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s cage subsets in the Cambridge
Structural Database using topological data
analysis†

Aurelia Li, Rocio Bueno-Perez and David Fairen-Jimenez *

As rationally designable materials, the variety and number of synthesised metal–organic cages (MOCs) and

organic cages (OCs) are expected to grow in the Cambridge Structural Database (CSD). In this regard, two of

the most important questions are, which structures are already present in the CSD and how can they be

identified? Here, we present a cage mining methodology based on topological data analysis and

a combination of supervised and unsupervised learning that led to the derivation of – to the best of our

knowledge – the first and only MOC dataset of 1839 structures and the largest experimental OC dataset

of 7736 cages, as of March 2022. We illustrate the use of such datasets with a high-throughput

screening of MOCs and OCs for xenon/krypton separation, important gases in multiple industries,

including healthcare.
1. Introduction

Amongst the burgeoning eld of microporous materials, metal–
organic cages (MOCs) and organic cages (OCs) are of particular
interest.1–5 Conversely to the more established metal–organic
frameworks (MOFs) and covalent organic frameworks (COFs),
which are extended crystalline structures constructed from
strongly bonded building blocks, MOCs and OCs are discrete
individual molecules with a cage-like shape. When packed,
MOCs and OCs assemble through non-covalent interactions
into a bigger porous structure. Therefore, there are two types of
porosities to be considered with cages: (i) the molecule's
internal cavity, called intrinsic porosity and (ii) the interstitial
space due to packing, called extrinsic porosity. The combined
porosities of these materials justify the growing research for
their applications in molecular6,7 or gas separations,1,2,6,8,9

encapsulation,10 catalysis,11,12 molecular sensing,5,13,14 and as
porous liquids.15 Although MOFs, COFs, MOCs and OCs all
share some similarities – they are all tuneable porous materials,
the discrete nature of MOCs and OCs means they are process-
able in solution. For instance, Giri et al. reported the prepara-
tion of ‘porous liquids’ by dissolving custom-designed rigid
crown-ether cages in a solvent (15-crown-5) that cannot enter
the cages.15 While methane is soluble in 15-crown-5 (6.7 mmol
g−1 at 30 °C), adding the cages increased the solubility by
eightfold (52 mmol g−1 at 30 °C). Cages can also be incorporated
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into polymers16 and formmixed-matrix membranes.17 Choosing
between a MOC and an OC depends on the requirements of the
application. For example, the open metal sites available in
MOCs offer more tuning possibilities for catalysis, whereas OCs
provide an overall lighter material.

Like in MOFs and COFs, the modularity of MOCs and OCs
can lead to a large space of possible structures and has thus
attracted the attention of computational researchers. The two
types of porosities – intrinsic and extrinsic – add yet another
customisable dimension. Evans et al. estimated that using only
small organic molecules as building blocks for cage-based
porous molecular materials, there could be 1060 potential
candidates.18 Inspired by the success of high-throughput
screenings (HTS) on extended porous materials, several
research groups started to apply the same data mining methods
to organic molecular materials, whether their porosity is
intrinsic and/or extrinsic. McKeown et al. carried out a targeted
structure search in the Cambridge Structural Database (CSD) to
identify promising organic microporous crystals for nitrogen
and hydrogen adsorption.19 In particular, the authors were
looking for structures that might possess enhanced micropo-
rosity compared to existing examples of microporous crystals.
Therefore, to narrow their search in the database, they looked
for structures (1) with densities lower than 0.9 g cm−3, as the
lowest density of any known microporous organic crystal was
0.96 g cm−3 for p-tert-butylcalix[4]dihydroquinone aer water
removal, (2) containing mostly aromatic rings as these play an
essential role in the structures' stability (or shape persistence)
and (3) with pore diameters smaller than 10 Å, as it was shown it
ensures stronger gas adsorption for hydrogen storage.
Following this data sieving and aer the elimination of addi-
tional structures with questionable data quality, 23 organic and
Chem. Sci., 2022, 13, 13507–13523 | 13507
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metal–organic candidates were retained. Among them,
3,3′,4,4′-tetra(trimethylsilylethynyl)biphenyl (CSD refcode:
BALNIM20) was synthesised experimentally and demonstrated
a BET (Brunauer–Emmett–Teller) surface area of 278m2 g−1 and
the highest amount of nitrogen adsorbed at 77 K and at satu-
ration for an organic, crystalline compound with such low
molecular mass.20 Later on, Mastalerz et al. used similar criteria
to rationally build an extrinsically porous molecular crystal with
at-ordered sheets self-assembled with hydrogen bonding.21

They found that benzimidazolones were promising subunits for
extrinsic porous crystalline structures with one-dimensional
channels. The synthesised structure (a trisbenzimidazolone,
CSD refcode: DEBXIT21) showed an exceptional BET area of 2796
m2 g−1.

Moving on from single searches to larger datasets, Evans
et al. derived the rst organic porous molecular crystals data-
base (oPMC).22 From the CSD (version 5.35, including updates
up to March 2014), the authors used ConQuest to look for (1)
organic structures with (2) densities lower than 2 g cm−3, con-
taining either (3) only one residue (therefore removing co-
crystals) or (3′) more than one symmetry-independent mole-
cule. In this search, they excluded (1) disordered structures, (2)
structure data solved from powder diffraction methods, (3) a list
of structure types including organic polymers, amino-acids,
peptides and complexes. From the initially obtained dataset
of 160 000 structures, entries without explicit hydrogen atoms
were removed, leading to 156 333 candidates. Among these, 16
000 were found to be porous to helium. However, a signicant
number of structures presented unphysically large pores that
could potentially lead to mechanically unstable structures and
their collapse. To remove these, molecular mechanics simula-
tions were performed to optimise the geometry of the crystals.
481 nal organic porous molecular crystals were eventually
retained to form the oPMC. These include well-studied struc-
tures as well as previously unknown ones. The authors also
demonstrated the possible structure–properties trends identi-
able with such a dataset. In particular, they applied support
vector machines on oPMC to show that descriptors related to
molecular sizes – such as van der Waals surface – are the most
important factors in predicting the structures' propensity to
form structural voids. While the previous studies did not
specically focus on intrinsically porous materials, Miklitz et al.
built the Cage Database (CDB), which contains organic cages,
cucurbiturils, cyclodextrins and cryptophanes, for xenon/
krypton separation purposes specically.23 Starting from about
120 structures identied through a literature review, 41 struc-
tures were rst retained aer visual inspection. 26 of them were
then found to have pore sizes suitably close to the diameters of
xenon and krypton, aer which only the structures with the
highest host–guest binding energies and the relative xenon/
krypton binding energies were kept, leading to 12 potential
candidates. Conversely to the previous studies, this screening
focused on the analysis of single host molecules, rather than the
solid-state structure of the material. The experimental adsorp-
tion isotherms of xenon and krypton were then measured for
the selected materials at 1 bar and 298 K. They found that the
cage molecule Covalent Cage 3 (CC3) remained the best-
13508 | Chem. Sci., 2022, 13, 13507–13523
performing structure for this task, theoretically and experi-
mentally, as previously reported.6 In an effort to map out the
landscape of known porous organic cages, Sturluson et al. ob-
tained a latent cage space by deriving “eigencages” from
a dataset of 74 cages.24 These cages consist of the 41 structures
from the CDB and 33 cages discovered and synthesised via high-
throughput robotic synthesis.25 To obtain this latent represen-
tation, the cages were rst scanned to obtain 3D images of their
intrinsic porosity. Using singular value decomposition, the data
corresponding to these 3D images were then compressed to
obtain an approximate low-dimension subspace dened by an
orthogonal basis composed of vectors called “eigencages”. Any
cage (from this dataset or similar to the cages in this dataset)
lies in this low-dimension subspace and can be described as
a linear combination of these eigencages. The dimension of this
latent space was chosen so as to minimise the loss of infor-
mation during the compression step. From the 74 cages in this
work, the authors derived a subspace of dimension 22, corre-
sponding to a 70% compression and a 15% relative error when
reconstructing the cages. Interestingly, of the 22 eigencages, the
six most important ones are oen enough to visually recon-
struct the structure of a given cavity. Each eigencage, being each
an eigenvector, gives a direction that explains the most variance
in the 3D images. However, only the three most important
eigencages captured human-understandable features of the
cavity shape (such as cavity size and protrusion). The other
eigencages were less intuitive and more difficult to interpret.

While the computational organic molecular materials eld
has signicantly grown, the metal–organic equivalent seems
currently non-existent. Yet, the eld itself is growing, as
demonstrated by the increasing number of reviews tackling
a signicantly diverse range of MOCs.4,26–35 Similarly to our
previous efforts with MOFs and COFs subsets, armed with the
CSD tools,36,37 we would like to answer the question: how many
MOCs and OCs are there?

Conversely to MOFs and COFs, however, cages are discrete
molecules. Extended structures were identied in the CSD using
a combination of (i) a substructure search based on the most
common ligands and clusters linkages and (ii) a search for
keywords tagging “polymeric” structures specically. The latter
captured the essence of extended structures and signicantly
reduced the search space for (i). However, simply changing the
second criterion to “non-polymeric” structures signicantly
enlarges our search area without getting us any closer to cage-
shaped molecules. Indeed, a search for non-polymeric organo-
metallic structures with 3D coordinates determined leads to
447 336 hits, and the same search for organic structures returns
442 503 candidates (CSD version 5.41 with updates up to
November 2019). While the specic linkage between the organic
and metal subunits can still be described with ConQuest, there
is no simple specic keyword to capture the shape of cages. In
addition, the lack of a clear denition of cages makes their
automatic identication even more difficult. The IUPAC denes
cage compounds as “polycyclic compound[s] having the shape
of a cage”,38 which, similarly to the MOFs' case,36 translated into
yet another tautology. While it seems widely assumed and
accepted that cages should contain cavities, it remains unclear
© 2022 The Author(s). Published by the Royal Society of Chemistry
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when a cage should no longer be considered a cage: how closed
or open can these cavities be, in order to be labelled as a cage?
While certain structures are undoubtedly cages (3D) and other
rings (2D), there is a wide range of structures in between these
two extremes. Fig. 1 shows an example of each. What is certain
is that cages, from a structural point of view – whether 3D or 2D
– should contain some kind of hole in which another molecule
can t, at least partially.

To capture the presence of this hole – cavity in 3D or window
in 2D, we chose to use a well-established data analysis tool
called topological data analysis (TDA).42 TDA is a mathematical
method that studies the shape – or topology, in mathematical
terms – of big data. In particular, persistent homology43 enables
the identication of holes and clusters of data points. We
provide here a high-level description of persistent homology
and leave the curious reader with the mathematical details.
Persistent homology identies the features that are the most
spatially representative in a point cloud. For this, a nested
family of simplicial complex is gradually built on top of the
studied set of points. This simplicial complex consists of a set of
points (0-simplex), line segments (1-simplex), triangles (2-
simplex, in 2D) and tetrahedrons (3-simplex, in 3D) that form
a graph where the segments, triangles and tetrahedra represent
the relationships between the points. This family of simplicial
complex is called ltration. Fig. 2a illustrates how this ltration
is algorithmically obtained for a 2D point cloud. Given an
appropriate metric distance (in our case, the Euclidean distance
to study the spatial relationship of atoms in a molecule), a ball
(or sphere in 3D) of a given radius is virtually centered on top of
each of the data points at the starting time t = 0. Fig. 2a shows
the data points at t1 = t0

−, just before the balls are placed on
top. We then increase the balls' radius. When two balls meet
each other, a segment between the two corresponding data
points is created (see t2 in Fig. 2a). t3 in Fig. 2a shows a time step
when a triangle is created from three neighbouring data points.
As the balls grow in radius and merge, a more complete
Fig. 1 Examples of (a) a cage, (b) a ring-like structure, (c) a bowl-shaped s
schematic of the corresponding shapes are provided at the bottom of e

© 2022 The Author(s). Published by the Royal Society of Chemistry
ltration is gradually obtained. Visually, at t4, the balls and
ltration have already captured the presence of a hole formed
by the data points. The algorithm can continue until the balls
have all merged and covered the hole; this is when the full
ltration is obtained. A useful concept in persistent homology is
the Betti number. The kth Betti number Bk is the number of
independent k-cycles that are not the boundary of an object of
dimension k + 1. Here, k-cycles are linear combinations of k-
simplices with an empty boundary, i.e. these linear combina-
tions potentially surround a region of k + 1 dimension. The
easiest to visualise are 1-cycles: they are loops, such as the three
edges (and boundary) of a triangle. Simply put, B0 is the number
of independent connected components, B1 the number of holes
and B2 the number of cavities. During the computation of the
ltration, two important time steps are recorded for each
component: their birth time and their death time. The birth
time of a component corresponds to the time it is rst created.
At t = 0, the balls of radius 0 placed on top of each data point
represent each data point as a single component. When two
data points are connected via a segment, the initial two
components have “died” and a new component (the two points
and the connecting segment) is created. This marks the death of
the rst two components and the birth of the new component.

From the recorded births and deaths, it is then possible to
represent the persistence homology with the help of persistence
diagrams and persistence barcodes. In the latter, each indi-
vidual component at any given time is stacked on the y-axis, in
order of successive births. Their lifetime is represented on the x-
axis by joining the components' birth time and death time. The
components corresponding to different Betti numbers are rep-
resented in different colours. The number of most persistent
components at the nal time gives the number of independent
components. In the persistence diagram, the births are recor-
ded on the x-axis and the deaths on the y-axis. Each component
is then represented by a single point, above the diagonal line.
Fig. 2b and c show the persistence barcode and diagram
tructure. CSD refcodes: (a) CIYWOX,39 (b) AVELIYH,40 (c) BOGYUT.41 3D
ach example in blue.

Chem. Sci., 2022, 13, 13507–13523 | 13509
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Fig. 2 An illustration of persistent homology. Upper box: a generic 2D hole example. (a) The process of building a filtration on top of the set of
points. The data points are represented with dark blue dots (t1). Light blue balls are then placed on top of each data point. The balls' radius is then
gradually increased. When two balls meet, the corresponding data points are connected via a segment, forming a new connected component
(t2). This process can also lead to the formation of triangles (t3). At t4, there is only one connected component left. The corresponding persistence
barcode and persistence diagram are given in (b) and (c), respectively (red lines and dots: B0 components, blue lines and dots: B1 components).
The time steps t1 to t4 are indicated in (b) for reference. Lower box: example of a cage (CSD refcode QUFYIB44). An image of the structure is
provided in (e) the persistence barcode and diagram are given in (d and e), respectively (red lines and dots: B0 components, blue lines and dots: B1

components, green lines and dots: B2 components). A zoom on the B2 components is giving in the inset in (d).
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obtained for the 2D point cloud presented in Fig. 2a. The red
lines in the barcode and the red dots in the diagram correspond
to B0 components. At the start (t1), each data point corresponds
to a single independent component. Hence, a large number of
red lines are stacked on top of each other. These independent
components quickly give way to a smaller number of connected
components of a higher Betti number. The blue lines and dots
correspond to B1 components. The longest blue line corre-
sponds to the most persistent component, i.e. the hole. This
long blue line coexists with a long red line, meaning it is also
the only component le. The corresponding point in the
persistence diagram is the blue dot high above the diagonal, at
time t = 0.2. Fig. 2d and e give an example of the persistence
diagram and barcodes obtained for a cage (see image of the
13510 | Chem. Sci., 2022, 13, 13507–13523
structure in Fig. 2e). The stack of red lines (B0) is very tall
because of the high number of atoms. A few blue lines (B1) are
signicantly longer than other blue lines – they correspond to
the blue points located at death times equal to about 1.5, high
above the diagonal. They signal the presence of large windows.
The green lines and green points (see the zoom in the inset of
Fig. 2d) correspond to B2 components. Importantly, the most
persistent component is indicated by the only long green line
le at the end of the calculation (indicated by a green arrow).
This green line is translated into one distinct green point at
a death time of about 7, and well above the diagonal. This point
corresponds to the cavity.

While persistence diagrams and barcodes are the most
intuitive representations of persistence homology, they are
© 2022 The Author(s). Published by the Royal Society of Chemistry
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oen not readily useable for further comparative data analysis,
as each structure has a different number of (birth, death)
points. This is when persistence landscapes come in handy.45 A
persistence landscape takes as input the previously obtained
persistence diagram and turns it into a set of functions. Fig. 3
illustrates it. It is then possible to choose a xed number of
points from this set of functions to represent a given set of
structures. Putting the chosen points into vectors of same
lengths allows us to then apply machine learning to all the
structures.

Persistent homology has been applied in the eld of nano-
porous materials on several occasions. Lee et al. used TDA to
analyse the pore shapes of zeolites and their impact on the
adsorption performances.46 Later on, TDA-based descriptors
were used to predict with machine learning the performance of
structures of similar shapes.47 Moosavi et al. used persistent
homology to dene the geometry landscapes of porous molec-
ular crystals from the crystal structure prediction datasets.48 In
their work, they choose three molecules and studied the shapes
of their various packings. The different types of packings
identied were mapped to their corresponding lattice energies,
thereby revealing the best-performing structures. Machine
learning was then applied, using these geometric landscapes as
descriptors, and performed remarkably well for the prediction
of methane storage.

2. Cage identification

Here, we aimed to apply machine learning to the persistent
homology ngerprints obtained to predict whether the candi-
date structures are cages or not. Similarly to the CSD MOFs
subset, we chose to identify both 2D (rings) and 3D (cages)
structures in order to keep the dataset useful to the widest
audience possible. It is important to note that we are focused on
identifying the presence of a single molecule with a cavity or
windows, and not on the periodic structure obtained from their
packing. Although important and essential to understanding
their adsorption behaviour, the extrinsic porosity of MOCs and
OCs is beyond the scope of this study.

While the problem for MOCs and OCs is the same – identi-
fying their dening shapes – our starting point for these two
types of structures is different. As previously explained, there
are no known datasets of experimental MOCs in the literature,
whereas some experimental OCs have been extracted already.23
Fig. 3 From data points to persistence diagram to persistence landscap

© 2022 The Author(s). Published by the Royal Society of Chemistry
In particular, we used in this work a list of known experimental
OCs kindly provided by the Jelfs Computational Materials
Group and available at https://github.com/andrewtarzia/
cage_datasets. This existing dataset of OCs was obtained by
looking for known author names in the CSD and consists of
929 2D and 3D structures. Fig. 4 shows the two distinct
workows we used for MOCs and OCs. While MOCs
underwent unsupervised classication, OCs were determined
with supervised classication. In addition, the large amount
of discrete organic or metal–organic structures in the CSD
encouraged us to reduce our search space and computational
time by rst carrying out ConQuest searches for potential
MOCs and OCs candidates. We rst used the CSD version
5.41 with updates up to November 2019 to demonstrate our
method. Once a list of potential candidates was obtained, the
structures were further processed with the CSD Python API:

� Many entries have either additional solvent molecules or
multiple identical cages. Both cases add unnecessary noise to
the TDA analysis, and only the heaviest weight component
(heaviest_component in the CSD Python API) corresponding to
the cage of interest was kept. This also helps us identify the
single cage we want to extract the coordinates from.

� Although rare, some entries are fully linear. Therefore, an
additional check made sure that at least one atom is part of
a cycle. Note that ‘cycle’ here includes any closed path from
a given atom to the same atom.

We then extracted the fractional coordinates of the cleaned
isolated molecules, allowing us to perform TDA on a single
molecule, and not on the full periodic structure. We used the
Python GUDHI module for the TDA calculations.49 We used the
Vietoris–Rips complex to build the simplicial complex. This
complex is a set of points built such that the distance between
two points is less or equal to a given alpha (Fig. S2†). The
maximum value of alpha (max_edge_length) is provided by the
user. To choose max_edge_length, several values ranging from
0.2 to 1.6 were attempted on randomly selected structures.
When comparing the resulting persistences, we found that
a large maximum value such as 1.6 considerably slows down the
computation of the complex, while a low value such as 0.2
shows a more signicant difference from the persistences ob-
tained with higher values. Any value between these two
extremes returned identical results and 0.8 proved to be a good
middle-ground. We then computed the persistence landscapes.
Since we are interested in the Betti 1 (windows) and Betti 2
e.

Chem. Sci., 2022, 13, 13507–13523 | 13511
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Fig. 4 Workflow for the identification and classification of metal–organic cages (MOCs) and organic cages (OCs) in the Cambridge Structural
Database (CSD).
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(cavities) features, we obtained landscapes for each of these two
dimensions for each structure. 2500 points were then sampled
from each of the Betti 1 and Betti 2 landscapes, totalling 5000
ngerprint points. More details specic to each type of struc-
tures are given below. In the case of MOCs, an additional noise
removal step was added to the workow. As we explain later, we
found some noisy structures, whose presence hampered the
clustering algorithm. All the Python scripts used here are
available on Github (https://github.com/ayl23/TDA_cages).

2.1 Metal–organic cages

2.1.1 Data preparation. We identied some of the most
common types of cages synthesised by, arguably, the largest
MOC groups (Ward, Hardie, Clever, Nitschke, Raymond, and
Fujita)35,50–55 and built simple ‘must-have’ criteria describing the
linkage between their organic and metal parts with ConQuest.
Six main groups were identied, of which the corresponding
descriptions are provided in Section S2 of the ESI.† As the goal
of these criteria is only to reduce the search space, they were not
ne-tuned to match specic cages. Fig. 5 gives a summary of the
different linkages, criteria and hits obtained. These criteria
represent fragments of the targeted structure and are drawn in
the Draw section of ConQuest to form a search query.56,57 This
query is then translated to a CCDC-specic query format that
encodes both the chemistry, the connectivity of the input
substructure and any geometrical constraints added by the user
(e.g. distance between atoms, number of connected atoms). The
soware then performs a graph-based search by comparing the
queried substructure with all the other CSD entries. In addition
13512 | Chem. Sci., 2022, 13, 13507–13523
to these criteria, the lters 3D coordinates determined, not poly-
meric and only organometallics were used. As it was pointed out
to us during the peer review process, carboxylate-based cages
have been le out of Fig. 5. We take this opportunity to
demonstrate at the end of our paper how other types of struc-
tures can be easily included using our method.

The combination of the presented queries led to a total of
3654 structures. Visual checks revealed a large amount of
questionable structures such as AHABOA and BOYJOP (Fig. 6a
and b). These structures have the shape of single and quadruple
grids, respectively, in addition to being in large numbers.
Structures in the shape of AGAPAA (Fig. 6c) are also in large
numbers. Although these structures are usually not labelled as
cages in the literature, they qualify structurally – mathemati-
cally – as cages. We obtained their persistence landscapes and,
aer a preliminary unsupervised classication of the candi-
dates including these unusual structures, we found the latter
confused the algorithm and reduced the overall classication
performance. We, therefore, proceeded to remove these struc-
tures and, here on, refer to them as noise.

2.1.2 Noise removal. Given two persistence diagrams, it is
possible to compute their similarity. Several different measures
of similarity exist. In this work, we used the standard bottleneck
distance db. To compute db we rst pair up points from the two
diagrams. Because the number of points is not necessarily the
same in the two diagrams, points that do not have matched
points from the other diagram are paired up with their closest
point on the diagonal. Fig. 6d illustrates the calculation of the
bottleneck distance. The blue dots and the red dots represent
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Quick ‘must-have’ criteria drawn in ConQuest for some common cages. The dotted lines refer to ‘Any’ type of bonds. QA = C or N.
Upperscript c: the corresponding atom should be cyclic. When atoms are not explicitly indicated, they correspond to C atoms.
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two different persistence diagrams. The circles highlight points
that have been matched. For a given point of coordinates (b, d),
their closest point on the diagonal has coordinates 1/2(b + d, b +
d). We then compute the distance between the matched points,
and between the unmatched points and their closest point on
the diagonal. The distance metric used for the bottleneck
distance is the sup norm in ℝ2. The largest sup norm obtained
constitutes the cost of the matching. However, there can be
different possible matchings, each with a different cost. The
nal bottleneck distance is the smallest of all the possible costs,
i.e. the cost of the most efficient matching. Section S1 of the
ESI† provides some more mathematical details of the bottle-
neck distance calculation. We removed structures similar by
95% to the three identied noisy structures using the GUDHI
module. We also observed that a number of structures did not
contain an organic part in their main component. These
structures were discarded using ConQuest, which le us with
2194 structures.

2.1.3 MOC identication. We then applied hierarchical
clustering on the persistence landscapes of the ltered struc-
tures. Hierarchical clustering is a type of unsupervised classi-
cation algorithm.61 In our work, we used agglomerative
hierarchical clustering, where the initial clusters correspond to
each different data point and are then merged together
successively according to a specic merge strategy. The process
resembles the building of a nested tree, where each branch
corresponds to two merged clusters. That is why the nal
hierarchy of the clusters are represented as a tree – or dendro-
gram, where the root of the tree corresponds to the overall
cluster containing all the structures. The obtained dendrogram
is a useful way of visualising the similarity and relationships
between the clusters and is the reason why this algorithm was
© 2022 The Author(s). Published by the Royal Society of Chemistry
chosen for this classication. We used the hierarchy, cluster
and distance modules from the open-source Python library
SciPy62 to compute the dendrograms on the 5000 ngerprint
points sampled from the persistence landscapes. The chosen
merge strategy was the standard Ward linkage, which denes
the distance between two clusters as the variance between them
and attempts to minimise it. Fig. 7a presents the rst dendro-
gram obtained. The x-axis shows the different clusters obtained,
and the number of structures in each cluster. For readability
reasons, the dendrograms are truncated, therefore, showing
only a small number of possible clusters. The y-axis represents
the distance between each cluster merge, as calculated by the
Ward method. The horizontal black line indicates interesting
cut-off distances and guides users in choosing the number of
desired clusters. Above this line, the distance at which two
clusters merge is indicated in blue near the merging point. This
rst dendrogram is composed of three main branches. Visual
checks of the classication show that the algorithm was able to
clearly classify 2D and 3D cages (two right branches), with very
few cases of non-cages. The rst branch, however, is a mix of
cages and non-cages. To obtain a closer and clearer view of this
branch, we zoomed in by applying hierarchical clustering again.
The resulting dendrogram is presented in Fig. 7b. There are
again three main branches, the middle one being composed of
2D and 3D cages. The outer branches are however still
composed of a mix of cages and non-cages. To analyse the
structures in these branches, we zoomed in again and classied
these branches into 48 clusters. The corresponding dendro-
grams are presented in Fig. 7c and d and truncated at 24 clus-
ters for readability. Each of the smaller clusters was then
visually checked to determine the ground truth for each struc-
ture. For each cluster, if the number of cages was higher than
Chem. Sci., 2022, 13, 13507–13523 | 13513
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Fig. 6 Removing noisy structures. CSD refcodes of example noisy structures: (a) BOYJOP,58 (b) AHABOA59 and (c) AGAPAA,60 (d) illustration of the
calculation of the bottleneck distance between two persistence diagrams. The blue dots and the red dots come from two different persistence
diagrams. The circles represent dots from the two persistence diagrams that have beenmatched, and on which the sup normwill be applied. For
points that have not been matched, it is the sup norm to the closest point on the diagonal that is taken into account.
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60%, the whole cluster was considered as composed of cages.
However, if less than 40% consists of cages, the whole cluster
was considered as composed of non-cages. Using this decision
method, we were able to estimate the accuracy of the overall
method to be 94.7% for the 1377 structures labelled as cages.
112 structures were not classied, as they belonged to clusters
with similar numbers of cages and non-cages. Among the
structures labelled as non-cages, 26 were false negatives.
2.2 Organic cages

2.2.1 Data preparation. Similarly to MOCs, we gathered
potential OC candidates using ConQuest. A fewmain families of
2D and 3D cages were rst identied based on literature
reviews.2,5 Quick general queries were then designed to capture
most of them, without any ne-tuning. The lters 3D coordinates
determined, not polymeric and only organics were used. In addi-
tion, we eliminated any structure with any metal atom. Fig. 8
summarises the main groups of organic cages and their
respective number of hits. Examples of each type of OCs are
given in Section S3 of the ESI.†

Fig. 9 presents the most common groups of rings considered
and the corresponding number of hits returned: cucurbiturils,
13514 | Chem. Sci., 2022, 13, 13507–13523
cyclodextrins and cryptophanes. The combination of the above
queries led to a total of 3746 structures. When compared with
the list of 929 labelled cages provided by the Jelfs Computa-
tional Materials Group, it was found that 462 structures were
not found in the previous search. Although in minority, visual
inspection showed these missing structures represented a wide
variety of cages, not corresponding to any of the previously
identied big families of OCs. For each type of missing struc-
ture, an additional query was created, until all missing struc-
tures were found. These queries are provided in Section S4 of
the ESI.† A total number of 12 310 candidates was obtained, all
of which had their persistent homology diagrams calculated.

2.2.2 Supervised classication. To prepare the training
dataset, we added to the list of structures labelled as cages 633
random non-cage structures from the CSD. These structures
were visually checked to be indeed non-cages. We then obtained
the persistent landscapes, as previously, and extracted a total of
5000 ngerprint points. The latter were fed to the Random-
ForestClassier module from the Python library Scikit-learn63 to
perform the supervised classication of the OCs. The base
random forest model with 100 estimators was found to be good
enough for the task. 85% of the data was used for training and
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Truncated dendrograms of the hierarchical clusterings used to identify metal–organic cages. (a) Is the full dendrogram, (b) is the
dendrogram obtained by zooming on the orange-highlighted area in (a), (c) is the zoomed-in dendrogram of the left orange-highlighted area in
(b), and (d) is the zoomed-in dendrogram of the right orange-highlighted area in (b). The black horizontal line indicates interesting cut-off
distance values.
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15% for testing. The trained algorithm had an accuracy of 96%.
Among the 12 310 potential candidates, 6923 structures were
labelled as cages, which is 7 times the size of the initial 929
labelled OCs.

3. Xenon/krypton separation

We have built here so far two CSD subsets of cages and show-
cased in particular the use of hierarchical clustering as an
unsupervised classication method. This algorithm can be
applied again on these two subsets – independently or jointly –
to classify the different types of cages. To demonstrate the
usefulness of such methods when mapped together with
© 2022 The Author(s). Published by the Royal Society of Chemistry
adsorption data, we carried out a HTS of a 20/80 xenon/krypton
mixture at 298 K and 10 bar on the two datasets.

Separating xenon from krypton is of great industrial interest.
Both are naturally found in low concentrations in the atmo-
sphere: xenon is at 0.087 parts per million by volume (ppmv),
and krypton at 1.14 ppmv.64 Both are also important in a range
of applications, such as medical imaging,65 anaesthetics,65,66

lighting,67 lasers,68 double-glazing,68 and satellite propellant.69

At the moment, xenon/krypton mixtures are rst obtained in
a 20/80 ratio during cryogenic distillations performed during
the separation of oxygen and nitrogen in the air.70,71 It is then
necessary to apply additional cryogenic technologies to further
purify the obtained xenon and krypton. Given the initial low
Chem. Sci., 2022, 13, 13507–13523 | 13515
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Fig. 8 Quick ‘must-have’ criteria drawn in ConQuest for some common 3D organic cages. The dotted lines refer to ‘Any’ type of bonds. QA= C
or N. Upperscript c: the corresponding atom should be cyclic. When atoms are not explicitly indicated, they correspond to C atoms.
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concentrations, high-purity xenon is, therefore, as costly as 5000
USD per kilogram.67 A potentially cheaper alternative would be
the use of selective adsorption in porous materials.

Several computational studies have already looked at the use
of porous materials for xenon/krypton separation at 298 K.6,72–76

In particular, Simon et al. screened the nanoporous materials
genome, composed of over 670 000 hypothetical and experi-
mental zeolites, MOFs, COFs and other extended structures and
found SBMOF-1 77 to be a top MOF performer at 1 bar.70 Bane-
rjee et al., later on, screened 125 000 hypothetical and experi-
mental MOFs and identied the very same SBMOF-1 in the
same conditions.74 On the discrete molecules side, the tetra-
hedral organic cage CC3 was identied twice as the best
performer at 298 K and 1 bar. These studies highlight, in
particular, the importance of pore size andmorphology with the
selectivity of the material.6,70,76 Importantly, xenon's van der
Waals radius is 1.985 Å, which is larger than that of krypton
(1.83 Å).70 Combined with a deeper potential well for xenon,
most structures are expected to be selective towards xenon.
Sturluson et al. analysed their latent cage space by computing
the excess uptake of xenon and krypton in a single cage mole-
cule.24 They found that the shape of the cavity alone is a good
indicator of the cavity's xenon/krypton selectivity, and cages
13516 | Chem. Sci., 2022, 13, 13507–13523
that clustered in the same areas in the latent space have similar
molecule and cavity sizes and show similar xenon/krypton
selectivities. However, this study does not take into account
the effect of packing on selectivities. While the current record-
holder is well-established (SBMOF-1 has a predicted selectivity
of 82 versus 13.8 for CC3),70 we show here how the cages clas-
sication can be mapped onto their separation performance.
We specically look at the cages' performance at 298 K and 1
and 10 bar.

3.1 Data preparation

We performed high-throughput grand canonical Monte Carlo
simulations (GCMC, see methods in Section S5 of the ESI†) on
the 1377 MOCs and 6923 OCs identied here and considered
rigid. Note that, while the TDA was performed on single cages,
the simulations are performed on packed cages. We removed
the solvents using the same method as previously described
for TDA, by using the CSD Python API to only keep the
heaviest_component in each entry. For the cages, we used an
atomistic model where the atoms were kept xed at their posi-
tions and a mix of Dreiding force eld78 and universal force
eld79 parameters. The xenon and krypton atoms weremodelled
with TraPPE. We found that many structures are tagged as
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Quick ‘must-have’ criteria drawn in ConQuest for cucurbiturils, cyclodextrins and cryptophanes. The dotted lines refer to ‘Any’ type of
bonds. QA = C or N. Upperscript c: the corresponding atom should be cyclic. When atoms are not explicitly indicated, they correspond to C
atoms.
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“disordered” in the CSD. However, most of the disorders
encountered in these structures are located in the solvent
molecules. Therefore, by using the previous processing used to
prepare the cages for TDA, we actually removed the disorder in
most of the structures. Visual checking revealed a few structures
presented missing hydrogens. We ran a bash script previously
published to identify these structures,37 and used the CSD
Python API's add_hydrogen() function to add missing hydro-
gens. The list of the structures identied is included on our
Github page and we encourage the users to ag any other
structures with missing hydrogens that the algorithm might
have missed. The processing used in TDA kept only one single
cage in the rare cases where multiple cages were present in one
asymmetric unit. We, therefore, checked a posteriori that the
well-ranked structures indeed only contained a single cage in
one asymmetric unit.

We then applied hierarchical clustering on the two datasets,
to further classify the cages according to their shapes and to
determine any potential shape-selectivity relationships. We
computed the dendrograms, visually identied interesting cut-
off distances and chose the corresponding number of clusters
accordingly. We chose 16 clusters for the MOC dataset and 11
clusters for the OC dataset.

3.2 Mapping the cages' shapes to their xenon/krypton
separation performance

Fig. 10 presents the results obtained by combining the GCMC
results with the cages classication. The gures in the le
column correspond to the MOC dataset and the gures in the
right to the OC dataset. Fig. 10a and b present the xenon uptake
versus the selectivity of xenon over krypton, here dened as:
© 2022 The Author(s). Published by the Royal Society of Chemistry
SXe

Kr

¼

�
xXe

xKr

�
�
yXe

yKr

�

where xXe and xKr are the molar fractions of xenon and krypton
in the adsorbed phase, and yXe and yKr are their molar fractions
in the bulk gas phase, here 0.2 and 0.8. Each point corresponds
to a structure. The majority of the data points have selectivities
between 1 and 10. As we are interested in the outstanding
structures, and for clearer visibility, we masked this range of
selectivities with a pink band. The size and y-positions of the
structure points on the right of this band (i.e. very xenon-
selective) correspond to their xenon uptakes. On the le side
of the band, where structures are krypton-selective, the points'
size and y-positions correspond to their krypton uptakes. The
colours correspond to the data points cluster, indicated in
Fig. 10e and f. For such separations, the ideal structure should
be highly selective towards xenon whilst showing high xenon
uptake. The highlighted area in red boxes is zoomed in Fig. 10c
and d. The snapshots of some of the best-performing structures
are also presented. Interesting structures are enclosed in orange
boxes. For both MOCs and OCs, the cluster colours in Fig. 10c
and d reveal families of structures with similar xenon uptakes
and a range of selectivities (class 13 for MOCs and class 4 for
OCs). Visual inspection of these structures reveals they are all
CC3-type of structures. Fig. 10e and f present the boxplots of the
different clusters, for selectivities over 10. The jittered points
behind the boxplots indicate the number of data points
involved. The markers represent the minimum, rst quartile,
median, third quartile, and maximum values, respectively,
Chem. Sci., 2022, 13, 13507–13523 | 13517
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Fig. 10 Xenon/krypton separation performance of metal–organic cages and organic cages. (a and b) Xenon and krypton uptakes versus Xe/Kr
selectivity. Each point represents a structure. The points' colour corresponds to their cluster, indicated with the same colours in (e and f) the pink
band hides structures with selectivities between 1 and 10. On the right side of the pink band, the y-axis and the size of the points correspond to
the xenon uptake. On the left side of the band, the y-axis and size of the points correspond to the krypton uptake. The red boxes highlight areas
of interest, zoomed in (c and d) the orange boxes indicate structures with a CC3-type shape. Images of the best-performing structures are also
provided. (e and f) Show the boxplots of the different classes of materials identified for xenon/krypton selectivities of over 10. The jittered points
in the background give an idea of the number of structures considered for each boxplot. The markers represent the minimum, first quartile,
median, third quartile, and maximum values, respectively. The red dot indicates the mean. Outliers are represented by black data points.
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while the red dots indicate the average value in each boxplot.
Outliers are shown with additional grey dots. For structures in
this range of selectivities, MOC class 13 and OC class 4 indeed
stand out as families with high values of selectivity. An image of
a CC3-type of structure is given in Fig. 10e.

Fig. 10c and d revealed some of the best-performing struc-
tures, such as SISMUC and CIXBIX, both rings. Fig. 10e and f
however show the statistical behaviour of the different classes of
cages. While CC3 was not predicted to be the best-performing
structure, its family of structures span a range of selectivity
for a similar xenon uptake. The variability of the selectivity
could be an artefact due to the very low uptake of krypton (close
to 0), thus causing a large variance. However, it is also
13518 | Chem. Sci., 2022, 13, 13507–13523
important to note that the classication here was only applied
to the cage itself, and does not reect the extrinsic pore shapes.
Similar cages can pack differently, causing more or less effi-
ciency in their selectivity. Because TDA cannot be applied
directly to periodic systems, we looked at the crystal systems in
which these structures crystallise. We gathered all tetrahedral
cages and extracted their crystal system and space group
information from the CSD. The results are shown in Fig. 11a.
Each point corresponds to a structure. Its shape indicates
whether it is a MOC or an OC and its colour its space group. The
structures are organised into rows, each of which corresponds
to their crystal system. The x-axis gives the xenon/krypton
selectivity. The red line indicates the previously chosen
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 (a) Crystal systems of tetrahedral cages and their Xe/Kr selectivity. (b) Example of organic tetrahedral cage. (c) Example of metal–organic
tetrahedral cage. In (a), each point corresponds to a structure. Its color corresponds to its space group, its shape to its classification as metal–
organic cage (MOC) or organic cage (OC) and its size to its xenon uptake. The points are organised into different rows according to their crystal
systems. The points are jittered in the y-axis for easier visualisation. The vertical red line indicates a selectivity of 10. The CC3-type structures are
highlighted in orange. The M6L4-type structures are highlighted in green. One additional M6L4-type structure with a selectivity of 537 is not
shown for clearer visualisation (CSD refcode: AJENIO83).
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threshold of selectivity equal to 10. Structures on the le side of
the red line tend to have lower selectivity and higher xenon
uptakes, whereas structures on the right side have higher
selectivities and lower xenon uptakes. Interestingly, structures
with higher selectivities that crystallise in cubic systems are also
organic, while structures with higher selectivities that crystallise
in tetragonal systems are also metal–organic. These two types of
structures have distinct features: most of the organic structures
with higher selectivities gather around selectivity values of
about 40 and uptakes of around 2.5 mol kg−1. These structures –
highlighted in orange – correspond to CC3 cages obtained under
different conditions from the Cooper group.6,80–82 A typical CC3
structure is shown in Fig. 11b. The metal–organic structures,
however, span a range of selectivities at lower xenon uptakes of
© 2022 The Author(s). Published by the Royal Society of Chemistry
around 1.6 mol kg−1 and correspond to the sameM6L4 structures
(6 metal nodes and 4 ligands) synthesised under different
conditions by the Fujita group.83–90 These structures are high-
lighted in green and Fig. 11c shows their typical structure. The
high variance of the selectivities calculated for these M6L4 cages
is likely due to exibilities not accounted for in the GCMC
simulations. More details about the observed structural differ-
ences are provided in Section S6 of the ESI.†
4. Updating the datasets of structures

To offer the most up-to-date list of MOCs and OCs, and to
demonstrate how these datasets can easily be amended with
new structures and structures that were not taken into account,
Chem. Sci., 2022, 13, 13507–13523 | 13519
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Fig. 12 (a) Quick ‘must-have’ criteria drawn in ConQuest for carboxylate-based cages. The dotted lines refer to ‘Any’ type of bonds. When atoms
are not explicitly indicated, they correspond to C atoms. Examples of targeted carboxylate-based cages: (b) CSD refcode: JANYUT,91 (c) CSD
refcode: EXAMIB.92
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we have applied the samemethods outlined here to (i) ca. 50 000
new metal–organic molecules and (ii) ca. 60 000 new organic
molecules added between November 2019 and March 2022, as
well as (iii) 76 cages found while targeting carboxylate-based
cages.

To reduce the search space for MOCs and OCs, we rst used
ConQuest to look for any structures added between these two
dates with the lters 3D coordinates determined, not polymeric
and only organometallics or only organics, respectively. We ob-
tained a list of 51 923 structures for MOCs and 64 630 for OCs.
Aer running our rst script to remove fully linear structures,
we were le with 50 304 potential MOC candidates and 62 702
OC candidates. We then obtained the TDA landscapes and
performed the hierarchical clustering, aer which we visually
inspected the clusters obtained. 391 new MOCs and 814 new
OCs were found using this method.

As it was rightly pointed out to us, carboxylate-based cages
form an important type of MOCs. To add the corresponding
cages, we rst performed the query shown in Fig. 12a in
ConQuest, with the lters 3D coordinates determined, not poly-
meric and only organometallics. This search targeted structures
such as those shown in Fig. 12b and c and returned 2437
structures. Aer obtaining the TDA landscapes and performing
the hierarchical clustering, one class of 76 structures stood out
as carboxylate-based cages and rings.

We have thus updated the list of MOCs and OCs to contain
1839 and 7736 structures, respectively. The lists of MOCs and
OCs determined in 2019 and these latest lists can all be found
on our Github.
5. Conclusion

We presented the use of topological data analysis for the iden-
tication of cages in the CSD. In addition, we demonstrated the
usefulness of hierarchical clustering in the unsupervised clas-
sication of cages, as well as in visualising the structures'
similarity. Using these methods, we successfully obtained the
rst MOC dataset and an OC dataset which expands the OC
space previously known by seven-fold. Whilst the presented
procedure is more complex to integrate into the CSD for auto-
matic updates, we suggest applying random forest on persistent
homology landscapes to determine whether a new structure is
a cage. We illustrated the information we obtained with
13520 | Chem. Sci., 2022, 13, 13507–13523
a xenon/krypton separation simulation. We conrmed the high
performance of the previously identied CC3 cages, whilst also
identifying high-performance rings. More interestingly, we
found the metal–organic equivalents to CC3 (M6L4) and
compared their respective selectivities.

While the computational eld of organic porous cages is
growing fast, this is – to the best of our knowledge – the rst
extensive search of OCs in the CSD. A signicant amount of
work on the classication and prediction of OCs has already
been produced, albeit relying on a cage-specic topology
nomenclature – different from the mathematical concept of
topology used in this work. Of the predicted 20 most common
topologies dened by Santolini et al.,93 12 have been experi-
mentally reported. Greenaway et al. took a step further by
creating a hybrid computational-experimental high-throughput
workow where conventional virtual HTS was combined with
robotic synthesis to discover new cages.25 Of the 78 precursor
combinations chosen, 33 cages were eventually synthesised and
one previously unknown topology was discovered. Feeding and
mapping the OCs dataset obtained in this work to the latent
cage space derived by Sturluson et al. and to known cage
topologies would bring invaluable additional insight to the
regions that have already been explored and to possible direc-
tions for the discovery of new cages. Extending the same cage-
specic topology denitions and mappings to MOCs could
not only accelerate the computational discovery of MOCs, but
also provide a clear research framework early on in the devel-
opment of the eld.
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