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accelerated high-throughput
screening of zeolites for the selective adsorption of
xylene isomers†

Daniel Hewitt, *a Tom Pope, a Misbah Sarwar, b Alessandro Turrina c

and Ben Slater *a

The production of widely used polymers such as polyester currently relies upon the chemical separation of

and transformation of xylene isomers. The least valuable but most prevalent isomer is meta-xylene which

can be selectively transformed into the more useful and expensive para-xylene isomer using a zeolite

catalyst but at a high energy cost. In this work, high-throughput screening of existing and hypothetical

zeolite databases containing more than two million structures was performed, using a combination of

classical simulation and deep neural network methods to identify promising materials for selective

adsorption of meta-xylene. Novel anomaly detection techniques were applied to the heavily biased

classification task of identifying structures with a selectivity greater than that of the best performing

existing zeolite, ZSM-5 (MFI topology). Eight hypothetical zeolite topologies are found to be several

orders of magnitude more selective towards meta-xylene than ZSM-5 which may provide an impetus for

synthetic efforts to realise these promising materials. Moreover, the leading hypothetical frameworks

identified from the screening procedure require a markedly lower operating temperature to achieve the

diffusion seen in existing materials, suggesting significant energetic savings if the frameworks can be

realised.
1 Introduction

The separation of benzene and its derivatives using current
distillation methods accounts for 50 GW of global energy usage
annually,1 where one particularly energy intensive process is the
isomerisation and separation of xylene isomers. The identical
molecular weights, similar boiling points, and closely resem-
blant structures make this extremely challenging. However, the
application of sorbent and catalytically active materials can
increase the yield of the most commercially important prod-
ucts, reducing both the demand for raw materials and the
associated energy cost of production via distillation columns.
Are the currently deployed catalysts already optimally efficient
for this key process or is there scope to improve the yield further
by identifying untried existing materials or yet-to-be synthe-
sized materials? Here, we address this question using novel
computational approaches and seek to identify the key prop-
erties required for high selectivity of particular isomers.
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We seek to identify the optimal zeolite topology for the iso-
merisation of meta-xylene from a mixture of its isomers by
tapping into experimental and hypothetical databases, where
the latter could reveal yet-to-be-synthesised materials with
superior performance to existing materials. Hitherto undiscov-
ered textural properties responsible for enhanced performance
could then be used as design criteria for the next generation of
industrial catalyst.

Zeolites are a class of nanoporous materials which have been
widely investigated previously, as sorbents and as catalysts for
isomerisation reactions.2–5 Zeolites are commonly used for
separation and catalysis processes due to their high thermal
stability, shape selectivity and availability of catalytically active
sites. A variety of shape selectivity is possible due to the range of
topologies in the zeolite family, coupled with their highly
tunable pore sizes that facilitates discrimination of mixtures of
molecules or isomers.6 There are a number of different zeolite
compositions, the most commonly used materials are those
based on aluminosilicates. However, the aluminosilicates typi-
cally feature disordered aluminium and extra-framework or
intra-framework charge compensating species that adds struc-
tural complexity to the modelling process. To simplify the
modelling of large numbers of frameworks, a sub-class of
zeolites are used, framework silicates of formula SiO2, that
consist of edge-sharing tetrahedra. Oxygen atoms occupy the
vertices of the tetrahedra and silicon atoms reside in the centre.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 United-atom representation of the structure of the xylene
isomers, with CH3 groups indicated by a spot. The shortest dimension
in the plane of the molecule for each isomer is given beneath their
name and the variance between the isomers of just 0.5 Å emphasises
how discriminating the catalyst needs to be. Ortho-, meta-, and para-
xylene will hereafter be referred to as o-, m-, and p-xylene
respectively.
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An example is presented in Fig. 1 which shows theMFI structure
and its characteristic 10 membered rings which provide access
to the three-dimensional channel system.

Commercial applications of zeolites exploit their shape-
selectivity arising from the characteristic pore network. The
uid catalytic cracking process typically uses a zeolite catalyst
with the FAU topology with a high silicon concentration, while
the methanol to olen (MTO) process uses a zeolite in its silica-
aluminophosphate (SAPO) form, SAPO-34,7 with the CHA
topology. The former process benets from the relatively large
pores and high internal surface area of FAU, facilitating diffu-
sion of larger organic products.8 In contrast, CHA sees use in the
MTO process due to its higher selectivity toward short-chain
olens promoted by its small pore openings, which connect
cages large enough to accommodate intermediates.9 Zeolites
have also been proposed as promising materials for the meta-
xylene isomerisation process.2 Topologies with pore geometries
ideally suited to selectively hindering the transport of m-xylene
increases its chance of being near a catalytically active proton
site, and thus promoting its conversion to para-xylene.

Xylenes are isomers of dimethyl benzene which are produced
predominantly by the catalytic reforming of crude oil. Typically,
aer distillation, a mixture of xylenes will contain ortho-, meta-,
and para-xylenes (see Fig. 2) in a ratio of 0.24, 0.53, and 0.23
respectively.10 Of these, o- and p-xylene have commercial value
as the raw material in the manufacture of phthalic anhydride,
and poly(ethylene terephthalate) respectively, with p-xylene
being the most valuable of the two.4,11 M-xylene is considered
the least commercially valuable of the three isomers and so the
separation of these isomers is an important chemical process.
Specically, the isomerisation ofm-xylene to produce p-xylene is
of particular importance.

Screening for promising materials experimentally involves
a high monetary and temporal cost, due to the difficulty
associated with preparation and characterisation of samples.
That bottle-neck is further exacerbated for hypothetical
Fig. 1 Structure of the siliceous form of the zeolite MFI shown as (top)
ball and stick form, atoms shown with their van der Waals radii and
(bottom) polyhedral form to show the silica tetrahedra. The structure is
viewed along the [010] axis and shows a fragment cut from the
extended solid. Silicon atoms and tetrahedra are shown in blue, and
oxygen atoms are shown in red.

© 2022 The Author(s). Published by the Royal Society of Chemistry
frameworks where the preparative mechanism may not be
clear. Indeed, the synthetic routes for hypothetical zeolites are
so elusive as to be called the zeolite conundrum.12 High-
throughput computational screening offers a comparatively
inexpensive alternative to practical experiment subject to the
veracity of predicted behaviours.13,14 Zeolites have been
screened for their application in numerous processes by
computer simulation, such as the hydroisomerisation of
alkanes with 18–30 carbon atoms.15 Combining modelling
techniques with machine learning methods allows for
a reduction in simulation time on the scale of hundreds of
days on a single CPU into seconds. Here, we use this strategy to
rapidly screen experimental16 and hypothetical17,18 databases
of zeolites in a hierarchical manner, for their potential appli-
cation in the m-xylene isomerisation reaction.

A subset of 4764 metal–organic frameworks (MOF) from the
CoRE-MOF database19 have previously been screened in a study
by Qiao et al.,5 as molecular sieves in order to lter out para-
xylene. Ortiz et al.3 recently carried out detailed assessment of
nine industrially relevant zeolite topologies, to establish the
competition between enthalpic and entropic effects in the
transport of the xylene isomers. Here, we build upon this work
and screen over two million structures (known and hypothetical
frameworks) to identify whether there are other topologies of
zeolite which could outperform industrially used catalysts for
the isomerisation of meta-xylene.
2 Methods

In this work, two databases of zeolite structures were screened
for their application in them-xylene isomerisation reaction. The
international zeolite association (IZA) database contains, as of
March 2022, 255 distinct topologies with known synthetic
routes.16 The Deem database is a set of hypothetical zeolites
which contains over two million structures, approximately 330
000 of which are below +30 kJ mol−1 of alpha-quartz as assessed
by the Sanders–Leslie–Catlow (SLC) force eld, a cutoff that
Chem. Sci., 2022, 13, 13178–13186 | 13179
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seeks to capture the structures which are most synthesiz-
able.17,18,20 The high-throughput screening of these two data-
bases allows for the identication of highly selective materials
which could either be synthesised, or provide insight into key
structure–property relationships which can inform future
synthetic design.

2.1 Textural property screening

The textural characteristics of pore limiting diameter (PLD) and
largest cavity diameter (LCD) were calculated for the IZA16 and
Deem17,18 databases of structures using the Zeo++ soware.21

These were used as an initial screen for both databases in order
to remove structures which would not accommodate the xylene
isomers. A PLD cut-off of 4.0 Å was chosen for this purpose, as it
was the smallest value that could be used while accommodating
the bulkiest xylene isomer (ortho-xylene, with a shortest
dimension of 3.94 Å as shown in Fig. 2). Applying this screen to
over 330 000 structures from both the IZA and Deem databases
yielded 66 177 structures, 98 of which were from the IZA data-
base and 66 079 from the Deem database. Initially calculations
were run for just the 98 structures from the IZA database. The
topology identied to have the highest selectivity from these
existing zeolites was used as a benchmark by which to compare
the hypothetical structures to.

2.2 Screening IZA database structures for uptake

The 98 ltered structures from the IZA database were assessed
for their competitive adsorption properties by use of contin-
uous fractional component Monte Carlo (CFC-MC)22 simula-
tions in the grand canonical ensemble as implemented in
RASPA,23 at 523 K and 15 bar which typify the experimental
conditions for this process.24–26 The composition of the xylene
mixture at this temperature and pressure was adapted from
the work of Caro-Ortiz et al. where they studied the same
process in nine experimentally realised framework topolo-
gies.3 These simulations were run for 20 000 initialisation
cycles, 50 000 equilibration cycles, and 50 000 production
cycles. The relatively brief simulations have been bench-
marked against far longer simulations with 100 000 initiali-
sation cycles, 500 000 equilibration cycles, and 500 000
production cycles, where the same loadings per component
were obtained with a 90% reduction in computational cost.
Example input les are provided in the ESI.†

2.2.1 Simulation details. The TraPPE-zeo all-silica force
eld27 and the TraPPE-UA force eld28,29 were used throughout
this work in order to model the interactions between the
framework and guests, as well as guest–guest and framework–
framework interactions. All atoms were modelled using Len-
nard–Jones interactions, truncated with a cut-off distance of
14.0 Å, with long-range Lennard–Jones contributions estimated
via tail corrections. As the TraPPE-UA force eld models CHx as
single uncharged interaction sites, electrostatic interactions are
not considered in this work; similarly, framework exibility is
not explicitly taken into account. These assumptions were
considered reasonable as this work predominately focuses on
adsorption calculations, while framework exibility is
13180 | Chem. Sci., 2022, 13, 13178–13186
suggested to have a larger inuence on transport properties;27

comparison of transport properties to experiment is oen
challenging due to the large scatter in data, especially across
different studies27 and so these simulations were considered
a reasonable rst approximation.

The top candidates from the adsorption calculations were
judged on their loading and selectivity. Selectivity was dened
in this work by the following equation, based on the work of Bae
et al.:30

S ¼ Lmeta �
�
mortho þmpara

�
�
Lortho þ Lpara

��mmeta

(1)

where Lx refers to the loading of isomer x, and mx refers to
the mol fraction of isomer x. The structure from the IZA data-
base with the highest selectivity was found to be MFI, with
a selectivity value of 12.19 (approximately 1 × 101.086) and this
was used as the benchmark to assess hypothetical structures
from the Deem database. Approximating selectivity by use of
loading values allowed for a signicant saving in computational
time over brute-force molecular dynamics simulations. The
assumption this strategy makes is that a higher loading value
for an isomer is strongly correlated with a greater retention of
the given isomer within the framework. In turn, this slower
transport leads to a greater probability of an isomer being near
a catalytic site and undergoing isomerisation.15

Here zeolite structures are screened only in their siliceous
form. Although we note that materials used industrially are
aluminosilicates, in the absence of a database of realistic forms
of such materials, we seek only to identify topologies of struc-
tures which may favour a greater selectivity for this process.
2.3 Screening Deem database structures

As the IZA database contained only 98 structures with a suffi-
ciently large PLD to accommodate the xylene isomers, a purely
classical simulation approach was practicable in a short
amount of time. The Deem database on the other hand con-
tained 66 079 structures with a PLD greater than 4.0 Å. In order
to determine the viability of these materials for the m-xylene
isomerisation reaction, a combination of classical simulation
and machine learning methods were applied in order to reduce
the total compute time required.

2.3.1 Classical simulation of xylene uptake. CFC-MC
simulations as outlined in Section 2.2.1 were run for 8 hours
for all 66 079 structures from the Deem database in order to
generate the initial dataset (in this time only 2695 simulations
had completed the predetermined number of steps for conver-
gence). Using the data set comprised from only the simulations
which had nished by this time (2695 data points), a neural
network (NN) was trained for binary classication of selectivity,
with one class representing structures whose selectivity was
greater than that of the leading IZA candidate, the MFI
structure.

Simulations were incrementally run for a further hour from
the point at which they had been stopped. Aer each hour data
was extracted and a new NN model was trained using the full
dataset obtained aer this time period (aer 9 hours this
© 2022 The Author(s). Published by the Royal Society of Chemistry
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contained 5000 data points). This was repeated incrementally
until no signicant further improvements were made on the
model aer data generation for longer time periods. It was
determined that aer a total of 10 hours, at which point 7802
data points had been collected, the NN was suitable for
deployment, showing an accuracy and recall value of over 80%.
Continued data collection andmodel training for up to a total of
48 hours of simulation time provided no substantial improve-
ment in the predictive ability of the model.

2.3.2 Machine learning predictions. In order to train
a neural network, one must provide a target quantity, and
numerical descriptors that can adequately represent the desired
quantity. Both neural networks in this work were trained using
the same descriptor set which is laid out below, and the data
was split into a training, validation, and blind test set in
a stratied 70%, 20%, 10% split respectively.

Many studies in the high-throughput screening eld of
nanoporous materials use basic textural characteristics such
as PLD, LCD, density and accessible surface area (ASA) as
descriptors.5,6,31 This combination of descriptors has been
shown to be incredibly powerful, especially for packing
problems.5 However, a recent study by Krishnapriyan et al.
showed how the combination of these textural features along
with topological descriptors called persistence images, ob-
tained from persistent homology calculations, can signi-
cantly increase the predictive accuracy of such models (see
ESI†).31

In this work a combination of these two sets of descriptors
was employed. The textural characteristics PLD and LCD were
calculated using Zeo++,21 while the remaining textural charac-
teristics such as accessible surface area were calculated using
PoreBlazer.32 Persistence images were calculated using the
Python packages ‘Diode’,33 ‘Dionysus',34 and ‘PersIm’.35 Aer
testing different parameters, a resolution for the persistence
images of 50 × 50 pixels was chosen, with the x and y axes
scaled by the maximum birth and persistence values across all
structures respectively. A spread of s = 0.2 for these images was
also used. More details on the descriptor set used can be found
in the ESI.†

In order to determine a model's performance for binary
classication tasks, two key metrics were used: accuracy and
recall. Accuracy is dened as the percentage of examples which
are correctly classied:

Accuracy ¼ True samples

Total samples
(2)

Recall is dened as the percentage of true positives which
were correctly identied:

Recall ¼ True positives

True positivesþ False negatives
(3)

Maximising recall corresponds to identifying as many
leading frameworks as possible, while maximising accuracy
allows us to reduce our search space by eliminating structures
with low selectivity. Attempting to maximise one can lead to
© 2022 The Author(s). Published by the Royal Society of Chemistry
a reduction in the other, and so here we sought to train a model
with a compromise between the two metrics, with more weight
given to a higher recall value so as not to miss out on any
promising structures.

2.3.3 Selectivity classication model. As detailed in Section
2.3.1, simulation data aer 10 hours yielded a dataset con-
taining loading and selectivity data for 7802 structures. As one
class in the binary classication task was in an extrememinority
(5% of the dataset), anomaly detection methods were used in
order to provide more weight to the underrepresented class,
preventing the model from overtting to the majority class.36

The NN trained using this dataset performed remarkably well,
showing an accuracy of 83% and a perfect recall of 100%. When
tested on an unseen part of the dataset, the model showed an
accuracy of 83% and a recall of 89%.

In order to further validate the predictive power of this
model, a much larger dataset was generated. Simulations were
continued until they had all run for 48 hours, at which point
the total dataset contained the results from 42 183 completed
simulations. Applying the NN model to the blind dataset of
simulations that nished between 10 and 48 hours showed an
accuracy of 84% and a recall of 98%. Running these classical
simulations took 97.4 years of CPU time on a single core
(hereby referred to simply as CPU time). Accounting for the 10
hours per calculation that had already been run for these
structures, using the machine learning predictions to lter
this set of structures, followed by classical simulations on the
10% of structures identied to be highly selective, could have
resulted in a time saving of 47 years of CPU time for these
calculations, effectively halving the overall time and energy
cost for computation.

2.3.4 Loading classication model. In order to reduce the
search space for optimal structures further, classication
models to predict loading were trained concurrently with those
predicting selectivity. Here the binary classication model cat-
egorised structures into low and high loading bins, where the
target quantity was chosen to be the sum of the loading values
for all three xylene isomers. The low bin contained all structures
with a total loading below 0.2 mol kg−1. By choosing total
loading of all xylene isomers as the target value, the model did
not have to discriminate against structures which preferentially
adsorb one isomer over another. Choosing this target rather
than the loading of just the m-xylene isomer provided an
increase in model accuracy from 90% to 93% and recall from
93% to 96%. These ndings can be rationalised as the textural
and topological descriptors are more informative in deter-
mining a structure's uptake than their selectivity, as loading is
more dependent on descriptors such as the accessible volume.
This can be seen quantitatively in the higher accuracy and recall
of the loading model compared to the model predicting
selectivity.

Similar to the classicationmodel for selectivity, this NN was
tested on an unseen part of the dataset, showing an accuracy of
90% and a recall of 95%. When applied to the blind dataset
from 33 849 simulations that nished between 10 and 48 hours
of compute time, the model showed an accuracy of 94% and
a recall of 95%. Of these 34 381 structures, 31 649 possessed
Chem. Sci., 2022, 13, 13178–13186 | 13181
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a total xylene loading greater than 0.2 mol kg−1 meaning the NN
was able to correctly predict 30 805 of these. None of the 844
structures with high loading, but misclassied as low loading,
possessed a high selectivity.
Fig. 3 Selectivity as a function of PLD for the 98 experimentally
realised zeolite topologies that were screened using CFC-MC, and
coloured by LCD. Selectivity is defined in Section 2.2.1. Some highly
selective structures have been labelled with their three letter topology
code given by the IZA.
2.4 Data validation

In order to verify the results of the neural network model, CFC-
MC simulations were run on the structures which were pre-
dicted to be highly selective using the samemethods as outlined
in Section 2.2.1. Of the top candidates identied, only those
frameworks with channel networks percolating in greater than
one dimension were considered further. The Zeo++ program
was used to assess dimensionality, with a probe of radius 2.0
Å.21 Only structures with 2 or 3D channel systems were assessed
further, as frameworks with 1D channels are of little interest
commercially due to their associated reduced activity and ow
rates. Longer CFC-MC simulations were then carried out on
these structures using 100 000 initialisation cycles, 500 000
equilibration cycles, and 500 000 production cycles in order to
obtain better statistics for the adsorption properties. A
comparison of the statistics between these calculations and the
initial results showed good agreement between the two, with an
average difference of 3% in the total loading values across all
top performing structures, and in complete agreement with the
initial ranking of structures.

Molecular dynamics (MD) simulations to assess the diffu-
sivity of xylene mixtures were carried out using the RASPA
soware package on the leading candidates that showed high
dimensionality, high loading, and a selectivity greater than that
of MFI (MD simulations on MFI were used as a benchmark for
comparison). These simulations used a temperature of 1223 K,
higher than that in the CFC-MC calculations, in order to
promote diffusion of the molecules across high energy barriers.
A comparison of the mean-square displacement (MSD) for each
adsorbate was used as a metric to validate the selectivity pre-
dicted by CFC-MC.
Fig. 4 Selectivity as a function of PLD for the 42 183 structures that
were screened using CFC-MC, and coloured by LCD. Selectivity is
defined in Section 2.2.1.
3 Results and discussion
3.1 Classical simulations

Classical simulation data for 42 183 hypothetical and 98
experimentally realised zeolites was generated as outlined in
Section 2, along with corresponding textural characteristics as
outlined in Section 2.3.2.

Analysis of this data shows that the limit of selectivity for
structures from the IZA database is approximately 12.19 (or 1 ×

101.086) (see Fig. 3), whereas hypothetical structures from the
Deem database are able to surpass this by over two orders of
magnitude (see Fig. 4) emphasising the latent performance
which could be realised. It is also noteworthy that structures
with the highest selectivity have PLD values between 4.0 and 5.5
Å, which is expected, as this shows that the most potent
mechanism for selectivity is predominately related to steric
discrimination of the single isomers in channels.

The results for the IZA structures are in good agreement with
experimental studies, with MFI and TON both having high
13182 | Chem. Sci., 2022, 13, 13178–13186
selectivity.37 MFI is a topology of zeolite that is already used
industrially for the xylene isomerisation reaction, and these
results predict that it is the best choice from the list of currently
known zeolite topologies. Our models thus show that there is
currently no existing zeolite which is superior to MFI for this
process, and so any advance in the efficiency of this process is
likely to come from an as-yet unrealised topology.

Using MFI as a benchmark, a set of hypothetical structures
with sufficiently high selectivity to be of interest commercially
were identied. From the set of 42 183 structures that were
able to be computed within 48 hours using these classical
simulation techniques, only 58 showed high enough selectivity
and loading to be of further interest, which is just 0.14% of the
set.

Fig. 5 shows that the structures with the highest total loading
of all xylene isomers were those with the greatest free volume
fraction (FVF), as expected. Structures with these attributes are
also shown to more frequently feature low densities and large
pore limiting diameters, which makes them unlikely as prac-
tical candidates for this separation task because of their poor
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Selectivity as a function of density and free volume fraction for
the 42 183 structures that were screened using CFC-MC, and coloured
by the total loading. Selectivity is defined in Section 2.2.1.

Fig. 6 Comparison of total order NMSD in the x, y, and z directions for
each xylene isomer in the 12 most optimal structures, as well as for MFI
as a benchmark. The total order N MSD has been again log 10 trans-
formed for clarity.
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steric discrimination ability. Conrmation of this inference is
evidenced by comparing the total loading of the xylene isomers
to selectivity as shown in Fig. 5.

By extension of these trends, we are able to identify the
“Goldilocks” area of structural features where materials may
have both high selectivity and high loading. Identication of
these structure–property relationships allows for targeted future
investigation of optimal catalysts for this process as those
structures with: (i) PLD between 4.0 and 5.5 Å, (ii) FVF greater
than 0.1, (iii) density lower than 2 g cm−3.
3.2 Neural network predictions

The classication NNmodel outlined in Section 2.3.3, trained to
predict structures with selectivities greater than MFI, was
applied to the remaining 23 896 hypothetical structures for
which direct classical simulations took over 48 hours to
complete. Applying the NN model to the unlabeled dataset
reduced the number of potentially highly selective structures
from 23 896 to 5376 providing an 76% reduction in the search
space for highly selective materials. The model was trained to
have high recall at a detriment to accuracy in order to identify
almost all of the optimal structures while drastically reducing
the number of materials that needed to be examined with
further calculations.

In order to reduce the search space for optimal materials
further, the NN model trained to classify structures based on
their total loading values was applied to the remaining set of
5376 structures. The model classied 4838 of the 5376 struc-
tures in the high loading bin, which show that they are of
further interest.

CFC-MC calculations as outlined in Section 2.2 were then
performed on the set of structures predicted to possess both
high selectivity and loading by the neural networks; the results
of this showed that 23 of the 4838 structures had selectivity
greater than MFI, which is 0.10% of the total number of struc-
tures before ltration by the neural network (this value is in
good agreement with the percentage of structures that were
© 2022 The Author(s). Published by the Royal Society of Chemistry
determined to be highly selective through purely classical
simulations).

Assuming that these simulations would have taken at
a minimum 48 hours to successfully complete the number of
cycles outlined in 2.2, the total CPU time for these classical
simulations would have been 130 years. Accounting for the 10
hours these simulations were run for in order to generate the
dataset for the NN model as well as the time taken for the
classical simulations to complete for the structures predicted to
be highly selective, this method was able to save 92 years worth
of CPU time in total.
3.3 Rening optimal structures

By combining the optimal structures predicted using purely
classical simulation methods (58 structures) with the structures
identied through a combination of machine learning and
classical simulation (23 structures), it was possible to identify 81
highly selective structures for further examination. An addi-
tional renement of promising structures was achieved by
focusing only on those with multi-dimensional channel
systems, which led to a reduction of the 81 structures to 12 of
especial interest. Of this nal set, 3 of the 12 structures con-
tained three dimensional channel systems.
3.4 Analysis of transport properties

MD simulations were used to assess the diffusion of the xylene
isomers throughout the structures of the 12 most promising
candidate structures, as well as MFI as a benchmark. The
results of these simulations, shown in Fig. 6, identied eight of
the twelve structures which allowed greater diffusion of the
isomers than MFI, with all structures showing higher diffusion
of para-xylene than ortho- or meta-xylene, which makes them
viable candidates for this separation process.

MD simulations for the eight materials which showed
greater diffusion than MFI at 1223 K were run at lower
temperatures in steps of 50 K. By comparison of the MSD of
these structures at lower temperatures to that of MFI at 1223 K,
we are able to quantitatively show a possible energy saving by
Chem. Sci., 2022, 13, 13178–13186 | 13183
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Fig. 8 Visualisation of the statistically most preferable adsorption sites
for ortho- and para-xylene in the framework PCOD-8063931. The
framework atoms silicon and oxygen are shown in blue and red
respectively, while the adsorbates ortho- and para-xylene are shown
in gold and pink respectively.
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nding the lowest temperature at which these structures
outperform the diffusion of xylene isomers in MFI. The results
of these calculations showed that the leading candidate, PCOD-
8063931, showed comparable diffusion of the xylene isomers at
723 K than through MFI at 1223 K.

3.5 Analysis of promising materials

In order to further examine the adsorption behaviour of the top
performing structures, adsorption proles were generated for
all isomers within each structure using in-house Python code.38

This tool allowed extraction of binding positions from the
classical Monte Carlo simulations in order to generate a proba-
bility grid for each isomer's position; positions were mapped
onto 0.1 Å grid points, and only those over a threshold proba-
bility were displayed.

By inspection of Fig. 7 and 8 it can be seen that in PCOD-
8063931, m-xylene gets trapped in a strong binding site at the
intersection of the channels. This site is able to perfectly
accommodate the m-xylene adsorbate due to the 120° angle of
the intersection. Although this site is also the most preferable
for ortho-xylene to adsorb, meta-xylene is adsorbed far more
favourably which is reected in its 8.5 kJ mol−1 lower heat of
adsorption.

It was also determined that para-xylene sits preferentially in
the channels of the structures rather than the intersections, as
is shown in Fig. 8. Although para-xylene is accommodated in the
channels better than the intersections, its adsorption is still
disfavoured overall, which is consistent with its 14 kJ mol−1

greater heat of adsorption compared to meta-xylene. This
energetic preference is conrmed by the results of the molec-
ular dynamics simulations, with a much higher MSD value for
para-xylene than for ortho- or meta-xylene showing its ability to
readily diffuse through the framework. This increased diffusion
Fig. 7 Visualisation of the statistically most preferable adsorption sites
for each xylene isomer within the framework PCOD-8063931. The
framework atoms silicon and oxygen are shown in blue and red
respectively, while the adsorbates ortho-, meta-, and para-xylene are
shown in gold, green, and pink respectively.

13184 | Chem. Sci., 2022, 13, 13178–13186
ability is due to the more cylindrical shape of para-xylene
allowing it to move through the channels of the structure, while
not suffering too great an energy penalty for traversing channel
intersections. On the other hand, m-xylene ts snugly at
channel intersections but it has a high energy penalty for
diffusing through channels.
4 Conclusions

A powerful combination of classical simulation and cutting-
edge machine learning techniques facilitated the high-
throughput screening of over two million zeolite structures,
with an estimated time saving of 118 years of CPU time over
traditional screening procedures. Our novel methodology in
determining these results can be applied to future high-
throughput screening work with ease, facilitating rapid data
generation with a high accuracy and retention rate of optimal
structures.

Remarkably, exploration of this vast search-space resulted in
the identication of just eight materials whose topologies are
predicted to be superior to the current industry standard for the
meta-xylene isomerisation process, the ZSM-5 zeolite with the
MFI topology. These results suggest that as the best existing
material is already in use, a signicant improvement in the
efficiency of this process can only be achieved through the
realisation of the hypothetical frameworks: PCOD −8 063 931,
−8 321 668, −8 330 068, −8 281 876, −8 263 582, −8 165 995,
−8 304 211 and −8 268 546 (CIF les are given in the ESI†).
Furthermore, we predict that the vastly superior performance of
PCOD-8063931 could result in a potential 40% reduction in
reaction temperature for this process, promising higher yields
at a lower energy cost. Further improvements in performance
may be possible in aluminosilicate forms of these structures
and research is underway in this direction.39 We hope that the
potential gains of the top performing structures identied from
© 2022 The Author(s). Published by the Royal Society of Chemistry
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the screening work motivates experimental research groups to
take up the challenge of synthesising zeolites with pore
networks similar to those leading structures that we have
identied.
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