicity) and EGCG (antioxidant
and AP modulation) was found to reduce Cu dependent AP
aggregation and ROS generation by preventing the redox
cycle.**® The molecule successfully inhibits biomolecule and
mitochondrial damage and effectively modulates multifaceted
AB toxicity. We have modified berberine, an isoquinoline
natural product, to multifunctional Ber-D, which binds to Cu
and forms a ternary complex to prevent ROS generation and
exerts antioxidant properties (Fig. 70).** Ber-D inhibits amyloid
toxicity and rescues neuronal cells from apoptotic cell death.

3.4 Tau targeted therapies

Targeting post translational modifications (PTMs). Many
kinases that act on tau with glycogen synthase kinase 3 beta
(GSK3p) responsible for many tau pathological phosphorylation
have been extensively studied.”**” Small molecule inhibitors of
GSK3p activity were developed and tested for their therapeutic
effect to prevent tau pathology (Fig. 8A). Tideglusib is one of
the potent GSK3p inhibitors developed and assessed for its
clinical use.'®® It was safe in the treatment of AD without any
side effects, albeit with no therapeutic benefits. AZD0530 is
a potent Fyn kinase inhibitor that was repurposed for AD
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treatment. An initial clinical trial in AD subjects showed the
safety and tolerability of the drug.**® Studies to assess the thera-
peutic outcome showed mixed output with no significant disease
modification efficacy. Molecules targeting multiple kinases that
have implication in tau hyperphosphorylation are projected to be
a rational strategy to prevent hyperphosphorylation. The
screening series of diaminothiazoles identified LDN193594,
which inhibits CDK5 and GSK3p activity with nanomolar ICs,
(Fig. 8A)."® The in vivo evaluation in the Tg mouse model
revealed that LDN193594 is nontoxic, reduces hyper-
phosphorylated tau tangles, and improves cognitive perfor-
mance. Recently, a multistage screening approach was adopted
to develop an isoform selective inhibitor of JNK3 kinase that has
implications for AD." Among the series of 3-substituted
indolin-2-one derivatives, J30-8 was found to be a good inhibitor
with nanomolar ICs, (40 nM) and 2500-fold selectivity towards
the JNK3 isoform. J30-8 exhibits in vivo biocompatibility,
inhibits APP and tau phosphorylation, and improves cognitive
performance in the Tg mouse model. A tacrine-based novel
molecule SCR1693 was designed and found to promote the
dephosphorylation of tau and reduce AP production.'”” A
chimeric peptide TH006 was designed with three peptide
segments with sequences to recognise tau, the second for E3
ligase and the third segment for cell penetration."” A tau rec-
ognising peptide YQQYQDATADEQG was derived from the -
tubulin sequence (422-434 residues) known to bind tau. The E3
ligase targeting peptide ALAPYIP was derived from von Hippel-
Lindau tumour suppressor protein (VHL), a substrate for E3
ligase. The designed peptide targets tau protein for ubiquitin
degradation, and reduces tau levels in primary neurons and the
Tg AD mouse model (Fig. 8A).

Microtubule stabilisers. It is perceived that hyper-
phosphorylated tau detaches from the microtubule and desta-
bilises, leading to pathological consequences in neurons.
Keeping this fact in mind, drugs that were used in cancer as
microtubule stabilisers have been repurposed for AD.* Epo-
thilone D, a brain permeable microtubule stabiliser, was
assessed for therapeutic effects in an old age tau mouse
model."”* There was a significant improvement in microtubule
density that restores axonal transport and cognitive perfor-
mance with a reduction of tau burden in the forebrain and
enhanced neuronal integrity. A microtubule stabiliser abeotax-
ane (TPI-287) was evaluated for repurposing and the drug
treatment resulted in severe hypersensitive reactions in AD
cases and worsening of conditions in other tauopathies.'”

Tau aggregation inhibition. Molecules that inhibit the tau
aggregation process halt the formation of toxic species and
rescue neuronal cells. Many small molecules that effectively
inhibit tau aggregation have been explored (Fig. 8B).'”® Methy-
lene blue (MB) is BBB permeable and demonstrated to reduce
tau aggregation. Leuco-methylthioninium bis(hy-
dromethanesulphonate) (LMTM), a modified MB, was effective
in preclinical studies. Initial clinical studies demonstrated
safety and good pharmacokinetics, which did not translate into
significant disease modification.””” However, prolonged LMTM
monotherapy in a large clinical study showed improvement in
brain atrophy and cognitive performance. Nitrocatechols were

© 2022 The Author(s). Published by the Royal Society of Chemistry
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screened for tau aggregation modulation and found that
compound 26 exhibits good anti-aggregation activity.'”®
Detailed in silico studies to understand the mode of interaction
of compound 26 with the VQIVYK steric zipper revealed that 26
is oriented parallel to the fibre axis. The nitrocatechol moiety of
26 is engaged in polar interactions with GIn and Lys side chains
and the aromatic ring makes van der Waals come in contact
with the Val side chain. The cyano group in the molecule forms
two hydrogen bonds with NH;" of two Lys side chains and
amide carbonyl was engaged in hydrogen bonding with Lys
residue. An unsubstituted benzyl ring is involved in 7-cation
interaction with NH;" of Lys residue. All these attributes have
contributed to the strong interaction of 26 with tau and
subsequent inhibition of its aggregation. A naphthoquinone-
dopamine hybrid molecule NQ-DA was designed to target tau
aggregation.’” The molecule targets PHF (VQIVYK) and PHF*
(VQIINK) motifs and effectively inhibits the tau aggregation. We
have screened a focussed library of thiophene-based small
molecules and identified compound 8 with anti-aggregation
activity and rescued SH-SY5Y cells from tau toxicity.'®®
Eisenberg and co-workers have designed structure-based
peptides of unnatural amino acids and identified an all D-
peptide (D-TLKIVW) inhibitor of tau aggregation (Fig. 8B).'*
The peptide targets the steric zipper motif of tau and success-
fully inhibits seeded and non-seeded tau aggregation. Macro-
cyclic B-sheet peptides were designed with an upper strand of
a pentapeptide with two delta linkers of the ornithine moiety
and a lower strand composed of 2 residues and a B sheet pep-
tidomimetic Hao template (Fig. 8B)."® The designed peptido-
mimetics adopt B-sheet conformation and effectively inhibit the
aggregation of PHF motif peptides. Structure-based short
peptides from the VQIINK aggregation driver were designed and
these peptides effectively inhibit the aggregation of full-length
tau protein and the seeding effect of exogenous tau fibrils.'**
We have reported peptoids derived from the KLVVF motif of AR
and their effect on tau aggregation along with controls LPFFD
and KLVFF."* Hybrid peptoids P4 and P5 retained the tau in its
random coil state as revealed by CD spectroscopy, inhibiting tau
aggregation and rescuing neruro2a cells from tau toxicity.
Immunotherapy. Many vaccine candidates were developed
from pathogenic fragments, and phosphorylated epitopes of tau
and mAbs targeting different regions of tau were evolved with
potential therapeutic benefits under clinical trials (Fig. 8C).
DC8E8 mAb revealed an epitope spanning 294 to 305 amino
acid residues, which was essential for pathogenic tau-tau
interaction. A peptide vaccine AADvacl was derived from this
region (KDNIKHVPGGGS) and tested in a Tg rat model."** In
a phase 2 clinical trial, the vaccine was given for a longer
duration with repeated doses and it was found that the vaccine
was safe.” There was increased IgG titre indicating good
immunogenicity but no improvement in cognitive performance.
Prophylactic immunisation of the Tg mouse demonstrated the
efficacy of the tau379-408[P-Ser396,404] vaccine.”® The
prophylaxis elicited antibody response and reduced both tau
and AP burden and microgliosis. A DNA based vaccine AV-
1980D targeting the N-terminus of tau was constructed using
the Mutli-TEP platform."® The vaccine triggers a good humoral
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immune response against tau and ameliorates tau pathology in
a THY-tau22 mouse model. This demonstrated the possible
applications of DNA and RNA-based immunotherapeutics for
AD.

A humanised anti-tau antibody C2N-8E12 (ABBV-8E12) was
developed, which reduces tau burden and rescues cognitive
impairments.”® Phase 1 clinical investigation revealed the
safety, good pharmacokinetics, and brain uptake with poor
immunogenicity. BIIB092 (Gosuranemab, BMS-986168)

a mAD selectively targeting the N-terminal fragment of tau.'
Preclinical studies are promising, and the clinical safety studies
showed tolerability up to 2100 mg dose. The treatment of a Tg
mouse model with mAb Ta1505 developed against pSer413 has
reduced tau burden and improved synaptic density and cogni-
tive deficits.” Preclinical evaluation of two mAbs 43D
(against tau 6-18) and 77 x 10° (against tau 184-195) revealed
a reduction of tau burden and rescued from cognitive deficits.*
Six doses of 43D mAb effectively reduced total tau, hyper-
phosphorylated tau and rescued the 3xTg mouse model from
spatial and short-term memory. Interestingly, a reduction in AB
peptides and aggregates in the hippocampus was observed,
which iterates the therapeutic potential of 43D mAb. Recently,
12A12 mAb that selectively binds to a pathologically relevant
neurotoxic NH226-230 fragment has been explored for its
beneficial effect in two different Tg mouse models.*”® The
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treatment has neutralised the target tau, reduced tau and AP
burden, and improved learning and memory deficits. The
antibody reduced gliosis and rescued dendritic spine connec-
tivity and hippocampal long-term potentiation (LTP). A high
affinity mAb E2814 that binds to the microtubule binding
region (MTBR) was developed (Kq = 88 pM)."** The results are
promising in the Tg mouse model with mAb reducing the
seeding, transmission, and tau burden. Many passive immu-
nisations using novel mAb are in clinical trials and show
promising results in early clinical studies. The success of mAb
therapy in phase 3/4 clinical trials is yet to be disclosed.

3.5 Targeting ROS and oxidative stress

Elevated levels of ROS and oxidative stress in the AD brain
compelled researchers to consider antioxidant molecules as
therapeutic candidates to combat the disease pathology
(Fig. 9A). There is an inter-relation between Ap-metal ions in the
production of ROS and oxidative stress.**'**'*> AB peptide has
metal binding sites and the redox metal ions bound to the
peptide generate excess ROS. Copper is a strong redox metal ion
that in complexation with A results in excess ROS generation
causing membrane (lipid), DNA, and protein damage. These
events elevate the oxidative stress of neuronal cells which leads
to neurodegeneration. Vitamin E and selenium are natural
bioavailable antioxidants and show beneficial effects in in vitro
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and in vivo studies. Dietary supplementation individually and in
combination to AD patients has minimal beneficial effects and
the overall results are ambiguous.”® Glutathione (GSH) is
a natural tripeptide (y-L-glutamyl-i-cysteinyl-glycine) produced
in the body that has antioxidant activity. GSH acts as a cyto-
protective molecule by effectively scavenging ROS, thereby
reducing biomolecular damage and oxidative stress. The brain
GSH level is reduced in the case of AD causing pronounced
oxidative stress, and hence therapeutics elevating GSH levels is
a rational approach to treat AD. N-Acetyl-L-cysteine (NAC)
treatment is known to elevate the levels of GSH and imparts an
antioxidant effect. The treatment of aging rat models with NAC
increases the antioxidant enzymes and molecules.”” Recently,
a study uncovered that patients with flavanol intake as part of
their diet had a reduced risk of AD.*”® These results suggest the
possible therapeutic potential of flavonols and further need to
explore the effect of dietary flavanols for AD treatment.
Resveratrol is a natural antioxidant utilised as an AD thera-
peutic with beneficial effects.” The beneficial effect of resver-
atrol was shown in many in vitro and preclinical study and
clinical trial results revealed mixed output. Fisetin was assessed
for its antioxidant and anti-inflammatory effect in an aging rat
model.>® The alleviation of the oxidative stress and neuro-
protective effect of the compound underscore fisetin as
a potential anti-AD drug candidate. Nuclear factor-erythroid
factor 2-related factor 2 (Nrf2) is a transcription factor that is
activated to induce the expression of many antioxidant genes to
counteract oxidative damage. Sulforaphane was reported to
upregulate Nrf2 expression by decreasing methylation in the
promoter region and rescue neuronal cells (Fig. 9A).>°* The
compound reduced AP levels and inflammatory mediators and
increased cellular antioxidants in a cell model. Caffeic acid
phenethyl ester (CAPE) is a potent antioxidant and anti-
inflammatory agent assessed for its activity against AP oligo-
mers and induced toxicity in the Tg mouse model.>*> Treatment
induces the expression of Nrf2 and counteracts oxidative stress,
apoptosis, neuroinflammation, and rescue memory and cogni-
tive deficits. We have developed GHK-based small molecules
that target AR and metals, and reduce ROS to rescue from
oxidative stress as evident from the emulation of Nrf2 action.**

3.6 Mitochondrial dysfunction

The accumulation of AR and tau aggregates, ROS and oxidative
stress results in mitochondrial damage and many therapeutics
have been developed targeting mitochondria (Fig. 9B). MitoQ
was developed by integrating a mitochondria targeting moiety
(PPh;) with a hydroquinone moiety as a potent antioxidant to
reduce the mitochondrial damage.?** The treatment with MitoQ
in a Tg AD mouse model for a longer period was safe, reduced
AB load, oxidative stress, and neuroinflammation and alleviated
cognitive decline. The design strategy of integrating a mito-
chondria targeting moiety with diagnostic and therapeutic
molecules has potential for AD diagnostics and therapeu-
tics.”**?% J147 is a curcumin analogue targeting mitochondria
to improve memory and cognitive deficits in a Tg AD mouse
model.>*® Mechanistic study reveals that J147 targets ATP

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

synthase in mitochondria and increases the intracellular
calcium that leads to the activation of the AMPK/mTOR pathway
for improvement in longevity. In AD, multiple pathological
factors trigger mitochondrial damage and result in the alter-
ation of mitochondrial dynamics with decreased fusion,
increased fission and biogenesis.>®” The mitochondrial fission
is mediated by Drp1 and Fis1 proteins that interact to fragment
the damaged mitochondria. The beneficial effects of tetrapep-
tide SS31 were assessed in a Tg AD mouse model and it was
found that it crosses BBB, inhibits mitochondrial fission,
reduces soluble AR and enhances synaptic function.””® Resver-
atrol was shown to act on mitochondrial fission and biogenesis
to maintain mitochondrial homeostasis.”® The compound also
positively influences energy metabolism with glucose utilisation
and ATP production. The rationally designed peptide-based
inhibitor of mitochondrial fission P110 inhibits Drp1/Fis1
interaction.””® P110 treatment in Tg AD effectively reduced
mitochondrial fission and AP accumulation, and rescued from
energy imbalance and oxidative stress that underscores the
possible clinical implications. Targeting complex 1 of mito-
chondria to suppress its activity was achieved by small molecule
CP2.>'* It was evident that treatment with CP2 reduced A and
tau burden in the Tg mouse model. CP2 also reduces the activity
of GSK3p and restores axonal transport with multiple beneficial
effects. The sigma 1 receptor (S1R) is expressed in the endo-
plasmic reticulum and its function is altered in AD.*** It is
a ligand operated receptor that mediates protein homeostasis,
synaptic plasticity, and neuroprotection. Anavex 2-73 is a small
molecule agonist for S1R that is known to induce the misfolding
protein rescue response.””* The compound was safe and
improve cognition in a dose dependent manner in mild to
moderate AD cases. The abnormal mitophagy is evident in the
hippocampus of the human AD brain and induction of
mitophagy by urolithin A reduces AB and tau burden and
rescues memory and cognitive deficits in the Tg mouse
model.** The work demonstrated the role of mitophagy and
mitophagy inducers as potential therapeutic candidates for AD.
TGR86 that reduced ROS production and AP aggregation
effectively prevents AB induced mitochondrial damage.**® BerD
exhibits mitochondrial protection as shown by the rescue of
cells from AP induced mitochondrial membrane potential
(MMP) disruption and Cyt ¢ mediated apoptotic cell death.**

3.7 Neuroinflammation

Neuroinflammation is a pathological event that occurs in the
early stage of AD. Therapeutic developments targeting neuro-
inflammation using novel drugs and repurposing of available
anti-inflammatory drugs have been explored (Fig. 9C).*** Non-
steroid anti-inflammatory drugs (NSAIDs) like ibuprofen, tar-
enflurbil, and CHF5074 were assessed for their anti-
neuroinflammatory properties and encouraging results in vitro
and in vivo preclinical studies were found.”*® Despite having
good safety profiles, most of them failed to improve cognition
deficits in clinical studies. Combinational therapy of ibuprofen
and cromolyn (ALZT-OP1) is under a phase 3 clinical trial

(NCT02547818) and results are yet to be disclosed.

Chem. Sci., 2022, 13, 13657-13689 | 13677


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2sc03932j

Open Access Article. Published on 14 October 2022. Downloaded on 1/20/2026 9:31:41 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

Sargramostim is a synthetic granulocyte-macrophage colony-
stimulating factor that stimulates the innate immune system
to increase activated microglia and reduction in AB load, and
increased synaptic area and cognitive performance. Clinically,
the drug was safe and improve cognitive performance with
a better MMSE score.”"” Angiotensin1 receptor (AT1R) activation
expressed on microglial cells and astrocytes induces neuro-
inflammation. Candesartan, a potent AT1R blocker exhibits
anti-neuroinflammatory effects in the Tg AD mouse model.”*®
The compound shifted microglial activation towards the neu-
roprotective phenotype, alleviates lipopolysaccharide (LPS)
treated neuroinflammation and significantly reduces the AB
burden in a Tg AD mouse model. Telmisartan is another AT1R
blocker developed as intranasal administration for the amelio-
ration of neuroinflammation.””® Treatment with telmisartan
reduces AP burden, microglial activation, and neuronal loss and
improves the spatial memory of a 5XxFAD Tg mouse leading to
evaluation in clinical trials. GC021109 is a novel compound
reported to target directly microglial cells on the purinergic
P2Y6 receptor. The treatment modulates microglial cells to clear
AP aggregates and reduced the release of proinflammatory
mediators and a clinical study to assess the safety and efficacy
was undertaken and the results are yet to be disclosed
(NCT02386306).>° Receptors for advanced glycation end prod-
ucts (RAGE) are expressed on glial cells and RAGE activation was
shown to play a role in AD pathology.?*"*** Azeliragon is an
orally active small molecule developed as a RAGE inhibitor,
which showed to reduce AP burden, neuroinflammatory
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mediators and cognitive performance.?”® The drug was effective
in mild AD cases and is currently under a phase 3 clinical trial.
Tumor necrosis factor alpha (TNFa) is one of the major medi-
ators of neuroinflammation and downstream of the TNFa. sig-
nalling pathway, p38a regulates the pathway. Neflamapimod is
a small molecule inhibitor of p38a that improves synaptic
dysfunction and reverses memory deficits. Clinical evaluation
in mild to moderate AD cases showed that the drug is safe and
well tolerated, but there was no improvement in episodic
memory.** Significant alteration was observed for CSF t-tau, p-
tau and neurogranin, which indicates that the higher dose and
longer duration of treatment possibly benefit the AD patients.
We recently reported a multifunctional small molecule M3 that
effectively reduced microglial activation and
inflammation.””® M3 effectively inhibits NF-«§ mediated neu-
roinflammation and reduces TNFa levels in AP activated
microglial cells.

neuro-

3.8 Multifunctional modulators - future of AD drug
discovery

Drugs developed against different individual targets encoun-
tered failure and some are in clinical trials. AP targeted drug
discovery over the last two decades encountered limited success
and search for novel tangible targets is necessary. In addition to
AB, tau is considered a potential target and many therapeutic
candidates are developed. Among them, immunotherapeutics
are on the road to success in early clinical studies. Many other
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Multifunctional modulators targeting multiple disease pathological pathways of AD (created with BioRender.com).
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targets that were considered in the last decade are discussed
vide supra. The multifactorial nature of AD and failures in drugs
targeting a single pathological target emphasise the need for
multifunctional therapeutics to tackle multiple disease causa-
tive factors. Recent understandings of various aetiological
factors associated with AD helps to design chemical tools to
target multiple disease pathologies.”*® Natural products have
been tuned to develop multifunctional molecules to target
metal dependent and independent AP toxicity.”* Molecular
architecture has been fine tuned to generate AB, metal and ROS
targeting small molecules.””® Few combination therapies and
dual targeting molecules were developed with better thera-
peutic benefits. We propose multifunctional small molecules
that target multiple disease targets as potential future drug
candidates for AD (Fig. 10).**%'” These molecules are antici-
pated to synergistically alleviate complex AD pathology and
future therapeutics for AD.

AB and tau dual aggregation modulators. A curcumin
derivative PE859 was developed to target both AB and tau
aggregation effectively reduced AP and tau load and improved
cognitive deficits in a mouse model (Fig. 11)**° 1,2,3,4-
Tetrahydro-1-acridone derivative 30 is reported as a dual
inhibitor of AB and tau and reduces A and tau aggregation and
associated toxicity in a cellular milieu with good brain uptake.**®
Hybrid peptoids P4 and P5 modulate both AP and tau

OCH3

OO&

-

(@)

C"

Huprine-Shogaol

Hybrids OH
OCHj, 5
070
o)
| N
H
HO 6d
OCHj,
9 H
H3COWN N
|
o)
HO HN) NH )
H,CO P &
\N‘
5c

N A H
9

CHZNMeZ @ C'/

View Article Online

Chemical Science

aggregation.'*>'®* These peptoids effectively rescue neuronal
cells from AP and tau toxicity. Recently, we have screened
a focused library of 52 thiophene-based small molecules tar-
geting AP aggregation and identified five lead candidates.'®® The
detailed ThT assay, dot blot assay, gel electrophoresis and
transmission electron microscopy (TEM) results demonstrated
compound 8 as a good modulator of AR and tau aggregation.
Compound 8 is non-toxic up to 100 uM and rescues neuronal
cells from both AB and tau toxicity.

Hybrid multifunctional inhibitors targeting multiple
targets. Shogaol-huprine hybrid molecules were synthesised
and screened in vitro for their multifunctional activity
(Fig. 11).>** The compounds show good inhibition of AChE and
BACE1 enzymes with AB and tau aggregation inhibition activity.
A series of N-benzylpiperidine derivatives were synthesised, and
among them 41 was found a potent inhibitor of AChE and
BACE1 enzymes, antioxidant, and A aggregation inhibitor, and
crosses BBB and alleviates scopolamine induced cognitive
deficits (Fig. 11).>** Tetrahydroisoquinoline-benzimidazole
hybrid molecules were synthesised as multifunctional agents
and screened for the inhibition of BACE1 and neuro-
inflammation by the reduction of nitric oxide (NO) produc-
tion.”** Among all, BD3 exhibits good anti-inflammatory activity
with moderate BACE1 inhibition and neuroprotective effects by
combating ROS in neuronal cells (Fig. 11). The conjugate of

N—NH (0]

HNJ\NH
/@ANANHz
PE859 . 3

"% PTMA PTMA+Li

Fig. 11 Hybrid multifunctional modulators targeting multiple therapeutic targets of AD (blue: huprine moiety, red: shogaol moiety and green:
conjugated benzene ring for AB and tau aggregation inhibition in the huprine—shogaol hybrid; blue: curcumin moiety in PE859; blue: tetra-
hydroisoquinoline moiety and red: benzimidazole moiety in BD3; blue: donepezil moiety and red: trolox moiety in 6d; blue: donepezil moiety
and red: butylated hydroxytoluene moiety in 7d; blue: melatonin moiety, red: feruloyl moiety and green: tacrine moiety in 5c; blue: tryptophan

based polymer and red: polymethyl acrylate in PTMA).
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trolox, an antioxidant, and donepezil, an AChE inhibitor, (6d)
displays optimal activity against AChE, MAO and a potent
antioxidant (Fig. 11).** Compound 6d inhibits metal indepen-
dent and copper dependent AP aggregation and rescue memory
deficits in a scopolamine induced mouse model. Donepezil and
a potent antioxidant butylated hydroxytoluene (BHT) were
conjugated to develop hybrid molecules, of which 7d displayed
balanced activity towards AChE and MOA inhibition, anti-
oxidation, and anti-aggregation of AP peptide (Fig. 11).>*® 7d
reduced LPS induced neuroinflammation, crossed BBB and
reduced cognitive deficits in the scopolamine induced mouse
model. Multifunctional tacrines were developed by integrating
with ferulic acid and melatonin to reduce oxidative stress.>*
Compound 5c exhibits potent antioxidant activity and AChE
inhibition, and inhibits oxidative stress through Nrf2 induction
and the neuroprotective effect.

The development of dual inhibitor targeting of BACE1 and
GSK3p responsible for AR and tau accumulation is a tangible
approach. In this direction, triazinone derivative 3 is reported as
an effective dual enzymes inhibitor (Fig. 11).>” Compound 3
showed a neuroprotective effect in cellular models and crossed
BBB in the mouse. Hybrid conjugate 6 of tacrine and valmerin
linked through a triazole linker inhibits AChE and GSK3f
activity with nanomolar ICs,, is nontoxic to neuronal cells and
crosses BBB (Fig. 11).*®* We have designed a diblock copolymer-
based polyampholyte (PTMA) with tryptophan to impart
biocompatibility, lithium (Li) encapsulation and intrinsic fluo-
rescence to monitor the binding and Li release (Fig. 11).>* The
designed PTMA effectively inhibits AP aggregation and dissolves
the preformed fibrillar aggregates. PTMA is biocompatible with
minimal toxicity up to 100 uM and rescues neuronal cells from
AP toxicity. PTMA effectively encapsulates Li, delivers to cells
and releases at acidic pH (endosome) in a stimuli responsive
and controlled manner, which can be monitored by intrinsic
fluorescence off-on modulation. Li therapy is considered viable
to treat AD through possible inhibition of GSK3f by electro-
static and cation-7 interactions. The AP aggregation modula-
tion and effective Li delivery of PTMA underscore its potential
for combinational therapy for AD and other neurological
disorders.

Rationally designed multifunctional modulators targeting
multitargets. Many therapeutic molecules were rationally
designed to target different pathological aspects of AD. The

<35 B0
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Fig. 12  Multifunctional modulators (MFMs) targeting multiple path-
ological facets of AD (blue: metal chelating moiety in structures).

13680 | Chem. Sci, 2022, 13, 13657-13689

View Article Online

Perspective

structural and functional information deduced from the
previous drug molecules was employed to design potent
multifunctional modulators (MFMs) by hybridisation, func-
tionalisation and conjugation of active components of synthetic
or natural origin and integration of multiple active subunits
(Fig. 12). We have designed a multifunctional peptidomimetic
modulator P6 by conjugation of GHK tripeptide (a natural Cu
chelator) with AP aggregation modulating hybrid peptoid.*** P6
inhibits the aggregation of A to form oligomers, fibrils, and
oligomer mediated membrane damage. P6 strongly chelates Cu,
inhibits Cu dependent AP aggregation, and sequesters Cu from
the AB-Cu inclusion complex to reduce ROS generation and
DNA damage. The sarcosine incorporation in the peptide
sequence imparts serum stability to P6, biocompatible and
rescue neuronal cells from AP toxicity. Lee et al rationally
designed small molecule ML by integrating structural compo-
nents to inhibit AR aggregation, metal chelation and antioxi-
dant activity (Fig. 12).* ML reduced AB and AB-metal toxicity
and ROS and is BBB permeable. Another small molecule DMPD
was designed by tuning redox properties to redirect AB peptide
to nontoxic off pathway aggregate formation through covalent
adduct formation (Fig. 12).*' Detailed biochemical, biophys-
ical, and MD simulation studies have showed that ligand-
peptide adduct formation was through primary amine-
dependent intramolecular cross-linking. DMPD treatment in
a 5XFAD Tg mouse model has significantly reduced A load and
rescued from memory deficits. HMMs were developed by inte-
grating 8-hydroxy quinolone moieties from Clq (as a metal
chelator) and A inhibition with a polyphenolic moiety from
EGCG for antioxidant properties in a single molecule.™*® Among
them, TGR86 exhibits better AP aggregation inhibition by
hydrogen bonding, alkyl interaction and interruption of the salt
bridge (Lys28-Asp23). TGR86 effectively chelates Cu and reduces
Cu-dependent A aggregation and ROS generation in vitro and
in cellulo. HMM effectively reduces ROS-associated DNA and
protein damage. The designed HMM was non-toxic compared
to Clq and rescue neuronal cells from multifaceted A toxicity.
The multifunctional effect of TGR86 effectively prevented
mitochondrial damage as demonstrated by the rescue of AB
induced MMP disruption. A series of molecules were designed
by conjugating amino acids, 1-dopa and dopamine with
a naphthalene diimide (NDI) core to develop multifunctional
modulators (Fig. 12).>** Among them, 1-dopa and dopamine
derivatives NLP and NDP, respectively, inhibit AR aggregation
and dissolve preformed fibrils. In silico docking studies showed
that compounds bind to aggregation driving KLVFFA and
IIGLM motifs. NLD and NDP exhibit good antioxidant activity
and rescue neuronal cells from A toxicity.

Han et al. fine-tuned an N,N-dimethylaniline (DMA) moiety
to develop bidentate ligands of different oxidation potential,
with antioxidant and metal chelation properties.”** DMA1 with
the lowest oxidation potential (Ep, = 0.22 V) displays noticeable
modulation of metal dependent and independent AP aggrega-
tion with radical scavenging activity (Fig. 12). DMA2 with
moderate oxidation potential (E,, = 0.54/0.80 V) exhibits
significant inhibition of Cu(u)-Ap aggregation, whereas DMA3
with higher oxidation potential (E,, = 0.75 V) shows a poor

© 2022 The Author(s). Published by the Royal Society of Chemistry
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modulatory effect. They further explored the phenylene moiety
to design simple molecules with a minimalistic approach based
on redox principles to target multiple disease targets.***
Benzene-1,4-diamine exhibits reactivity with free radicals and
AP in free as well as metal bound states to retard aggregation
(Fig. 12). Mechanistic studies revealed that the redox properties
of the molecule favour the chemical modification of A peptide
by the formation of a chemical adduct that inhibits AP aggre-
gation. In vivo treatment with compound results in reduced AB
load and rescues from memory and cognitive deficits in a Tg AD
mouse model. Mirica and the group developed MFMs with
therapeutic benefits and imaging abilities (Fig. 12).*® MFMs
were designed by combining benzothiazole, an AB binding
moiety, with a strong Cu chelating 1,4-dimethyl-1,4,7-
triazacyclononane (tacn) group. Among the MFMs, HYR-16
showed the prevention of Cu-mediated toxic oligomer forma-
tion, metal chelation and ROS scavenging. Ber-D with poly-
phenolic groups imparts better Cu chelation and antioxidant

View Article Online
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properties and reduces toxicity by reducing the interaction of AP
aggregation species with a mitochondrial membrane.**® Ber-D
effectively reduces metal independent and dependent A
aggregation. MD studies revealed the formation of a BerD-AB-
Cu tetrahedral cooperative complex that ameliorates Cu-Af
toxicity. The interaction analysis of AB42 monomer and Ber-D
revealed that the AP42:Ber-D complex is stabilised by
hydrogen bonding with His6 and His14 residues and two
hydrogen bonds with Asp7 residue. In vitro studies showed
antioxidant activity, reduced ROS and oxidative stress, and
inhibited DNA and protein damage. Ber-D rescues PC12
neuronal cells from AP toxicity and apoptotic cell death. This
natural product-derived molecular platform can be explored to
develop MFMs for multifaceted AD pathology.

Multifunctional modulators targeting amyloid toxicity,
mitochondrial damage and neuroinflammation. GHK exhibits
high affinity for Cu and modulates Cu-dependent multifaceted
AB toxicity. To impart true multifactional properties, we
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Fig. 13 (A) Rationally designed multifunctional modulators targeting amyloid associated toxicity and neuroinflammation (blue: metal targeting
moiety and green: L-dopa for antioxidant and anti-inflammatory activity in 4; blue: phenylacetamide moiety for neuroprotection and red:
acetamide moiety for lipophilicity and stability in DAPPD; blue: DAPPD moiety and red: glucose moiety for BBB crossing in Glu-DAPPD; blue:
triazacyclononane metal chelating moiety and red: 2-phenylbenzothiazole based A targeting moiety in L1; blue: triazacyclononane metal
chelating moiety, red: distyrylbenzene A targeting moiety and green: vanillin based antioxidant moiety in LS-4; blue: 2,2'-bipyridine moiety for
metal chelation and green: dopamine for antioxidant activity in 5). (B) Reduction of amyloid plaques (6E10 staining, scale bar 200 um) and (C)
microglial activation (Ibal, scale bar 50 um) by DAPPD treatment in WT and APP/PSEN1 Tg mice. (D) Colocalisation of AB plaques with microglial
cells in DAPPD treated cells (scale bar 10 um). (E) Western blot analysis of NLRP3 and associated neuroinflammatory proteins and (F) its
quantification in DAPPD treated WT and APP/PSEN1 mice brain samples. (B)- (F) Reproduced from ref. 245 with permission from PNAS, copyright
2019. (G) Immunofluorescence images of brain sections of 5xFAD mice treated with LS-4 stained for A and quantification shows the reduction
in AB load (scale bar 500 pm). (H) Reduction of tau aggregates by treatment with LS-4 as shown by AT8 staining and quantification (scale bar 125
um). (1) LS-4 treatment ameliorates microglial activation as revealed by Ibal immunofluorescence and its quantification (scale bar 125 um). (G)—(1)
Reproduced from ref. 248 with permission from the American Chemical Society, copyright 2021. (J) Structure of multifunctional modulator M3
(blue: DPA moiety for metal chelation, red: NMI for AB targeting and green: dopamine for antioxidant and anti-inflammatory activity). (K) Bio-AFM
characterization of microglial activation and its reduction by M3 (scale bar 20 um). (L) Western blot analysis of NF-kB, TNFa and IL6 and its
quantification in M3 treatment for its anti-neuroinflammatory effect. (K) and (L) Reproduced from ref. 225 with permission from the American
Chemical Society, copyright 2022.
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modified the structure to obtain a set of MFMs (Fig. 13A).2%
Among them, MFM 4 effectively chelates Cu and Fe and silences
the redox cycle to inhibit ROS generation in vitro and in cellulo.
The antioxidant moiety r-dopa aid effectively quenches ROS,
reduces oxidative stress and DNA damage and modulates Nrf2
signalling. MFM 4 inhibits AB aggregation and rescues neuronal
cells from AP toxicity. NMR study showed the ability of MFM 4
to interact with AB42 by specific hydrogen bonding and
aromatic interactions. It reduces mitochondrial damage as
measured by MMP and NO production in LPS induced micro-
glial cells. A small molecule N,N-diacetyl-p-phenylenediamine
(DAPPD) is reported, which is capable of promoting the
phagocytic activity of microglial cells (Fig. 13A).>** DAPPD
consists of a phenylacetamide moiety that is structurally similar
to acetaminophen, a known anti-neuroinflammatory drug, and
an acetamide moiety that imparts lipophilicity and metabolic
stability. Hence DAPPD is expected to be a good anti-
neuroinflammatory compound with BBB permeability and
bioavailability. The study has demonstrated that DAPPD effec-
tively promotes microglial phagocytosis, clears Af load and
reduces NLRP3 associated proinflammatory mediators through
NF-kf suppression in a Tg mouse model (Fig. 13B-F). The
compound treatment effectively rescues memory and cognitive
impairments. To overcome the limitations, the prodrug Glu-
DAPPD has been designed by conjugating with the glucose
that increases solubility and enhances brain uptake by GLUT1
receptor mediated transport across BBB (Fig. 13A).**¢ Glu-
DAPPD was effective in the reduction of AP load and neuro-
inflammation and improving cognitive function. A multifunctional
molecule L1 was constructed by integrating a 2-phenyl-
benzothiazole based AP interacting group with a tri-
azacyclononane (TACN) macrocyclic group for metal chelation
(Fig. 13A).>" The designed molecule is a metal chelator and
antioxidant and rescues neuronal cells from metal dependent
AP toxicity. L1 crosses BBB, modulates A and tau burden and
reduces neuroinflammation in a 5XFAD Tg mouse model.
Similarly, potent theranostic agents were constructed by inte-
grating a distyrylbenzene moiety with metal chelating tri-
azamacrocycle and antioxidant vanillin groups (Fig. 13A).>*® LS-
4 emerged as an efficient theranostic agent that reduces A and
tau aggregates and microglial activation (Fig. 13G-I). Recently,
we have designed and synthesized an array of multifunctional
modulators by curating the metal-chelating properties of 2,2
bipyridine with the functional and structural properties of
unique AB42 targeting biomolecular auxiliaries.”*® The bipyridyl
core functionalised with dopamine (5) displayed metal-
chelation, excellent modulatory efficiency against metal-
independent and -dependent AB42 aggregation, ROS/reactive
nitrogen species (RNS) generation, oxidative stress and neuro-
inflammation, thus serving as a promising MFM to ameliorate
AD pathology. We developed multifunctional modulators by
integrating a NMI core with a metal chelating dipicolylamine
moiety and dopamine with an antioxidant, and anti-
inflammatory properties.”” Among the designed modulators,
M3 with all three pharmacophore units effectively alleviates
multifaceted AP toxicity (Fig. 13]). In vitro studies demonstrated
that M3 modulates metal independent and dependent AfB

13682 | Chem. Sci,, 2022, 13, 13657-13689

View Article Online

Perspective

aggregation and antioxidant activity and reduces oxidative
stress in neuronal cells as evident from the suppression of Nrf2
stress response. M3 synergistically reduces mitochondrial
damage as evident from the rescue of structural and functional
damage, by inhibiting localisation of AP in mitochondria, and
reduces Cyt c levels and apoptotic cell death. A detailed nano-
mechanical and molecular study by Bio-AFM and western blot
analysis revealed the ability of M3 to reduce microglial activa-
tion and NF-kp mediated neuroinflammation (Fig. 13K and L).
This work demonstrates the rational design of MFMs to syner-
gistically target multiple AD pathologies for excellent thera-
peutic benefits. Such rationally designed MFMs have high
potential as future AD therapeutics.

4. Conclusion and future prospects

High prevalence of the disease and the absence of reliable
diagnostics and therapeutics reiterates the need for adopting
holistic approaches towards identifying better disease
management strategies. The clinically approved PET and MRI
imaging of core biomarkers (ATN) for AD diagnosis suffer from
reliability, high cost, exceptionally sophisticated and expensive
instrumentation, need for clinical expertise, radiation exposure,
and low resolution. Notably, there are no approved early and
differential diagnostic methods for the detection of AD in the
case of mixed dementia. Over the last decade, many NIRF
probes have been developed with high selectivity, sensitivity
and accurate detection of different biomarkers with the poten-
tial for definitive and differential diagnosis of AD from other
neurodegenerative disorders. Advancement in NIR imaging
technology is not yet available for clinical use. Chemical tools
for NIRF are available and the NIRF-based imaging techniques
are anticipated to revolutionise AD diagnosis in the near future.
The accumulation of different alloforms of AB and tau is asso-
ciated with early and progressive stages of disease, and there is
a need for developing chemical probes targeting these different
alloforms. Recent and future advancements in NMR and cryo-
EM to elucidate high resolution 3D structures of distinct path-
ologically relevant alloforms of AB and tau can foster the
development of selective and sensitive probes. Although FDG-
PET and MRI have been explored to assess neurodegeneration,
they lack characteristic patterns and accuracy of diagnosis. A
functional MRI technique augmented with better contrast
agents is required to achieve required sensitivity. The develop-
ment of an atlas encomapsing the structural and functional
changes occur in the AD brain at different stages of disease aid
the accuracy of early diagnosis and prognosis. In addition to
core biomarkers (ATN), indirect biomarkers are emerging as
potential targets for early and accurate diagnosis of AD. For
instance, neuroinflammation and synaptic damage are evident
in advance to clinical symptoms. Although there are potential
biomarkers associated with AD pathologies identified, there is
ample scope to find new and potentially relevant biomarkers.
There are limited chemical probes to target indirect biomarkers
and there is a need to develop selective and sensitive probes that
can be used in combination with core biomarkers through
multiplexing and multimodal imaging and detection for
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accurate diagnosis. Circulating biomarkers are simple and cost-
effective targets for minimally or non-invasive AD diagnosis.
Recently, many blood-based biomarkers are identified and
validated with high diagnostic value in clinical cases. Among
them, AP and tau biomarkers are tested in large clinical
samples, which correlate with cognitive decline. These
biomarkers in blood were analysed using standard ELISA and
MS-based techniques. Future research must be aimed at
developing simple, sensitive, and reliable chemical probes for
the rapid detection of biomarkers in circulating fluids. The
panel of circulating biomarkers (protein and RNA) enhances the
sensitivity and specificity, through multiplexing and multi-
modal detection techniques. MS is a powerful technique that
needs to be exploited to assess the protein and metabolite
biomarker panel for accurate and early diagnosis. The multi-
modal imaging and multiplexed detection of various reliable
biomarkers generating a signature fingerprint provide infor-
mation on disease onset and progression which can be used for
prognosis, early diagnosis, clinical staging and management of
personalised medication (Fig. 6). Al and machine learning are
highly valuable tools to develop molecular probes and signature
fingerprints through integrated efforts by scientific, clinical and
technology research communities.

Over three decades of therapeutics targeting AB yielded just
one conditionally approved drug that alters the disease
pathology. In recent times, tau has been explored as a potential
target with mixed outputs. Many immunotherapeutics targeting
both AP and tau are successful in preclinical and initial clinical
trials. AR antibody therapies are facing failures due to poor
cognitive improvements, while the fate of tau targeted immu-
notherapeutics is yet to be fully assessed in large clinical trials.
There is ample scope to develop antibody-drug conjugates
(ADC) to tackle complex AD pathologies. The active drug aimed
at one of the disease mechanisms or targets can be conjugated
with mAbs targeting another target to synergistically ameliorate
complex disease pathologies. Understanding of complex
pathology of AD pushed the drug research from classical A and
tau targeting towards other tangible targets by adopting inclu-
sive and holistic approaches. Among them, metal dyshomeo-
stasis  oxidative stress, mitochondrial damage and
neuroinflammation need special consideration. Neuro-
inflammation plays a major role in AD and the therapeutics
developed to curb neuroinflammation are promising. The
treatment of complex multifactorial AD is possible through
multipronged drug development strategies that synergistically
address multiple targets. In recent years, many groups are
actively developing hybrid and multifunctional molecules
(HMMs and MFMs) that target two or more disease aetiologies
and the results are promising. Utmost care must be taken to the
design of HMMs and MFMs that synergistically target multiple
disease targets to manage and cure AD. These rational strategies
explore small molecules, natural products and their derivatives,
and hybrid conjugates to discover multifunctional drug candi-
dates through multiplexed high throughput screening plat-
forms to find the magic bullets for AD (Fig. 10). Advanced
computational approaches including AI and machine learning
are anticipated to play key roles in the design, screening, and
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validation of novel drug candidates. The drugs developed in
vitro are further assessed in Tg mouse models. The develop-
ment of viable 3D cell and Tg mouse models inclusive of
different AD pathological aspects is necessary to test the true
efficacy of HMM and MFM therapeutic candidates.”®® Over the
years, several studies have showed the role of gender, ethnic
and racial differences in AD pathology. AD drug discovery must
take these factors into account in preclinical and clinical trials
for better and personalised medication.”®" Overall, multi-
pronged strategies targeting multiple biomarkers and targets
with synergistic action are indispensable in the development of
early diagnostics and potent therapeutics to tackle multifacto-
rial AD, which in turn ease the burden on global public health
and economy.
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